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STRESSES AND STRAINS INDUCED IN A BUILDING WALL
BY SLOW HARMONIC THERMO-HUMIDITIVE DIFFUSION

W.DUDZIAK and R. UKLEJEWSKI (POZNAN)

The Podstrigaé - Nowacki theory of thermodiffusion in deformable solids has been used
to describe the coupled processes of heat and moisture transport through building walls.
The analytic solutions for the stresses and strains induced in a wall material by slow
harmonic thermo-humiditive diffusion process are obtained by means of the electric trans-
mission line theory, owing to the electro-elasto-thermo-diffusive analogies.

1. INTRODUCTION

The heat and moisture transfer in building walls is described here by us-
ing the Podstrigaé - Nowacki theory of thermodiffusion in deformable solids
[1,2], developed in the monograph by NOWACKI and OLESIAK [3]. The
description has an advantage that a unified approach to mutual couplings
between the processes of heat and moisture transfer is possible; moreover,
there is the possibility of calculating the stresses and strains which appear
during thermo-humiditive processes in the wall material.

A system of electro-elasto-thermo-diffusive analogies has been given which
enables the methods of the theory of electric transmission lines [4] to be em-
ployed in the analysis of a unidirectional process of thermodiffusion in solids.
The system has been used to construct a general solution which describes the
coupled process of heat and moisture transfer in a multi-layer building wall,
induced by slow harmonic changes of the environmental thermo-humiditive
parameters [5].

A measuring-computational procedure for determining the material con-
stants of a building wall has been worked out for a model of moisture thermo-
diffusion in solids [6].

The present paper deals with determmmg the stresses and strains induced
in an external building wall by the moisture thermodiffusion process.
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2. EQUATIONS FOR HEAT AND MOISTURE TRANSPORT IN A BUILDING
WALL

The theoretical model adopted here assumes mutual interaction between
the processes of heat and moisture flow and of wall deformation. Mois- -
ture stands for the diffusing medium, humidity represents concentration of

the diffusing medium, and the role of a chemical potential of the diffus-

ing medium is played by the moisture potential. The coupled system of _f‘j‘-_
parabolic-hyperbolic differential equations has the form [1]

#Vu+ (A + pgraddiva+ X = pii + y,grad@ + y.grade,
(2.1) (V2 - El-at)@ — nebdivu+ adic = -Q,
1 .

(V? — %&)c-}— BoV320 + goVidivu = —o.
2 ,

The physical relations between stresses oy;, strains €i;, temperatute incre-
ment © and moisture increment ¢ read

o = 2puei; + (Aepk — 720 — 7.0)655,
(2.2) S = v epk ~dc+m@,
M = ~YeEkk + 40 + ne,

where u — displacement vector of a wall material particle, ;; — strain tensor, i
exk — dilatation, @ = T — T} - relative temperature, 7 ~ temperature in
reference state, ¢ = C' ~ Cp - relative humidity, Cp — humidity in reference
state, S — entropy per unit volume, M - moisture potential, X — body
force vector, ¢} ~ heat sources, o — moisture sources, p, A — Lamé elastic
constants, p — material density, vy, e, 7o, K1, K2, @0, Bo, €0, d, 0, 0 — basic
material constants. .

We will consider the heat and moisture transfer in an external building
wall, induced by sinusoidal changes of the thermo-humiditive parameters of
the external climate in a one-year period.

In a certain range of variations of the temperature, humidity and stress
state, and within the time period under consideration, the following assump-
tions are adopted: the wall constitutes a linear and stationary system; the
wall material is homogeneous and isotropic with respect to the thermal, hu-
miditive and elastic properties; the process of heat and moisture transfer is
slow so that mechanical inertia of the wall material may be neglected.
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Distribution of the temperature, moisture potential and stress state within
the building wall under slow harmonic variations of the state will be deter-
mined by using the solution given in the paper [5] and in Appendix L In the
commonly used theoretical models of heat and moisture flow in walls it is
assumed that the wall material is non-deformable e.g. [7,8].

A one-dimensional, nonstationary process of linear thermodiffusion of
moisture in an elastic layer is described by the following equations [5,6]:

0%u 00 dc
‘ (%-HUW = Trgg; TTh,
0?0 060 de

Far ey T ol = 0

(2.3) k o
D

82  Be 820
ot "t P = O
the physical relations

o1r = (2p+ ANen — 71,0 — 7ec,

(2.4) S = moO —de,

M = d@+ ne,
the la,V\;'s of heat and moisture transfer

00 oM
(2'5) q= _ka_:l: H n= ""K"'a_m y
and the other relationships
: 1,8%0 . 2M

@6 &= e Tt
(2.7) n = —-D Je _ DTQ(?— D, = kn, Dy =kd,

‘8z oz’
where ¢, 7 are heat and moisture fluxes, k, & are coefficients of heat and
moisture conduction, and Dr, D, are coefficients of thermodiffusion of heat
and moisture, respectively.

We assume that the following quantities are the harmonic functions of
time '

o1(z,t) = Reloo(z)e??], %;—L:z v(z,t) = Refvg(z)e™],
(28)  O(x,1) = Re[Oo(z)eiT], oz,t) = Re[go(a)e™!],

Re [o(z)e]

I
il

M(z,i) = Re[My(z)e*t], n(a:,lt)
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where § = /-1 is the imaginary unit, and

0'0(93) = o’om(m)ejwc(ﬂi) , : fvo(w) = Uﬂm(m)ejwv{x) ,
(29) 60(2:) = @Om(m)gj‘foe(ﬂf) \ qo(g;) = qom(gg)e.?'lﬁq(”) ,
Mo(z) = Mom(m)ej‘PM(fE‘) , n(z) = n(]m(m)ejw,,{x) .

The quantities with a subscript ”0” are so-called complex ampitudes (they
are vectors in the complex Gaussian plane) of the exponential form (2.9).
The complex amplitudes are expressed in terms of real amplitudes (quanti-
ties with a subscript ”0m”) and of the respective phase shift angles wey(z).
For instance, Mo(2) is the complex amplitude of the moisture potential,
Mori(2} is the real amplitude of the moisture potential, and @pr(z) is the
phase shift angle of the moisture potential.

The boundary conditions on the wall bounding surfaces (external and
internal) are formulated in the form of relationships between the tempera-
ture at a wall bounding surface and the heat flux through that surface, and
between the moisture potential at a wall bounding surface and the moisture
flux through that surface [7].

L]

FIG. 1. Diagram of heat and moisture transfer through an external building wall.

On the external surface of the wall (Fig. 1) remaining in contact with air
of temperature O, and of moisture potential M,, the following conditions of
heat exchange

(2.10) [0, — Oo( = 0)] + 1A, = mk-‘%ﬂ ,
=0




STRESSES AND STRAINS INDUCED IN A BUILDING WALL 253

and of moisture exchange
(2.11) Bl ~ Moz = 0)] = —s 2202}
& =0

are satisfied, where o, — coefficient of heat exchange (due to convection
and radiation), 8, — coefficient of moisture exchange with external air, 4, -
intensity of incident solar radiation at the external surface of the wall, r, -
coeficient of absorption of solar radiation by the wall surface. _

On the internal surface of the wall being in contact with internal air of
temperature @, and of mOisture potential My, we analogously have

(2.12) ay[@w — Oo(z = L)) = kM '-_L '
(213) BulMy ~ Mo = L)] = dz‘ﬁ‘;f J )

where a,, G, denote coefficients of heat and moisture exchange, respectively,
with internal air. It is assumed that there are no internal radiation sources
in the room (74, 4y = 0). :

The boundary conditions (2.10)-(2.13) determine the relations between
the temperature at a wall bounding surface (external or internal) and the
heat flux through that surface, and between the moisture potential at a wall
bounding surface and the moisture flux through that surface.

The linear process of heat and moisture transfer through a building wall
along a single axis  under slow harmonic changes of the state can be de-
scribed, in analogy to Eqs.(I.11), (1.12) in Appendix I, by the following
equations

() 0 0 2 -Zn] [ afe)
(2.14) dlmle) |_|0 0 -Zy 2 no(z)
' da @g(a:) Y2 0 0 0 NORE
M) Lo v o 0 Mo(2)
d . :
218) D o 700(0) + 21080(z) + ZusMo(a),
(2.16) disii) = 0 — og(z)= 0p(0) = const,
where
1 , d , 1
4y = 2 N’ 4 = men+ ) 73 = ju-—,
(2.17) gt n n
AT = Yol Ye , d
Zy = jwd—_% Zi = Zyy = jw—
n(2u+ A)’ eV n’
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(2.18) Y, = nglg-, Y, = -1';

The quantities (2.17), by analogy to electrical impedances (1.13) (Ap-
pendix I}, may be called thermodlﬁ'usmna,l nnpeda.nces (or thermo-humldltlve
impedances) of a building wall.

In the following considerations we shall assume that the values of qg([)),
70(0), @o(0), Co(0), Mo(0), oo(0) at the external surface of the wall are
known. We will be concerned with determmmg the distribution of the tem-
perature, moisture potential and stress state msule the wall,

Equation (2.14) represents the so-called homogeneous state equa,tlon, it
can be written in a compa,ct form as :
BE) _ ase),  S(2) = @), 1la), Oole), Mol@)]-

From equation (2. 19) the quantities which describe heat and m01sture
flow through the wall can be determined.. _

The solution of the state equation is given by the state vector S(z) rep- f
resented by the transmission equation (Appendix I): o

(2.19)

(220)  S@)= [eA] 50),  se<0,L>,

where ¢ is the so-called transmission matrix, and S(0) = [20(0), 10(0),
Qo(0), Mo(0)] is the state vector at the external surface of the wall.
The problem of finding the solutlon S(z) which satisfies the state equation

(2.19) reduces to determining the transmission matrix e . On using the
Cayley -Hamilton theorem for matrix A, the transmission matrix can be -
expressed in the form (Appendix 1):

(2.21) et o go(z)1 + g1(z)A + ga(z)A% + g3(m)A3 ,
where I
(e) = AALEZUEN
. yishyoz y2shyyz-
(222) nle) = v;(l-rf -—zvi) RncEs)
(@) = S
"0 = D
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and

n=(SP+EN?,  jp=(SP-KMV,

EPEP2:P3 I(=(AP2+Q2)1/2, AP:.{?E_;_I?E,

(2.23)
Qz—QZQE!s P2=Z2Yr21 P3=Z3Yég

Qz = Y22y, Qs = Y3Z23.
The components of the state vector S(z) being a solution of the state

equation (2.19), i.e. the fields of heat flux go(z), moisture flux no(z), tem-
perature O&p(z) and moisture potentaal Mpy(z), have the form:

(K + A PYo(0) — quo( )

(2.24)  go(z )— ‘ 2K chnz
: B (Ix + AP)B:(G) QsBa(O)
"2Km shne
(I; — AP)no(0) + QaqO(O)Jw _,,;
T 2K
+(K AP)By(0) + @sBs(0) .
: ' 2](72 ’
(225)  mle) = (K .AP)q;(I{:)_ Qzﬁo(ﬂ)ch,y x
(K — AP)B3(0) — Q2B,(0)
+ 2:}(71 2 Cshna
L (K + AP)go(0) - ano(O)dw i
2K
(I( + AP)Yano(0) — Q2Ys00(0)
2[&‘72 o
02)  ne )— e R et
' (Ix + AP)Yom0(0) — 2Y3q°(0)sh71:v
2]&‘/2
LUK~ AP)OUO) + QaMo(0)
2K

(Ix AP)Yz??o(O) + QzquO(O) shovy
21(']!2
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_ (If - AP)MQ(O) - Q390(0)

(2.27)  Mg(x) chyz

2K
+(I"- - AP)Y:&%(P) - Q:’Yzm(o)shﬁm .
2K
+(I\ + AP)M;ETS) + Qs@O(O)Chvgm
APYY:
fEr0R) ag(}F-OHQ"%m(O)shvzw,
L3 _
where
By(0) = Z380(0) — ZosMo(0),
(2.28)

B3(0) = Z3Mo(0) - Z3360(0).

Formulae (2.24)-(2.27) constitute the searched solution of the state equa-
tion (2.19) and represent the complex amplitudes of the fields of heat flux, -
moisture flux, temperature and moisture potential. Instantaneous values of
these fields can be obtained from Eqgs.(2.8).

The purpose of the present paper is to derive the formulae from which the -
state of strain and stress arising within the wall during heat and moisture

flow can be determined. The stresses induced in the wall material by the =

process of moisture thermodiffusion 6@¢(z,¢) are the same in any direction
and, according to the physical relations (2.4), have the form

(2.29) c®%(z,1) = —y,0(2,1) = vo¢(z, ).

The tempetéture fleld @(z,t) can be found from the solution (2.26) and
relationship in (2.8) as
(2.30) | O(z,t) = Re { [(IL t AP);(E.) - QzMﬂ(O)ch'n:c
(K + AP)Yano(0) - @5Yaq(0)
2Kv
(i = AP}O(0) + Q2 Mo(0)
* 2K
(AR = AP0+ Q¥ )
2K v,
The moisture concentration ¢(z,t) within the wall can be determined as
follows. From the balance equation of mass we have

+ shy12

chyqaz |

- (2a1) iz, 1) = —divn(z,t) = ~=n(a, 1),
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and thus
(2.32) c(m 1) = / [ ~(z, Odt,
By using the relationships (2.8), , we obtain
- jwt] 7 dno(z)
e(z,t) = Re [co(:c)ef ] = Re [; . e’ .

On usig Eq.(2.25) and performing the differentiation, we arrive at the fol-
lowing form of the field of moisture concentration within the wa,ll

AP)go(0) — Q2mo(0))

(2.33) (=, t)= Re{ [71((1\ oK shmz
(K AP)B3(0) - Qsz(O)CM -
2K
’72((K+AP)G’0(0) Q2170(0)) shypz
2K
(Ii + AP)Yzﬂ;S?) QzYaqo(O)ch,m] e,‘wt}_

Since the state of stress in a building material practically does not influ-
ence the process of heat and moisture transfer in it {7], by using the formulae
for the temperature field @(z,t) and the moisture field ¢(z,t), obtained in
this paper, the stresses induced by the process of moisture thermodiffusion
in the wall can be determined independently of the stress state which could
result from various possible boundary conditions of elasticity. From Egs.
(2.29), (2.30), (2.33) we have

(234)  09%(z,1) = —7Re { [(K * AP)O(;(I(:') ~Bane
- (K + AP)ng(}f_(:/)l = @200 o
(A AP)@;{}SH—QZMO(O) chyyz
NS Ap)ngt}i(:)z + Qzquo(O)shm] ejwt}
e
LU AP)B;ET(:) - 9232(°)ch—na:
L+ AP);;(}EO) Q2000) 11,

LE AP )Yzﬂg(lg) - Qﬂ@%(o)cm x] e]wt}
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If we assume for simplicity that the wall material can be freely deformed
only in the direction of z-axis, while the possibility of wall deformations in :
directions orthogonal to z-axis is strongly limited (512 & gy3 = 0) (e.g. the '
wall is fixed in the bmldmg structure), then

O'n(:l?,t) = (2}1. -I- A)Ell(ﬂﬁ t) + 0'9 °(a: i) ,
(2.35) o |
Glg(lﬁ,t) = 0’13(11: t) Usc(&': t)

The strain field ¢;1(z, ) within the wall can be determined as follows
By using Eq.(2.8) we obtain

(2'36) en(z,t) =/Ell(m,t)dt= [?%dt = Re L,L d‘i?im) Jwt]

and then the use of fhe relationships (2.15) and (2.16) yields
(2.37) ena(a,t) = Re {3; [Z100(0) + Z1200(a) + Z1sMo(2)] e"‘_’t} ,

(K +/—\P)90(0) QzMo(O)
2K

(238) .:. .";1_1(:1:._, £y :R { i.:.[Zl.a(.;.((}.)-}-.z [ chyiz:

(K+ AP)Yamo(0) = Q3¥aa0(0)

2K, sh'y T
(K AP)O(0) + @2 Ma(0)
2K "
(K = AP)Yano(0) + Q2Y¥340(0) ]
5K shy.z
7 [(K A P)Mq(0) - Qa@o(O)ch,),1m
2K
(K= AP)Y390(0) — Q3Y210(0)
+ 2K s
NUE AP)M;J(T?) +@390(0) .,

(K + AP)Y3q0(0) + @3Yan0(0) shvgw]] es’wt} ]
21(72
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The component of the stress tensor in z-direction takes finally the form

(2.39)  ou(z,t) = (2u+ MRe {3- [Z100(0)

T [(K 1 AP)@OQ(})() QMo(0) 40
LS AP)YZ;’?Q,)I Q?‘@‘fﬂ(o)sm .
(I( AP)@;(I(;H DMo(0)
LK~ AP)ng;fg)2+ inéqo(ﬂ)shm]
[(K AP)M;J(IS) 9390(0) 1y
S Angc}E:)l QsYam(0) g
LS AP}M;EI?) + @500(0) 4.0
LE AP)%gc;S:): Qa2 "°(°)sh72m” ejwt}
el { [(K + AP)@;(;) — Q2 Mo(0) 4
L AP)H;};E:)I Y00 (0) . 5
L= AP)@;(I{;) + QaMo(0)
LK AP)H;;S?; QzYe.qO(U)Sh,mm] ejwt}
Re {w [71((1( ‘ AP)g(}SO) ano(O))SM -
L= AP)B;S?) Qsz(O)chm
Yo((K + AP)gg}EO) Qzﬂo(‘ ))Sh,mm
(K + AP)angg?) = QsYaqo(O)ch,f I] ejwt} _

The formula,e (2. 34) (2 39) and (2.38) represent the state of stress and
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strain within the building wall, induced by the unidirectional process of
moisture thermodiffusion.

3. FINAL REMARKS

The results obtained in this paper constitute the last part of our model
study of the process of moisture thermodiffusion in building walls, aimed -
at determining the state of strain and stress in the wall material. The
results have the form of relatively simple analytic solutions. In the previous
papers, the Podstriga¢ - Nowacki theory of thermodiffusion has been used to
describe the process of heat and moisture flow through building walls [4,5],
and a procedure has been proposed for measuring the material constants
occurring in the model [6].

The use of the solutions obtained in this paper in engineering practice
and in a qualitative analysis of the physical phenomena occurring in build-
ing walls will be possible after determining by a theoretical-experimental
method the values of the basic material constants in the process of moisture
thermodiffusion,

APPENDIX 1
L1. Electrical analogies

A linear, quasi-static process of moisture thermodiffusion in a one-layer
building wall, described by Eqs. (2.3)-(2.7), corresponds to the system of
three magnetically coupled electric transmission lines, presented in Fig.2.
Line 1 corresponds to the process of elastic deformation of the material, line
2 - to the process of heat conduction, line 3 - to the process of moisture
transfer.

In Fig. 2, uy, ug, u3 denote the line voltages, 41, 2, i3 — the currents, L,
L, L3 ~ the self-inductances per unit length, Ly, Li3, Loz — the mutual
inductances per unit length, Gz, (73 — the self-conductances per unit length.

The system of electric transmission lines in Fig. 2 is described by the fol-
lowing equations, analogous to Eqs (2 3)-(2.7) of moisture thermodlffusmn
in a building wall: - -
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iyxt) LyAx fy{eedxt)
mmmmmmmm smermrbe el 8 irecarmr e L e 8 L i o s 0 15 2
U;(xﬂaf) tyfxt) // Lu,(wdx t) —Iu,(x-sl,t)
1.,311:(
Lyp Ax Ipg
. (AL L LLLLLLLL Ly
Uy (x=01)
@ L9 ? _ {x f)T iy (x,f) Tu,{xuix ¥) Jﬁz(x-l,f)
‘*Izﬂ I LzaAX
f{x1) {yfoesdx, 1)

MRS § ey
”3(‘"4“)1_ uzfx,#) ‘I' ¥ Gydx lq,(xm.\r,ﬁ . lusfx-l,f)
FIPT IR PTTITTITIIT
| Ax | !
=
v . . t

==l

" FIG. 2. System of three magnetically coupled electric transmission lines — the electrical
analogue of a one-dimensional, guasi-static process of moisture thermodiffusion in a solid.

1 0(—%) Lalia+ Liales, L1z 0(~¥3)

= S A = — - _
= I, 0z Il ° Tils 0z
a(~¥,) 1%\ . Las 8(—V3)

11 S T - |, -Z2B8 IOt Sk N7

(1) bz LR A P P
. o dos. 1 0(-¥3)
i3 = JzA = Ts i+ In 9z’

where Ji, k = 1,2, 3 is the current density in line k, A is the cross-sectional
area of each transmission line conductor, ¥ is the magnetic flux associated
with the respective transmission line.

The following relationship exists between the line voltage and the asso-
ciated magnetic flux: '

o
at '’
Equations (I.1) are analogous to the physical relations (2.4) of thermodiffu-
sion. .
From the first Kirchhoff law [9] for the lines 2 and 3 we obtain the equa-
tions

(1.2) g = k=1,2,3.

: : " 1 Big _ i%
(13) Uy = G2 Az ] Uz = G3 oz ’
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analogous to Eqgs.(2.5).
On substituting iz from Eq.(L1); into Eq.(1.3);, we obtain the equation
1 32( Wa) L23 6‘32

(1.4) s = L3G3 a.’Bz L3G3F5:? ’

analogous to Eq (2.7).

The set of thermodiffusion equa,tlons (2.3) corre3ponds to the equatlons i;é
for the electrical system, "

1 8*(=¥)  LsLy + Lialga 0ty | Lz | 8 (-W,)
Ll 3:1:2 - Ll L3 BCB L1L3 (91‘2' 1

Ipo 8%y Iao(Lols — L33) 02 Izoloa O(—u3) _ 0

(I:5) &G Oz? La ot Ls } ot __ ,

1 8% §(-9,) _ _Q@(-—!T’;;) Loz 8%,
LiGa0x?2 Oz N oz L3Ga 0z2

Comparison of the equations leads to the following correspondences:

= 0.

i -V i
o — Ji, 611:?3% - _((‘)m—l)’ ”2% — (—?11):
o(—w
(L6) & Ja, § e —(‘6‘;1)‘3 g — (—u2),
o(—-W
M «—— Js, c —(—5—2—7—2, B (""u3)s

which coustitute the system of electro-elasto-thermo-diffusive analogies [4].

1.2. Electric transmission lines under sinusoidal current excitation

Let in the system from Fig.2,

(17) ug(z,t) = Re[U(z)eiv?],

ie(z,t) = Re[lx(z)e/v?], k=1,2,3,

where u(z,t), ix(z,t) are the instantaneous values and Ug(z), Ix(z) are
the complex amplitudes of the voltages and currents, respectively, j is the
imaginary unit and w is the angular frequency. '
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The system of electric transmission lines from Fig.2 is described by the
equations [9,10]:

-8(—u1) (9'51 312 6 32'1

(18) 5o = g tlugi tIugl,  H =0,
H—ug) _ , iy di3 dia _

(19) Oz =1Ly 8t — Lya— at "’a—m— = —Gaun,
3(—1&3) _ 3’&2 813 313 _

110) 55— = ~lmg, + Layy Fp = ~Geus

Equations (1.8)—(1.10) correspond, after substituting Eq.(L7), to the follow-
mg system of equations for complex amphtudes

AT . ar,

(L11) (d-wl) VA )Il + 2905 + 28 ’13, =0,
~Ua(z) o 0 25‘;’) —;;ég) —U(a)
a1z L| U@ || 0 0 —z)  Zl ~Us(z)
' dz | Iz) ¥ o0 0o o0 Ir(x)
Iy(z) o ¥ o o Ix{z)

where

79 = juli, 2 = jwln, 2§ = jwls,

113) 29 = jul,, 29 = julm Y = G
Z:ge) = ijg, Y:.i(e). = Ga,

are the electric complex impedances.

By multiplying both sides of Eqs.(L.11), (1.12) by /! and taking their
real parts, we obtain the equa,txons (1.8)—(1L. 10) in which Eq.(1.7) has been
taken into account.

Equation (I1.12) represents the so-called homogencous state equation; it
is usually written in the compact form
dS(z)
Tdx
where S(z) = [~ Us(x), =Ua(z), Ir(z), Is(x)] is the so-called state vector and
A denotes the matrix of the system.

The solution of Eq.(1.14) is given by the state vector represented by the
following transmission equat;on

(1.15) S(z) = [eA’] S(O),

(1.14) = AS(z),



264 W. DUDZIAK end R. UKLEJEWSK1

where S(0) is the state vector on the input of the system, and ™ i the :
so-called transmission matrix (or transition matrix). -
Solution of the state equation (I.14) is thus reduced to determining the -

transmission matrix ™. It is defined by the power series [9,11)

(L16) A 3o (A2

k=0 k!

This series is absolutely convergent for every finite value of z {12].

A convergent power series of a matrix of order m can be expressed in the
form of a uniquely defined polynomial of order m — 1 of that matrix [12] -
(in the proof of this theorem the Cayley - Hamilton theorem is used). For -
m = 4 we thus have :

Asx
(L.17) € =gol + 1A + g2A% + g3A®,

where go, g1, g2, g3 are the coefficients of the so-called generating polynomial
g(8) of a complex variable s '

(1.18) 9(s) = go+ 915 + g28° + gas®.
Thé following equations are satisfied:

gOp)—eMe = 0,  k=1,2,3,4.
(e g(A)-et = o,

where Ay are the eigenvalues of matrix A

(1.20) Ma2=371, Aga=47
and

11 = VP+E, Y2 = VP —k,

. P+P _

P o= 222 ko= faPrter
(L.21) AP = PZ;*D?', QR = @03,

P = v, B o= Z0Yf),

% = Y2, @ = v,
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For the system of equations (1.19) to have a solution, the principal determi-
nant must vanish:

n "% R e
e (O S G
2 7 oM e =0
-1 ¥ -1 e
A A? A3 Ao

(1.22)

R S e e

By expanding the determinant (1.22) with respect to the last column, we
obtain

Aa shy 2 shy,a ] 3
1.23 e = [ - A
(1.23) n(vi~-13) (-3
chy1@ — cliyaz [ yishye  yshma
y$ =73 (v -8 M -13)

vfchysz ~ yichna

+
v - 73

1 L]

Knowing the transmission matrix eA', from Eqs.(L.15) we can determine
the components of the state vector S(z) which represents the solution of the
state equation (1.14).

If the analogies (1.6) are used to express the components of the state
vector $(x) in terms of the quantities which describe the process of moisture
thermodiffusion in a building wall, i.e. S{z) = [go(z), no(2), Oo(z), Mo(2))
(cf. £q.(2.19)), and the matrix A in terms of the thermo-humiditive imped-
ances (2.17) and (2.18), then we obtain the solution of the state equation
(2.14) in the form given by Eqs.(2:24)~(2.27).
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