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ON PLASTIC DESIGN OF ROTATING COMPLEX MACHINE
ELEMENTS

W. ZOWCZ A K (WARSZAWA)

The differential relations (analoguous to Henecky equations) along slip-lines in the
presence of body forces are formulated. These relations may be used in constructing
stress fields for plastic design of various machine elements undergoing large body forces.
A slip-line net is constructed for the case of a strip loaded by tension and centrifugal
forces. Application of this solution to plastic design of a rotor is demonstrated.

1. INTRODUCTION

Elements subject to large body loads form an essential part of many
contemporary machines and mechanisms, such as high speed turbines, en-
gines, pumps, generators etc. Fast moving parts like rotors, turbine blades,
crankshafts or connecting rods are usually of compact but complex shape
and their design often causes difficulties.

The method which proved to be useful in design of such complex elements
is the method of limit carrying capacity [3]. This method is based on the
limit design theorems of the theory of plasticity. Consider a body made of
a rigid-perfectly plastic material, obeying the associated flow rule and the
Drucker postulate (i.e. its yield surface is convex). Then the lower (safe)
estimate of the limit load that such body is able to carry can be obtajned
from any statically admissible stress field. The stress field is defined to be
statically admissible if it satisfies the equilibrium equations and the stress
boundary conditions and if at any point the yield condition is not violated.
If the load that the body is supposed to carry is assumed in advance, the
shape of the body beying not determined, then the contour of any statically
admissible stress field gives a safe estimate of the required shape.

A number of examples show that, despite crude simplification of the ma-
terial properties assumed in the theory, the method of limit carrying capacity
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gives good results in designing various structural elements of practical im
portance. The basic way of constructing statically admissible stress fields for .
problems of design of complex shape elements applied in monograph [3] was.:
the piecewise homogeneous stress field technique. Stress fields constructed :
in this way consist of a number of homogenecous subfields separated by the-
lines of stress discontinuity. However, in the case of continuously distributed -
body forces, the stress fields are in general nonhomogeneous, so this tech-
nique is not adequate. The right tool in this case is the slip-line technique,
known from numerous applications in the theory of plasticity and in the
mechanics of granular media.

2. THE SLIP-LINE METHOD IN THE PRESENCE OF BODY FORCES

The slip-line method (known also as the method of characteristics) is
the standard technique of solving various plane problems in the mechanics
of plastic flow. Its detailed description may be found in any monograph
dealing with the theory of plasticity or its applications (e.g. [2]). Thus in
the present paper only the basic formulae will be presented, for the case,
however, that is more general than the usual one. It is namely assumed, that
the body under consideration is subject to body forces whose components
are known functions of coordinates z and y. ;

Consider a body in the state of plane strain and just at the limit of plastlc E
collapse. Thus the stress components satisfy the yield condition which in
the present case assumes the form

(2.1) (0~ ay)? + 47‘31, = 4k?%,

where k is the yield stress in simple shear. This formula holds valid for both -
the Tresca and Huber - Mises yield conditions. Equilibrium equations are -
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where p is density, and X, Y are components of body force per unit mass.
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The above three equations form the set from which three unknown compo- .

nents of the stress tensor o,, o, and 7, can be found. The problem is thus
statically determinate (there is no need to consider strains or velocities).
For the sake of simplifying this set of equations, two new unknown func-

tions x and ¢ are introduced. The first one is proportional to the sum of
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principal stresses oy and oq

1
(2,3) 2kx = 5(0’1 + 0’2),

while the other is defined as the value of the angle between the direction of
the larger principal stress (o1 > 03) and the z-coordinate axis.

The non-vanishing components of the stress tensor are expressed in terms
of these functions by the formulae

oz = 2kx+kcos2p,
(2.4) oy = 2kx—kcos2p,
Tey = ksin2¢p.

The yield condition (2.1) is thus identically satisfied. Substituting formulae
{2.4) into equations (2.2) one obtains

Ox . Jyp dp p
37 sin 2:,083: + cos 2('0-('); = ZkX’
(2.5)
dx o0 , . o 00 _ _p
o -é;+cos2go%+sm250f5?}- = -—2kY.

This set of equations is of the hyperbolic type, so it has two families of
real characteristics. Their equations can be found by the standard procedure

(see e.g. [2]):
(2.6) dy _ tg (c,o + E) dx + do = -—ﬁ(X de +Y dy) (a—family)
dz 4/’ 2k ’

dy _ T T A p s
(2.7) E}—_tg(cp 4), dx —dp = 2k(Xd:n+Ydy) (8 — family).

The characteristics form angles £ /4 with the principal directions - like in
absence of body forces. Therefore also in this case they coincide with slip-
lines. The only difference between these two cases consists in the additional
term on the right-hand side of the equations (2.6); and (2.7);. This term
reduces to zero when body forces X and Y vanish.

Consider now the special cases. Assume at first that the body forces are
caused by gravity acting in the negative direction of y-axis. We have then
X=0,Y = —g = —0.81 m/s?, and the equations (2.6)z and (2.7); become

Py

dx+dp = ok dy (o — family),

(2.8)

dy—dy = —g—% dy (B — family).
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They are identical (except for a possibly different notation) with the equa-
tions derived for the case of cohesive granular media in the mechanics of
soils [1].

As the second special case, consider thin sheet of constant thickness
whose center plane is Qxy. If the principal stresses oy and oy are of op-
posite signs, then for Tresca yield condition the formula (2.1) holds valid
and therefore equations (2.6) and (2.7) may be used also for the state of
plane stress. Suppose that the sheet rotates with the angular velocity w
about the y-coordinate axis. Neglecting the variation of the body force
across the thickness of the sheet, we have in this case X = w2z, Y = 0 and
then

dy+dp = —fngx dz  (a—family),
(2.9)
dy —dyp = w:—z%wzm dz (B — family).

At the end, consider a plane strain case of a body rotating about the
axis perpendicular to the plane QOzy intersecting this plane at the center of
coordinate system Q. The components of body force are now X = w2z and
Y = w?y. Equations (2.6); and (2.7); become

dxy +dp = -—-é%w?(:c dz + y dy) (o — family),
(2.10)
dy—dp = _Ep;’;wz (z dz + y dy) (4 — family).

Numerical integration of a boundary value problem based on equations
(2.6) and (2.7) consists in replacing increments by finite differences, and
in solving the resulting systems of algebraic equations step by step. This
is the standard procedure described in textbooks and monographs dealing
with the mechanics of plastic flow, so it will not be described here. The
presence of body forces dependent on the position of a point causes that,
in general, the system of finite difference equations for each point must be
solved iteratively.

3. EXAMPLE OF PLASTIC DESIGN - PLANE ROTATING ELEMENT

Consider a strip subjected to tension under plane strain conditions, loaded
additionally by body forces caused by rotation about the origin of coordi-
nates O (Fig. 1). Thus the equations (2.10) hold. The strip may be, for
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example, a part of a rotor. Suppose that along the section AA’ perpen-
dicular to the z-coordinate axis, the uniformly distributed tensile stresses of
the magnitude 2k are applied (Tresca yield condition is assumed). The safe
profile of the strip under these loads is to be designed.
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FIG. 1. Safe profile of a strip loaded by tension and body forces cansed by high speed
rotation.

The problem is defined by two parameters: relative width of the strip
a/R (a — length of AA’, R - distance between AA’ and the point of ro-
tation), which determines the value of external load, and the parameter
n = pw*R?/2k determining the intensity of body forces. The solution pre-
'sented in Fig.1 has been obtained for particular values of these parameters
a/R = 0.2 and = 1. This value of 5 corresponds e.g. to the situation
when an element made of steel (p = 7.85 Mg/m?3) of the yield point 2k =
345 MPa loaded by tension at.the distance of R = 1 m from the axis rotates
at the speed of 2000 rpm. '

The solution begins at the loaded boundary AA’. The stress field in the
region AA’B is found by solving the Cauchy boundary value problem based
on AA’. Next, on the basis of the distribution of stresses along the slip-line
AB just found, the so-called inverse Cauchy problem is solved, determining
the stress field in the region ABC and generating the a priori unknown
stress-free boundary AC. The stress-free boundary is defined by equations
(3.1) -z—% = tgp, x =105 (ie. o4 =2k).

Oz is the axis of symmetry of the strip, so the angle ¢ must be equal to 0
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at every point of Oz, The stress field in the region BC' D is therefore found
as a solution of the mixed boundary value problem based on BC and BD..

Then the sequence of solving of these two (inverse Cauchy and the mixed
one) boundary value problems is repeated as many times as required. In the

present example three times were enough for the free profile AE to ieach
the axis OF.

Hit

F16G. 2. Design of a six-arm rotor.

Iligure 2 shows the possibility of application of the above solution to the
plastic design of a rotor. Assume that the rotor consists of six identical ele-
ments whose axes form angles of #/3. Thus the axis OF that confines the
single strip has the inclination of /6 with respect to Oz. Equilibrium be-
tween the strips requires the principal directions along O F to be respectively
parallel and perpendicular to its direction. The simple way to assure this
is to assume axially symmetric state of stress in the region EFOG (Fig.1),
i.e. that principal directions at every point coincide with the directions of
the polar coordinate system with the centre at the point O and principal
stresses 0 and oy depend on the radius r only. The equilibrium equation is

de, '

1
(3.2) ot ;(cr,. — o9) + pwir = 0.

Curve E F separating this region from the slip-line field is the curve of stress
discontinuity. Two equilibrium conditions at every point of EF together
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with Fq.(3.2) determine the actual orientation of the curve and both un-
known stresses o, and oy at such a point. The process of numerical inte-
gration has been performed beginuing at the point E. The starting value of
o, at this point must be assumed. In the present problem the assumption
of o, = 2.018 k at E results in statically admissible stress field within the
region EFG. While moving along EF, the radial stresses increase gradually
up to 2.046 k at the point G. The circumferential stresses rise at the begin-
ing from 1.964 k to 2.063 k and then decrease to 0.046 k. At any point of the
curve the magnitude of the difference o, — oy does not exceed 2k. Curve
EF intersects z-axis at the distance of 0,261 R to the point O.

The stress field within the circular section GOG' can be assumed in
several ways. The most economical solution is obtained by assuming oy —
o, = 2k. Integrating equation (3.2) with the initial condition o, = 2.046 k
for r = 0.261 R, one obtains

oy = 2k[In(r/R) — (r/R)*n/2 + 2.397)).

For v/ R = 0.091 the radial stress vanish. Therefore, this can be the relative -
radius of a circular hole around the center,
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