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ON CONVERGENCE OF ITERATIVE PROCEDURES FOR ANALYSIS
OF COMPLEX LINEAR DYNAMIC SYSTEMS BY MEANS
OT PARTIAL MODELS

T.L. STANCZYXK (KIELCE)

Problems of iterative convergence in the analysis of complex dynamic systems with the
use of partial models are dealt with, Linear systems are considered. Conditions and ranges
of convergence ate determined for two basic iteration procedures: the so-called weak and
the strong associations of masses in the complete model. Damping in the system is found
to accelerate convergence of the procedures.

1. INTRODUCTION

Wide use of personal computers has encouraged many programs to be
written in various fields of science and technology, among others in the dy-
namics of mechanical systems such as motor vehicles. Tor instance, the
following programs arc available: ADAMS by Mechanical Dynamics Inc.
[2], SIMPACK and MEDYNA by MAN Technologie [6,7] and DINAMIKA
[3]. The most important problem to create a system is to work out an effi-
cient method of algorithmization of the motion equations for an object to be
" modelled and to ensure sufficient versatility of the system to deal with vazri-
ous structures with different numbers of degrees of freedom. More detailed
information on the method that was the basis for a particular computational
system is more often than not impossible to acquire. Even if such an in-
formation is available [1], some essential particulars are usnally suppressed.
Moreover, the programs are often written to analyse very specific types of
problems. ‘

The program ADSC, presented in [5] was also prepared to solve a partic-
ular class of problems, namely to analyse dynamic loads to which trucks are
subjected. To make the system sufficiently flexible and expansive, a method
has been worked out to analyse complex dynamic systems with the use of
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‘partial models. Theoretical background for the method was deseribed in f4].
Two basic ways to decompose a complete model into partial ones were pre-
sented together with corresponding iteration procedures. In the case of the
so-called weak associations of masses in the complete model the procedure
was shown to converge.

One of the characteristic features of the proposed method is an iterative
manner in which the calculations are conducted. That is why its applica-
bility is highly dependent on suitable convergence of the procedures. This
problem for a linear system is dealt with in the paper.

2. CONVERGENCE OF ITERATION PROCEDURES FOR CONSERVATIVE
SYSTEMS

2.1. Weak associalions of masses in the complete model

Relevant relationships between the involved parameters and the conver-
gence of iterative procedures will be analysed with the help of a simple two-
mass model. General rules for the model remain valid for more complicated
models.

Fig. 1.

According to the decomposition principles presented in [4], in the case of
weak associations of masses the complete model can be split up into partial
ones as shown in Fig.l. Models T and II are analysed consecutively. For
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frequency analysis an appropriate convergence condition has the form

(2.1) ing(w) X Ifgl(w)l <1,
where
(2.2) | Hy(w) = k2
’ 12 - k1+k2—m1w2 ’
ka
(2.3) Hg]_(W) = mz- .

Inserting (2.2) and (2.3) into (2.1) and using the following notation for ratios
of parameters: :

my
E

Ty 33 _

S2=_E?_1—’ . my

(2.4) S,

The criterion for convergence can be rewritten to become

51 S1

1.
1 -I"S]_ —Sng % Sl - 32.5'3012 <

(2.5)

Analysis of the above condition leads to the conclusion that it is satisfied
for arbitrary values of the parameters 5, S3, 53 outside a frequency interval
($211, $242) whose ends are

S1 4 53+ 5153 — \/(31 + S5+ 51.53)2 — 45155

= 25255 ’
{2.6) A :
0 = S1+ 53+ 5153+ \/(5'1 + 53 + 5153)% — 45153
1z - 25555 :
Let us denote the frequencies of free vibrations of partial models by
Wl = ki+ky 145
01 - - )
S
(2.7) ™ 2
' wi, = _{c_g_z 51
02 K y) 3233 )

The frequencies wp; and woy can be proved to be related to the frequencies
241 and §212 by means of '

27 < min{we, wo2),
(2.8)
S _912 > max(wgl-, wgg) .
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This means that the range (woy, woz) lies inside the range (£211, {212) irre-
spective of whether wp; is larger or smaller than wy;.
Inside a range ({221, f222) whose ends are

02 81+ S3 + 5153 — \/(31 + 55+ 8153)% — 48153(251 + 1)
21 23233 ’
(2.9)

2
‘9‘22""

il

S14+ Sa+ 5153+ \/(51 + 53+ 5153)% — 45,53(251 + 1)
25253

the procedure is conditionally convergent, i.e. only for those cases in which
the parameters satisfy the inequalities

(2.10) S1 < Su or Sl > 3123
where
s —Sg X (33 — 1) - 253\/ 53
" S2—653+1 ’
(2.11)
- S = —S53 X (83— 1) +253/83
e S3-653+1 ’

The following relationships among the frequencies wo1, woa, 1221, 222 can
be proved to apply

(2.12) . min(wm, wgg) < 021 < .022 < max(wm, wgz) .
Tn the intervals {211, £221) and {223, £213) the procedure is always divergent.

Qi $2p¢ S0 L2

i ! 1 1 | ! | P
?]u/ LTI I OOOVNRARRNRANNY T S /////‘}'ZJ
ol . o .
ol of

unconditionatly Adivergent N conditionally divergent (> unconditionatly
convergent canvergent N convergent

-

FiG. 2.

The above considerations can be visualized as shown in Fig.2. The con-
ditions (2.11) for convergence within the interval (221, {23;) are shown dia-
grammatically in Fig.3. Shaded area corresponds to those situations in
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192

T

0

g llililll

kafky 1

10 02

83 = my/my

F1a. 3.

which the procedure turns out to be divergent. Skeleton line of this area
corresponds to wy; = wpy. Ilowever, the intervals near the free vibration fre-
quencies for which the procedure is divergent are spread to a lesser extent
than suggested in Fig.2. From a detailed analysis of the relations (2.6) and
(2.9) it follows that for §; < 1, i.e. for kg < ky, their ranges are very small,

see Fig.4.

51 = kz/k] ald =

LA B

102
o W 20 3B 4 50 60 W &

12 (rad/s)

FIG. 4. Divergence regions for: Sz = my /R = 0.0004(100/250000) S35 = my/my = 10

regions of divergence, — — — frequencics of free vibrations.
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In addition, it can be proved that
. _0 _
'S]illilo( 2n 11) 0,

(2.13)
35130(912 —f233) = 0.

The limiting case Sy — 0 should be here understood as k; — oo and not as

a trivial case kg — 0.

2.8. Strong associations of masses in the complete model

Model IT

9
Moadel I

FIG. 5. '

In this case the complete model is decomposed: into two partial ones as
shown in Fig.5. Iteration procedure is similar to that used in the former
case. The only two differences are: the partial model I and a type of its
coupling. Condition for convergence has the form '

(2.14) | Hip(w) X Har(w) — His(w)] < 1,
where )
(2.15) Hyy(w) = RS

(m1 4 mz) ® w2 + kl
and Hz(w) is determined by means of Eq.(2.3). On inserting Fqs. (2.3)
and (2.15) into (2.14) and using notation (2.4), a criterion for convergent

procedure assumes the form

' 5% x §% x wt :
2.16 <1.
@16 (52 + 525 & 1] X [-5537 + 51]
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Analysis of this condition leads to similar conclusions as those drawn
in the case of weak associations, see Fig.6. It is interesting to note that
the ends of the interval (£241, {213) outside which the procedure is uncon-
ditionally convergent (i.e. stays so far arbitrary combinations of the model
parameters), are exactly the same as before, cf. relations (2.6).

9’11 5731 Y3 g
1
f///’/;// 72 AN

7777

unconditionally . Adivergenti\ conditionally \Jdivergenty unconditionally

convergent corvergent 7 convergent
hY -

Fia. s.

Although the first partial model has changed and its frequency of free
vibrations now is

(2.17) S R !

mi+mg  S3(1+53)
the following inequalities are still satisfied:

1 < min{@oy, Goz2),
(2.18) |
12 < ma-X('f-i_Jol, U_)GZ) 3

where &gy = woy (relation (2.7)). This means that the free vibration frequen-
cies for partial models are always contained within the interval (211, 242).

An interval within which the procedure is conditionally convergent is now
different. Its ends are given by the formulae

S1+ 83+ 5183 — \/(31 + 83+ $153)% — 451.53(251 + 1)

2 =
31 25553 X (1 + 233) ’

(2.19)

S1+ 53+ S185 + /(S + 53 + $155)2 — 45,85(25, + 1)
25,53 x (1 + 233) )
The above interval is, as before, contained within an interval whose ends

are determined by the frequencies of {ree vibrations corresponding to partial
models, i.e. the following inequalities hold good: -

2 —
‘032 -

(2.20) . min(u')gl, @92) <y < f235 < max(u')m, (.502) .
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Convergence condition inside the interval ({251, f233) has the form
(2.21) S1< 813 or 51> 8,

where

g _ 53 X (333 + 1) - 2834/53 X (233 + 1)
13 = (1 T 53)2 y

5 — 53 % (353 + 1) 4+ 293/ 53 % (233 + 1)
and is shown diagrammatically in Fig.7. Shaded area corresponds to those

parameters for which the procedure ceases turns out to be divergent. For
remaining values of §; and §3 the condition (2.21) is always satisfied and

(2.22)

the procedure remains convergent.

102 -

Sl=k2/kl T 3

077

The skeleton line of the divergence region is associated with the condition
@Wo1 = Woz and is shown as a dashed one,

In the intervals (213, £231) and ({232, 212} the procedure is always diver-
gent. These intervals are very narrow and become even narrower with the
decreasing value of S3. It can be readily proved that

lim (ﬂgl - .911) = 0,
(9 23) S3—0 .
\ -

S!;ILIO(J?H - 23) = 0.
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The limiting case S5 — 0 should be interpreted as corresponding to m; — o0
and not to mq — 0.

2.8. Comparison of convergence for the two ileration procedures (criteria
for their selection)

. Analysis of the cbnvergence conditions presented in two previous sub-
sections has shown that both types of procedures (procedure I for weak
associa‘tic»n= of masses and procedure II for strong ones) are convergent in
the same regions outside the frequencies 217 and {24, (Figs.2 and G), are
divérgent in the intervals including the free vibration frequencies for par-
tial models and are conditionally convergent inside the interval determined
by the free vibration frequencies. However, in this latter case the conver-
gence conditions and the ends of convergence ranges are different for each
of the procedures. Therefore, the decisive factor in choosing the right pro-
cedure for the given complete model will be its behaviour inside the interval
(woi, woy ) oF (@p;, @o;) i.e. in beétween the frequencies of free vibrations for
partial models. The relations (2.11) and (2.22) are shown diagrammatically
in Fig.8 from which the following conclusions can be easily drawn:

702
e 3
i A
10 F 2 :
- B
51=k2/k1 1 3 ‘/[ — T
i .
10-1 = -
3 1
10-2 l,"_l vul LW W RITT] corennnd s
we a4t 1 19 102

S3 = mz/ml
FiaG. 8.

Cin the regién A the procedure I is 'divergeht so the other one should be
used,
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in the region B the procedure II is divergent so the first one should be
used, ‘

in the region C both procedures appear to be divergent, at least for the
conservative systems considered.

Three other tegions — 1, 2, 3 — are also seen in Fig.8 for which both pro-
cedures stay convergent. For the corresponding mass ratios S3 and stiffness
ratios 51, any of the two procedures can be employed. However, more ad-
vantageous will be this procedure for which the divergence regions around
the free vibration frequencies for partial models are smaller. This condition, -
due to identity of the outer constraints ({211 and £2y5) for both types of
procedures, reduces to the comparison of the differences ({222 — £22;) and
(232 — 231). Let us denote k :

. 61 = $293 — 29,
(251)
- b = OO
iﬁéQﬁaﬁ]jtj“ 61 > &, indicates that tﬁé'prﬂcedure T is more effective whereas
for 8 < 8 procedure TT should be used. S

o ~ D
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\
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FIG. 9. S; = m1/ky = 0.0004(100/250000); (solid line) Sz = 0.02; ~ ~— — (dashed

line) Sz =1.1; v (dotted line) Sa = 50; lines with no symbols — (212 — 211); lines
with circles — 8y (procedure I); Lines with triangles — 6, {procedure I}
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The values of §; and &, versus 5, for the pairs 51, 53 corresponding to the
region 1 (Fig.8) are shown in Fig.9. To emphasize the spreads of divergence
intervals, the differences {212 — f21; are also indicated.

Inspection of Fig.9 and similar relationships for the remaining regions 2
and 3 (Fig.8) leads to the following conclusions:

in the region.1 the procedure I should be used (with mcrea,smg Sg this
procedure becomes more and more advantageous),

in the region 2 the procedure II is recommended,

in the region 3 the procedure I should be used {(the same remark applies
as that for the region 1).

3. CONVERGENCE OF ITERATION PROCEDURES FOR DISSIPATIVE SYSTEMS

In order to study the effects of damping on the convergence of itera-
tion procedures, let us analyse the same situations as in section 2 under
the assumption that the elements supporting each of the masses are now
characterized by the Kelvin - Voigt model, i.e. linear elasticity and linear
damping in parallel. The condition for convergence of the procedure I (for
a two-mass model) has now the form

kq + jweq ' ko + jwes

; - <1.
k1 + kg — miw? 4 jw(er + €2) by — maw? 4 jwey

(3.1)

To simplify the analysis, the damping of supporting elements will be
described with the use of dimensionless coefficients W.SP1 and W.S P2 that
denote ratios of a given damping to the critical damping in a one-degree-of-
freedom system:

WSP1 = --2{1—,
vy
(3.2) .
WSP2 = —ome— .
2k2m2

On inserting (2.4) and (3.2) into (3.1) and rearranging, the convergence
condltlon for the procedure I assumes the form

54 + 4&)2333253(WSP2)2 + 4&)4(313233)2 X (WSP2)4
(14 51 = Sow?)? + 2028, (WSPL+ WSP2 X V3,55 ).
: . 1

(81 = 5255w02)? + 2251 5555(W S Paj2

| -_(-3;.3) |

-1<0,
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The present conclusions are qualitatively similar to those drawn for con-
servative systems and shown in Fig.2. The differences consist in what fol-
lows: : _
~with increasing damping the divergence regions around the free vibra-
tion frequencies for partial models shrink very rapidly; for most systems
they vanish completely at relatively small damping — the procedure becomes
convergent in the whole range of frequencies (prowded it is-convergent inside
the interval (1221, §222)); C '

- the region of divergence; shown in Fig.3 inside the interval (.le, 922),
diminishes considerably,

102

TTTTTT

10

L))

Ly
-
!
el
[ ]
e
o
—
T TrIm

T ¢V TTTITIT:

TN ERIT! Pr i 1.t 43t Ll
(e w1 1 107
Sg = mg/m1

F1G. 10. Procedure 1. Divergence regions for: S2 = m1/k:1 = 0.0004(100/250000);
a- system without damping, b- WSP1=WSP2=0.1, ¢c- WSPt =W5P2 =103,
d— WSP1-WSP2—06 e—WSPl-WSP2—~10 S

Effects of damping on the dccreasmg reglons of dl\rcrgence inside the
interval ({221, §232) are shown in Fig.10. However, for conservative systems
the convergence condition (2.10) and' (2.11) depended solely on the values
of coefficients 53 and S5. For dissipative systems those conditions depend
also on the frequencies w and the coeflicient 55. The diagrams in Fig.10
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are prepared for an average value w, taken from wg; and wy. According to
(2.7), w, can be calculated from the formula

(34) - wa=w01+902=\/m5+\/3q.

2 2/5253
In the caleulations that led to the curves givén in Fig.10 the damping in the -
supports of both masses was increased in proportion. Another question was
the sensitivity of the system to the global amount of damping and to its
location. To investigate this problem damping at one support was kept very
small whereas at the other it was varied. The results are shown in Figs.11
and 12 (calculations were made for w, determined from (3.4)).

‘sz_— : [
10 E
S]_ = kg/ki B

Tk

10-1;

_2 Cy . . -

10 [ N ERETT 1 o oratin e bbb lo.d. titipal
w2 0 1 0 102

;5‘3 = mz/m1

FIG. 11. Procedure I. Divergence regions for: $2 = mi/ky = 0.0004(100/250000);
a - system without damping, b~ WSP1=WSP2=0.3, ¢~ WSP1=WS5P2 =105,
d~WSP1=WSP2=1.0 (solid lines); e - WSP1 =0.1, W5§P2 = 0.3,
f-WSP1=01, WSP2=1.0, g - WS5P1 =0.1, WSP2 = 2.5 {dashed lines}.

Application of larger damping at the support of mass m; (not between
the masses) is more advantageous. However, the difference is so slight that
the location of larger damping can be said to have negligible effect on the
procedure I. The best situation arises when damping is roughly uniform in
the system. For example, to cause a similar effect as for WSP1 = WSP2 =
0.3, at one damping equal to 0.1 the other should amount to its critical value
WSP=~1.
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Fra. 12. Procedure 1. Dwergence regions for: Sz my fky = 0.0004(100/250000});
@ — system without damping, b - WSP1 =WSP2= 0.3, ¢ - WSP1=WSP2=0.,
- d=WSP1=W5P2=1.0 (solid ]ines) e-WSP1 =103, WSP2 =01,
f WSPI =10, WSP2=0.1, g - WSPI = 2.5, WSP2 = 0.1 (dashed lines).

_ The dlagra.ms shown in Figs.10- 12 are shghtly different for other fre-
' 'quenmes and coefficients 53, but their character remains the same. The
conclusions are also valid.
When a linear dampmg is assumed to exist in the system, the convergence
condition for the procedure II takes the form

mi X wt

3.5
(3.5) k1 = (my + mo)w? + jwey) X [kg — maw? + jwe,)

On ﬁﬁttihg (2.4) and (32) into the above inequality and rearranging, the
final form of the condition (3.5) is -
(3 6)- . (w25253)2
(1 - .5'2(1 + S3)w2]2 + zwzsz(wsm)z

—-1<0.

(S1 - 5233&)2)2 + 20)2515253(WSP2)2

- His analysis lea.ds to snmﬂar conclusmns as in the case of the procedure I
the only difference being that the region of divergence within the frequency
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FIG. 13. Procedure II. Divergence regions for: S, = my /k; = 0.0004(100/250000);
a — system without damping, 5 - WSPl = WSP2 = 0.1, c - WSP1 = WS5P2 = 0.3,
d-WSPl=WS5P2=106, e- WSPI =WSP2=1.0.

interval ({231, f250) gets narrower in the opposite direction”. This situation
is shown in Figs.13, 14 and 15, The curves were obtained for the frequency
@,. Suitable formula for partial model in the procedure II follows from (2.17)
and takes the form

@37 o =501+£502:\/$+\/51(1+53j ‘
‘ ¢ 2 2/ 52 53(1+ S3)

Similarly as in the case of procedure I, increasing damping leads to shrink-
ing regions of divergence. Proportional increase of damping in the supports
of both masses is seen in Fig.13, whereas an effect of "point of application”

“of damping is visualized in Figs.14 and 15. General conclusion is that also
in this case the convergence is better for proportional variations in damp-
ing. For nonproportional case tho region of divergence is found to become
narrower for damping that is applied between the masses instead being con-
centrated at the support of the first mass.
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F16. 14. Procedure IL Divergence regions fox: Sz = ma fk1 = 0.0004(100/250000);
a — system without damping, b - WSP1=WS5P2=103, ¢-WS5P1=WS5P2=10.6,
d~WSP1=WS5P2=1.0 (solid lines); e— WSP1 =01, W5P2 =03,
f=WSP1 =01, WSP2 =10, g - WSP1=0.1, WSP2 =2.5 (dashed lines).

102 -
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1 -
S] = f-‘.g/kl r
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I q
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7 ot 1 10 w?

.5'3 = MQ/ml

FIG. 15. Procedure II. Divergence regions for: Sz = ma/ky = 0.0004(100/250000);
a — system without damping, b~ WSP1=WSP2 =103, ¢~ WSP1=WSP2 =0.%,
d-WSP1=WSP2 =10 (solid lines); e - W5SP1 =03, W5P2=101,
f-WSP1=10WSP2=0.1, g-WSP1=25 W5P2 =01 {dashed lines).

[310]
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4. FINAL REMARKS

The presented analysis of convergence of iterative procedures provides
some guidelines for suitable decomposition of a complete model into partial
ones and for creating effective iteration procedures. The conclusions drawn
from the examples with two masses and their varying ratios 57, $3 remain
valid for more complicated systems,

Damping is found to enhance convergence of the iterative procedures
and to diminish the regions of divergence. The results can be considered
satisfactory although even for relatively large damping neither procedures
is convergent in the whole interval of variations in the coeflicients §; and
Sa. The divergence regions are also found to shrink rapidly with increasing
damping. The regions in which both procedures yield divergent results are
shown in Fig.16. For relatively small damping this region is very small; for
WSP1=WS5P2 > 0.55 the divergence regions for both procedures have no
common points. This means that for such damping the proposed analysis

~ . can be used in the systems with arbitrary ratios of the parameters 57, Ss.

0
E ~7
N el
- 7
“ A
4 /{/ //
= //'/ ‘:{/
o b // e
: 024
Sy =lyfky | q // é//
1T} —7 e
- Vv
N ///
B L
&
_2 i ] ||11II! L 13 11,1134 1 1 lllll|| I3 1 1.1 I
10 11
102 1777 1 10 102

S3 = mg/my

F1G. 16. Divergence regions for: S = my fk; = 0.0004(100/250000);
a-WSP1l=WSP2=01, b -WSPl =WEP2=103, c-WSP1 =WSP2=0.5,

Figure 16 refers to the systems in which S o S, i.e. relevant regions are
situated along the positive bisectrix of the coordinate system. Frequencies of
free vibrations are almost equal and, in the presence of weak damping, beat
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may occur. No machinery with such properties should ever be constructed.
Thus the proposed method of analysis of dynamic systems can be used for
all machines which are designed correctly from the viewpoint of dynamics.
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