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EFTECTS OF THERMOMECHANICAL COUPLING OP TIIE STRESS
STATE DURING INCREMENTAL LOADING

T. NIEZGODA (WARSZAWA)

In the paper an FEM algoritlim for solving coupled thermoplasticity problems is pre-
sented. Theoretical considerations are followed by a numerical example in which the
influence of the temperature field coupled with the plastic deformation field on the stress
state is studied.

1. INTRODUCTION

Experimental evidence has shown [3,7,9,11,17,19] that an interaction of
deformation and temperature fields does exist in real situations. Ieating or
cooling of a body results in some changes of dimensions which, in turn, cause
thermal strains and variations in stresses, When time-dependent loading is
applied it is not only the displacements but also time-dependent tempera-
ture fields that arc generated [3,7,9-11,17-20]. When permanent, plastic
deformations are involved, the temperature ficld appears to depend on these
deformations. In addition, a certain amount of heat generated in the plastic
regions must be accounted for. As reported in [3,7,9-11,17-19], at least
90 per cent of plastic work in metals is converted into heat (e.g. 93 per
cent for aluminium and 92 per cent for copper, [11]). This heat causes some
temperature changes and corresponding changes in displacements of a body
considered, In some cases the plastic deformations can be so large (e.g. due
to fatigue) that the resulting temperature changes result in variations in
such material constants as the yield point, Young’s modulus and thermal
expansion coeflicient. The heat generated in the plastic regions subject to
incremental loading exerts considerable influence on the stress state, espe-
cially in statically indeterminate situations.
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2. COUPLED DIFFERENTIAL EQUATIONS OF THERMOMECHANICAL
EQUILIBRIUM IN A DEFORMABLE BODY

Coupled thermoelasticity equations are derived from the first and the
second principles of thermodynamics in which the energy and the entropy
balance are involved. What results are the motion and the heat conduction
equations. _ '

Mechanical equilibrium equation can be expressed in terms of stresses in
the following form

(2.1) : divo + X = 0.

With the use of the Duhamel - Neumann relations [20] in the indicial nota-
tion.

(2.2) oi; = 2uey + (e — v@)bi;,
where

' 1

(2.3) g = -2-(11.5,3' + uj‘,-) ;

Eq.(2.1) can be expressed in terms of displacements [13,20].
(2.4) PV 4 (A + plegrad diva + X = ygrad@ .

Both Egs.(2.1) and (2.4) refer to quasi-statical situations since no inertia
terms have been accounted for.

The equation for heat conduction coupled with elastic deformations takes
the form ' '

(‘25) - -(Vz—l—a—)ﬁmndivﬁz-——:. |
KOt T K
The following notation is used in the above:
a Cauchy stress tensor,
v? Laplace differential operator,

My A Lamé’s constants,
u displacement vector,
= (3’\ + 2}1:)(]“
body forces,
= T - T — change in temperature,

O M=
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p density of a body,

K = .kO/cp,
To
n=v "E(']' 3
y = A
20+ u)’
WK
¥ = —
ke T ‘
w amount of heat produced in a unit volume per unit of time,
a; - linear thermal expression coefficient,
ko heat conduction coeflicient for isotropic bodies,
¢ specific heal at steady deformation,

To:  reference temperature at which in a body subject o no load
the stresses are absent.

The set of Eqs.(2.4) and (2.5) together with prescribed initial and bound-
ary conditions, termed the differential equations of thermal stresses, is com-
plex and difficult to be solved. The author of [20] states that omission of
the coupling term

(2.6) — qdivi

in the Eq.(2.5) has only a limitted effect on the solution sought and makes
Eqgs.(2.4) and (2.5) independent of each other; The situation consists in solv-
ing (2.5) for temperature @ and substituting it into Eq.(2.4). Afterwards,
the displacements, strains and stresses can be determined..

On incremental loading of a body certain region can ‘undergo_plastic
deformations. In this case the first principle of thermodynamics can be
expressed as [10, 14]

@ é—i— Jdivb/)+ v,

where £ — internal energy, 1 — stress power, h = heat flux density, r — heat
source, J — contribution of elastic and thermal volume of body.

When no external heat sources r exist and the temperature changes due
to elastic strains can be assumed to be negljglble [20] Eq.{2.7) can be sim-
plified to become A

28 - @ = xm;,'; Jdiv(h/;f), '
where 'w,, plastic stress power, ¢ — heat capauty in a c0n51dered body, x

~ coefficient to determine the amount of plastic work to be converted into
heat. . ' '
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In the adiabatic situation we have the relation
(2.9) Jdiv(h/J)=0.

Eventually, the heat conduction equation (2.7) in the presence of Eq.(2.9)
takes the form

(2.10) 6= %wp.

Equations (2.1} and (2.7) or, in the specific case, the simplified equa-
tion (2.10) together with suitable initial-boundary conditions, describe the
coupled thermo-mechanical problem in the presence of plastic strains.

3. MATRIX EQUATIONS OF. MECHANICAL EQUILIBRIUM AND HEAT
CONDUCTION

Application of the finite element technique to the solution of mechani-
cal equilibrium equation (2.4) and heat conduction equation (2.5) for small
strains leads to the following matrix equations [1,2,4-6,15,16,21]:

for mechanical equilibrium

(31) 'KAu="""R-*F,

where 'K — tangent stiffness matrix in the current configuration, Au — vector
of nodal displacement increments, *F — nodal force vector corresponding to
- the stress state in finite elements, *t'R —load increment vector in the sought
configuration;

for heat conduction
(3.2) AT+MT=QqQ,

where A — heat conduction matrix, M — heat capacity matrix, Q — heat
source vector, T — nodal temperature vector, T — vector of nodal tempcra-
ture derivatives. _

The process of incremental loading of a body consists of a series of load
steps formed by applying a consecutive s+ 1 load increment on the assnmp-
tion that the solution at the previous load step s is known. _

To solve the physically nonlinear, incrementally formulated problem (3.1)
the two methods have found broad application: the variable stiffness method
and the initial load method [2,4,15,22]. Each of the methods can be used
in various modified versions to suit particular situations, e.g. theinitial load
method is split up into the initial stress and the initial strain procedures.
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In the initial load method the elastic-plastic stiffhess matrix !K, entering
(3.1), can be shown as a difference of elastic matrix K° and plastic matrix
K>, ' '

(3.3) 'K = Ke—K?.
Then the equilibrium equation is expressed as -
(3.4) KAu=AR-17T,
where

(3.5) J=-KFAu

is a vector of initial loads.

The advantage of the method is that at every load step the stiffness
matrix is calculated and inverted only once. Multiplication of this matrix
by the initial load vector leads to the displacement increment vector

(3.6) Au = (K°)"} (AR - J)

from which the effective plastic strain increments and the stress are calcu-
lated and the convergence condition is checked as imposed on the latter. If
convergence is found insufficient, an iteration process must be started from
the previously determined strains. Satisfactory convergence terminates the
 iteration.

The method for solving Eq.(3.2) must be stable, yield convergent results
and be eflective even in the case of large systems of equations. More involved
methods of iteration than the simple Euler method require much larger
numbers of numerical operations or the computer.

Assuming that the temperature changes linearly from an instant of time
t to t + At, its time-derivative is

' L1
(3.7) T= KE(TH.At - Tt) .

In all nonstationary situations the heat conduction equation is solved for
consecutive instants differing by At. Due to nonlinearity of the problem,
caused by the dependence of material constants on temperature, and thus
the dependence of the involved matrices on temperature, the iteration must
be performed according to, for instance, the Newton method. On the i-th
iteration step the following matrix equation for heat conduction has to be
solved:

i 1 i A relie
(3.8) (A£’+EM£ ’) 670 =7QliA) .
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In the above equation the correction temperatures 6‘1‘(’) a,re to be calculated
as associated with the non-equilibrium heat fluxes ”Qt ¥ Ai

The final form of the temperature vector for a time step t 4 At can be
determined from the expression

(3.9) Tt = Te+ ATy,

where the correction vector AT, is equal to the summation of correction
vectors §T; obtained on each iteration step, i.e.

(3.10) AT; = ATED 67,

The problem described with the use of Eq.(3.2) is solved by means of the
tangent stiffness method. Certain simplifications can be introduced [5] to
‘reduce the large number of algebraic operations involved [8,12,15].

4. ALGORITHM TO SOLVE THE COUPLED THERMOMECHANICAL PROBLEM

The use of finite element technique together with linearization of the
coupled thermoplasticity leads, as shown by the authors of {14,21}, to an
unsymmetric tangent operator whose matrix form is

lK _ | karw karr
kra  krr

(4. 1)

Terms kTM and: kayrr reflect the thermomechanical coupling whereas the
terms kazar atid ks represent the uncoupled action; respectively mechanical
and thermal. The coupling terms vanish when the temperature is assumed
to be time-independent during the solution of the mechanical equilibtium
problem and the geometry of the system stays unchanged during the solution
of the thermal problem. The resulting uncoupling leads to a symmetric
matrix operator in the form

‘ kmyne 0

(4.2)._: | K:lo kTT}'

The calculations can now be performed in such a way that the temperature-
dependent mechanical magnitudes and the temperatures themselves are
found via the solution of mechanical equilibrium equations, whereas the
temperature is found by solving the heat conduction equation in the pres-
ence of the prescribed amount of heat generated in the plastic regions. Thus,
the following algorithm is to be followed:
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STEP 1. Determination of displacements, strains and stresses in solving
the mechanical equilibrium equation at a given load step and under pre-
scribed initial-hboundary conditions as well as in the existing thermal state
of a structure conmdered

Srep 2. Ca&culatlon of plastm work from
(4.3) _ dLP = oy;de?;
and of heat sources in the plastic regions from
{4.4) d@ = xdLF.

where x i# coeflicient the amount of plastic work to be converted into heat
(in the present example x = 0.9). .

Ster 3. Solution of the heat conduction equation (2.2) or (2.10) under
the assumed initial-boundary conditions and accounting for the heat sources
determined in Step 2.

SteEP 4. Change in the initial temperature-dependent conditions; when
the material constants depend on temperature, their new values are to be
found.

- When plastic regions are absent it is only an initial (current) thermal
state of the body that effects the displacements.

5. NUMERICAL EXAMPLE

First a statically determinate cantilever beam is considered. The f{ree
end force P changes linearly in consecutive load steps, Fig.1. The beam
is discretized with the use of plane-stress eight-node elements, each having
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9 Gauss integration points and 2 degrees of freedom per node. Midheight
node at the left-hand side support cannot move and the remaining nodes
can only move perpendicularly to the beam axis, Fig.2.
1
4

I'1G. 2.

Both the reference temperature (at which no stresses are present) and
the initial temperature are assumed to be zero.

2 step 2 A 4 Sepd 'ﬂ step 5 z
= E =
e

Fia. 3.

The results of calculations for the uncoupled problem arc shown in Fig.3
by means of the plastic regions that develop at specific load steps. The
plastic regions for coupled problem remain the same since the assumed nodal
constraints are such that the beam can freely expand due to temperature.
In addition, the temperatures, Fig.4, are too low to influence the values of
material constants and thus to change the stress state,
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Next, a statically indeterminate beam is considered by adding to the
right-hand side of the cantilever considered above a number of constraints
that prevent-it from moving in the horizontal dircction. In other words, a
vertical guide is provided there. Load increments are shown in Fig.5.

P
420
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380
At ¥ 360
e 3 340

| 2 | I o

#A!P 1 2 3 4 5

Step number

Figq. 5.

Development of plastic regions in the uncoupled problem is shown in
Fig.6. The plastic regions in the coupled problem for the same load steps
are similar except for fourth load step (P = 400) at which the plastic zone
appears to be larger (plastic strains are generated at two extra Gauss points,
symmetric with respect to the beam axis). Considerable difference is found
to exist at the loaded end where symmetric plastic zones appeared, Fig.7.
The influence of thermal strains on the stresses is here substantial,

. Stept o4 Slep2 o Slep4 slep §
% % 7 %
camil cam]y Cam] o
(]
o —— ] 4 1
I1q. 6.
l step 1 step2 Step 4 Lsfeﬁﬁ
| (5] \e_8 ] \°3 ! i
.!_..._I_.-._.._ N S S H L___
Fia. 7.

The diagrams of bending stresses g, at two specific cross-sections are
shown in Fig.8, both at the fifth load step and corresponding to the uncou-
pled problem (broken line) and to the coupled problem (solid linc). The
coupled problem stresses turned out to be larger in the compression zones
and smaller in the tensile zones of the cross-sections. The section A~A goes
through the plastic region whereas the section B-B remains elastic. Addi-
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tional {emperature-dependent elongations in the coupled problem are the
reason for the generation of compressive stresses. These are found to be
largest at the most outer fibres of the beam where the temperatures are
the highest. Due to the thermomechanical coupling the uppermost fibres
undergo more compression whereas the lowermost suffer less tension. The
temperature distribution in the coupled problem is shown in Fig.9. .

6. CONCLUSIONS

The presented algorithm has proved to be effective in the worked-out
example. It yielded physically acceptable results. The thermomechanical
coupling is shown to affect the stresses in the statically indeterminate situa-
tions. In spite of the limiting assumptions effective solutions can be arrived
at. The uncoupling of the problem enables the mechanijcal equilibrium and
the heat conduction to be analysed separately with the use of symmetric
matrices. ’

Incremental approach makes it possible to realize the computational pro-
cess in steps, remembering that the mechanical equilibrium equations were
derived under the assumption of quasi-stationary loading program. The
assumption of temperature constancy in the mechanical situation is better
satisfied for small load increments.

The finite element technique makes it possible to model complex geome-
tries and initial-boundary conditions in a simple manuer. No difficulties will
arise for nonhomogencous materials. The discretization in the mechanical
and the thermal problems can be kept the same.
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