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TIME AND CRACK LENGTH DEPENDENT STOCHASTIC MODELS
OF FATIGUE CRACK GROWTH
STATE-OF-THE-ART REVIEW

K. DOLINSKI (WARSZAWA)

Random character of fatigue crack growth observed in experiments inspires many
researchers to apply the methods of probability theory and theory of stochastic processes
in modeling of the phenomenon. Among many proposals the continuous stochastic models
seem to be very promising both in theoretical consideration and engineering applications:
In the paper two concepts of this kind of modeling are presented: the time and crack
length dependent models, Some advantages and objections concerning both approaches
are extensively discussed. It allows us to draw some more general conclusions on the
necessary improvements which should be accounted for in the stochastic modeling of the
{atigne crack growth.

1. INTRODUCTION

Material nonhomogeneity has random character but its significance de-
pends on the kind of phenomenon which we observe or intend te describe.
It always produces a random scatter of the quantities which characterize
the results. The more local character have the factors affecting the pro-
cess, the more significant become the random fluctuations of the material
properties. The fatigue crack growth is an example of a locally conditioned
process which is affected by material properties from a small neighbourhood
of the crack tip. The random nature of crack growth was always recognized
o produce a great scatter of experimental results. Various load conditions,
different materials, crack and specimen geometries, different measuring sys-
tems used in different laboratories and limited number of data could not
supply a reliable basis to apply some general and advanced statistical ap-
proaches. Mean value and eventually variance of time to reach a given crack
length and a regression analysis to fit a crack growth law were usually the
most ambitious achievements in statistical analysis of the phenomena. The
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prediction capability of such an analysis cannot be satisfactory. The analysis
describes rather the results of an experiment than provides some general in-
formation about stochastic nature of the investigated material under fatigue
due to the crack growth.

Among many experimental results which one can find in the literature
on the fatigue crack growth under constant amplitude loading there are only
a few which allow us to consider them not only as a set of data requiring
statistical analysis but give us a possibility to employ evolutionary methods
providing an insight into stochastic nature of the fatigue crack propagation
process. The most frequently investigated results are given by VIRKLER et
al. [22]. As usually in fatigue crack growth experiments the data set contains
the couples: crack length, a, and the corresponding number of cycles to reach
it, N. In Virkler’s experiment 68 specimens of 2024-T3 aluminum alloy
shaped as panels of 558.8 x 152.4 x 2.54, all in millimeters (length x width
x thickness), with a central slit of 2.54 mm length and 0.18 mm width were
tested. The stress amplitude was kept constant as AS = 48.28 MPa value
with the stress ratio ® = 0.2, The relevant measurements started at the
crack length @ = 9mm as an initial crack length and proceed every 0.2 mm
increment within (9.0 mm, 36.2mm), then every 0.4 mm within {36.2 mm,
44.2mm) and finally every 0.8 mm within (44.2mm, 49.8 mm) providing 164
couples {a;, N;) for every test. All experiments were conducted by the same
operator and on the same machine. The results are shown in Fig.1a,

Another set of very valuable fatigue crack test data was provided by
GuoneM and DoRE [7]. They used 7075-T6 aluminum alloy rectangu-
lar specimens of 320 x 101 x 3.175, all in millimeters (length x width x

thickness), with a central crack initiating notch of 14.3mm. After some
 initial loading application the measurement started at the crack length
@ = 9 mm and continued to ¢ = 23 mm as the final length. These
tests were conducted at three different load (stress) amplitude conditions,
namely: 1) AS = 28.41MPa, R = 0.6; 2) AS = 34.68MPa, R = 0.5; 3)
AP = 2841 MPa, R = 0.4 where R = Smin/Smax- 60 identical specimens
were tested at each load condition providing the sequences of couples (a;, N;)
for every specimen. The results are shown in Figs.1b-d.

The first glance at the figures allows us to notice that even in well-
controlled experiments under constant amplitude loading the scatter of the
results is not negligible, e.g. the number of cycles which are necessary to
advance the crack from its initial length to the final one can be different
for different specimens of the same material. It is obvious that the scatter
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originates from the randomness of the material properties around the crack
tip. It would seem that the assumption of parameters in a crack growth law
as some random functions allows us to account for all these randomness in
the most proper way. 'Unfb'rtunat_eily,' substitution_ of all material parame-
ters with random functions, identification of their statistical properties with
keeping the model applicable is hardly realistic. _

More careful analysis of the experimental results shows a tendency of
keeping slow or fast rate for the specimens for which the crack started out
to propagate slower or faster, respectively. It suggests a statistical scatter
of material properties between the specimens, i.e. some statistical inho-
mogeneity in a large scale. Moreover, some @ — N curves tross each other
suggesting a local change of the material properties at the crack tip front
which leads to temporal acceleration or retardation of crack growth acciden-
tally for various specimens. It means that the specimens differ from each
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other by the mean values of the material properties over a specimen and the
microstructural nonhomogeneity of material within a specimen leads addi-
“tionally to the observable disturbances of the fatigue crack growth. The
former is usually accounted for by simple randomization of the crack growth
law, while the material constants or some of them only are replaced with
random variables. The statistical parameters of them are derived from data
and such a randomized crack growth law describes the effect of the statis-
tical nonhomogeneity. It neglects the microstructural effects. The latter
should be modeled by random processes which reflect the local variations
of the material parameters during fatigue crack growth. It is believed that
this much more advanced modeling will be able to describe appropriately
not only the experimental results but also to provide the methods of both
material parameter identification and fatigue crack behaviour prediction.
The prediction capability is the most important feature which verifies the
usefulness of any model. _

In any crack growth model there are some parameters involved. They
are usually some model parameters which depend on test conditions. They
cannot be considered as material parameters. In the classical fatigue crack
growth equation proposed by PARIs and ERDOGAN {15]

. Aa m
(1.1) Z—'E—C AK™,

where :

(1'2) - AK=AS- Y(a) : \/7r_ = (Smax - Smin) * Y(“’) . m

means the range of the stress intensity factor, a is the crack length, § de-
notes the far stress and ¥ (a) is a function which depends on the crack and
" specimen geometry, the parameters C' and m have got no mechanical in-
terpretation and do not suit the dimensional analysis. In the most simple
nondeterministic models all or, more frequently, some of the parameters are
assumed as random variables. Statistical characteristics of the variables,
namely: means, variances, correlations, types of probability distributions
have to be determined from experimental data. In general, the equation of
the fatigue crack growth can be written in the following form:

‘ Aa :
(1.3) An - g(a_;(f)), | o
where © denotes the random vector whose components are the random
model parameters. The function g(-;@)} depends on these random vari-

ables. It depends, moreover, implicitly on the loading parameéters but does
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not depend on the cycle number. Thus, the number of load cycles which is
necessary to advance the crack of the length ag to the length a is called the
lifetime of a structural element, No(a; ©), and is given by the integral

(1.4) No(a;0) = f Eél;‘%).

For the constant amplitude loading and non-varying frequency of cycles,
w, the lifetime can be expressed alternatively in time units as To(a;0) =
No(a;0)/w.

The lifetime, To{a;©), as well as the fatigue crack length increment,
Ag(t 0) = A(t;0) — ag, within a given time interval, At = ¢ — ¢;, are some
functions of the random vector ©®. Thus, they are some random variables
themselves. For deterministic initial conditions, A(ty) = ag, T(ag) = to,
the monotone property of the fatigue crack growth process, A(%; 0), assures
the following relation between the probability distribution, Fy4,(a;t), of the .
crack length increment within a given time interval, At = t — ¢y, and the
probability d1str1but10n, Pr,(t; a), of the lifetime for a given crack length
increment, Ao(%; 9) = a — ayp, to be valid

(1 5) TP[Ao(t;0) < a] = Fao(ast) = 1 = Fry(t;0) = P[T(e; 0) > 1,

where IP[A] denotes the probability of a random event A.This relation orig-
inates from the renewal theory, e.g. FELLER. [6] and means that the proba-
bility distribution of the lifetime defines the probability distribution of the
fatigue crack length and vice versa.

- A critical review of the probabilistic approach is given by Kozin and
Bocoanorr [10]. The modeling of the fatigue crack growth process solely by
means of the random variables excludes the possibility to describe the effect
of local, stochastic fluctuations of material properties. It may be sufficient
if we consider some great crack length increments. However, an information
about the probability distribution of small crack length increments becomes
more and more important, especially in design of the inspection and repair
strategy. Therefore, a great effort is being done to find an adequate model
which allows us to account for the stochastic nonhomogeneity of material
within a specimen. Two main directions of the tesearch-on this field will be
presented in the following sections.
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2. MODELS WITH TIME DEPENDENT STOCHASTIC FUNCTION

Considering the fatigue crack growth for moderate values of the stress
intensity factor range, AK, the Paris - Ergodan equation is usually admitted.
In the simple models the parameter ¢!, MADSEN [12], or both C and m,
DowiNski [4], are assumed to be some random sequences, e.g.

(2.1) Ci=Co-Cyi amd m=M,,

where Cp and My are the random variables, and (; are the elements of a
random sequence {Cy;} so that for every crack length increment, AA;, we
have _ _
(2.2) C o AA=Co- AR ()M 0y

The model without random fluctuations, i.e. {Cui} = {1}, was often
compared with experimental data, e.g. VIRKLER ef al. [23]), Kozin and
BoGDANOFF [10]. Statistical analysis has shown that the random variables,
Co and My, are very strongly correlated, pops = 0.90, and liave, respectively,
log-normal and normal probability distributions. Assuming the exponent to
be deterministic, Mp = m, and the sequence elements, C'1i, to be mutually
independent and independent of Cy, MADSEN [12] simulated numerically the
curves a~-n which appeared to agree very well, at least qualitatively, with the
ones {rom the experiments. For a great number of the load cycles, n — oo,
such a model gives a possibility to estimate easily the conditional probability
distribution of the random variable Wo(n; Ajco, mg), which is related to the
random crack length, A(n), as follows

A{n})
da i
(2.3) Vo(n; Aleo, mp) = / W =) Cy;,

ag i=1

given Cp = ¢p and My = mg. Assuming independence and common prob-
ability distribution of all sequence elements, Cy;, with the means and vari-
ances, respectively, IE[Cy;] = IE[C}] = C; and Var[C};] = Var[Cy] = Ué‘x’
we obtain according to the central limit theorem of the probability theory

Pp—n.-C
(2.4) | Fyyoomy (¥ Rl eo, mo) = & ( e, - \/ﬁl) ’

where (-} denotes the standard normal probability distribution function

@) o= [ (k) a= [
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The probability distribution, Fa,icq,ar, (5 2]eo, mo) of the crack length, A(n),
after n load cycles given A{0) = ag, Cy = ¢ and Mp = mq can be directly
derived from the probability distribution (2.4) as

(2.8)  Fagico,my (@5 mlco, ma) = Fiyicy, sy (1(); mleo, mo) .

If we know the two-dimensional probability density function, fo,as, (co, ms),
of the random variables Cg and M, then the unconditional probability
distribution, &4, («; ), of the crack length results from the integration

(27)  Fa(asn) = f f Joonto(€m) - Faicons, (6 nle, m) de dm. .

—00 —Od

The product form of the parameter C, Eq.(2.1), requires the elements of the
sequence {C;} to be nonnegative random variables. Thus, the probability
distribution, Fiv,(n;a), of the random cycle number, No(e), which is neces-
sary to advance the crack from its initial length ag to a can be derived accord-
ing to Eq.(1.5). If morcover the random fluctuations, Cy;, around the mean,
C1, are sufficiently small so that the probability #{(—Cy/o¢, ) may be ne-
glected, then the relation (1.5) can be used for the conditional limit distribu-
tion (2.4). The conditional probability distribution, Frg e (75 (@) o, mo)
of the number of cycles, Ny[1p(a)|co, mo}, takes the following form:

P (n - 111(“')/01)

o0, / Cr- \/ﬁ '
Similar form of the probability distribution was obtained by BIRNBAUM and
SAUNDERS [1] who investigated a damage process as a sum of independent,
nonnegative random variables. The mean and variance for the distribution
(2.8) are, respectively, as follows:

(2.8) Fuvoicotal13 (@) o, mo) =

a ot
(2.9) IE [Noli(a)|co, ma] = (1) (”‘2 Ci fbl(a))

of, -pla) !
(2.10)  Var[No[¢(a)|eo, mo] = Gcg (1+4 C f/ﬁ(a))

From this model in which random fluctuations are represented by a sta-
tionary sequence of random variables we obtain the conditional coefficient
of variation, vg,0o0, = T1Cs,Me/Polce,M,» Of the random increment of
¥o(n; Aleo, mo), Eq.(2.3), given Co = ¢g and Mp = mg as a decreasing func-
tion of the number of cycles, vy cy.ns, = ¢, /(C1 - /), cf. Eq.(24). Lt
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means that for long lifetimes the effect of stochastic nonhomogeneity dimin-
ishes and the random variables Cy and My suffice then to account for the
random properties of the fatigue crack growth process.

Many researchers take an advantage of the rate form of fatigue crack
growth equation by considering it as a differential equation of time. The
stochastic fluctuations of & — n curves are then modeled by means of a
stochastic function of time alone, X(t). It should be pointed out that in
this kind of modeling the general tendency is to keep the function g(e) to
be deterministic with the model parameters, @, as some constants. Thus,
the random function X (¢) accounts for the whole randomness of the process

in the equation

(2.11) 229 < y(a)- x,

where A(t) denotes the random crack length at the time instant t. For the
constant amplitude loading the function g(A) does not depend on the time,
The separation of the variables allows us to introduce a function

Af?)
(2.12) : To(t) = L[A(Y)] = f ;,%,

ag

which defines the random increment of a non-normalized damage parame-
ter, Io(t), over a random interval [ao, A(Z)] (within a time interval [t,1]).
Equation (2.11) takes now the very simple form

| - dr(t)
(2:13) SR = X().

From the mathematical point of view Eq.(2.11) or, equivalently, Eq.(2.13)
are very convenient, In the most simple models it is assumed that

(2.14) . - X(t) = px +€(1),

where £(2) is the zero mean Gaussian white noise with intensity e, i.e. with
the covariance function '

(215 Ewwyaﬂn=m»ﬂfff)

with 6(-) 4s the Dirac function. It leads to the Itd stochastic differential
equation for the damage parameter Io(t) in the following form:

(2.16) dIo(t) = pxdt + vV2a - dW (1),
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where W (t) is the Wiener process with the initial condition IW(to) =0
almost surely and the variance, Var[W(t)] = t — tp. The mean and variance
of I'p(t) are easily determined as

E[lo{t)] = px-{t-1),

(2.17)
Var[lp(t)] = 2a-(t—to).

Since the process X(t) is Gaussian and Eq.(2.13) is linear, the probability
distribution, Fr; (y;t) of the damage parameter, I5(¢) at any time instant ¢
is Gaussian with the mean and variance like in Eq.(2.17) i.e.

7 —px -t —to)
V2e-(t—1) |’

The probability distribution, F4(a;t), of the crack length, A(t), at time ¢

given A(tp) = do can be directly calculated from the probability distribution

of the damage parameter as

(218)  Fr(ri0 =Pl <] =2 [

(2.19) | - Falait) = Fr,(v;1).

The probability distribution, Fr(t;a), of the time, T'(a), when the crack
reaches the given length a(fy) = ap is determined as the probability of
the first crossing of the level a by the process A(t). Keeping the damage .
parameter notation valid for its simplicity we can alternatively consider the
crossing of a level ¥ = y(a) by the damage parameter process, Ip(t), which
both are respectively related to @ and A(#) by Eq.(2.12). Hence, the first
crossing time, 7'(7y), is defined as

(220)  T(y)=sup{t: V2a -W({) <7 —px -t}.

The similar crossing problem was investigated by E. SCHRODINGER in his
research on the Brownian motion [19]. A quite simple method of determi-
nation of the probability distribution function of the random variable given
by equation of the type (2.20) was proposed by DITLEVSEN [2]. Tt is the
inverse Gaussian probability distribution with the density and cumulative
probability functions in the following forms:

¥ T—HX't)
t; = -
fT-( 7) : 20t -t (P( V2 1 ’

= -7 #x px -t
e = o(B57) von () + (H552).
T(- 7) . 200+ 1 o exp a 2a -1

(2.21)
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with the mean and variance, respectively,

200 -y
ol

A comprehensive discussion of consequences of the time-dependent white
noise modeling in the fatigue crack analysis was given by SoBczvk [17]. He
pointed out that there exists a non-zero probability of the instable crack
growth, a(t) — oo, for some finite time, ¥ < oo, if the function g(a) in.
Eq.(2.11) grows faster than the linear one. For the damage parameter no-
tation it corresponds to a limit value, y¢(a} — ¥* for ¢ — co. The problem
of the so-called explosion time in the fatigne crack growth analysis was also
. discussed in TSURUI and Isuikawa [21], _

The additive form of the function X (t) with the Gaussian white noise
term, Eq.(2.14), results in a non-zero probability of physically inadmissible
negative crack length increments. Therefore, the usual relation (1.5) based
on the monotone increase of the crack length may not be applied directly. If,
however, the intensity of the white noise is sufficiently small in comparison
with zx so that the probability of negative values of X (t) can be practically
neglected, then the probability distribution Fr,(t; a) of the lifetime, Ty(a),
which is necessary for the damage parameter, ¥(#), to reach a given-value v
takes the following form

(2.22) E{T()] =1, ValT(y)]=

px - (t—to) — v
\/2a-(t-t0) J )
Assuming ?o = 0 and comparing Eq.(2.23) with Bq.(2.21), it is seen that for
small fluctuations, i.e. for 2a < p%, and great increments of the damage
_ parameter, ¥ 3> ux, the first term in Eq.(2.21), dominates and the inverse
Gaussian probability distribution tends to this one given in E£q.(2.23). Once
again, c.l. Eq.(2.8), there appears the probability distribution proposed by
BIRNRAUM and SAUNDERS. The mean and variance now are, respectively,

given by '

(223) Fr(t0) = P(To(y) S = 1 - Fy(a) = & [

L 21,1
B0 = (45 ).
Var[T'(7)] = s -(1-}—2-#)(.7).

It is worth to notice that the lifetime probability distribution (2.23) was
discussed by BIRNBAUM and Sav NDERS [1] and derived from the investi-
gation of a sum of independent random variables. Assuming many terms,
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the probability distribution of the sum tends to the Gaussian one with the
mean and variance as in Eq.(2.24) provided that (f — to) = N . At, where
N is the number of terms and At means the load cycle duration, say. Now,
the coincidence is not surprising anymore because the assumption that all
terms in the sum are positive had to be made to validate the relation (2.23)
which takes its origin in general renewal theory.

The time-dependent white noise' model of the fatigue crack growth were
extensively studied by VIRKLER et al. [24] and LiN and Yane [11]. Compari-
son of the theoretical results and experimental data shows that the white
noise model leads to smaller variations of lifetimes than it comes out from
the analysis of test data. The white noise is the stochastic process with cor-
relation radius equal to zero. On the opposite pole is the random variable
with the infinite correlation radius. Since the one random variable model
where X (?) is assumed to be a random variable, X(t) = X, leads to too
great variations, ¢f. KozIN and BoGDANOGFF [10], it was very natural to
assume some correlation which should improve the theoretical results. Such
an approach was presented in SoBczyYK [16, 17], Liv and YANG [11]. Lin
and Yang investigated the erack growth model with a zero mean, station-
ary, stochastic process Y'(¢) instead of the white noise in Eq.(2.14). It was
assumed that Y(¢) is linearly correlated over a time interval A, i.e.

(2.25) Ky(r)=IE[Y({#) -Y(t+r)]=28- ( - |—£J-) for |7|< A,

and the correlation is equal to zero otherwise. Taking the advantage of
the stochastic averaging method proposed by Stratanovitch and proved by
KHASMINSKII [9], they appropriately transformed by differential equation
(2.11) with a stationary process Y (¢) into the Ité stochastic differential equa-
tion (2.16) with the averaged drift and diffusion parameters a(a) and o(a)
in the form

a@) = o) [ux+5-4. 29,
@) = 29(a)-f-A.

Hence, the theory of diffusion Markov process might be applied to determine,
in particular, the moments of the lifetime 7°(a). The closed-form solutions
were found under the assumption of a reflecting boundary at @ = 0. The
Paris type crack growth equation with g(a) = Q - a® was assumed. In fact
the stochastic process X(t) was assumed to have the log-normal probability

(2.26)
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distribution. The model parameters and the mean and variance of the Gaus-
sian process In X (t) were estimated from the test data for the logarithmic
form of the crack rate equation and then recalculated to give the mean and
variance of the process X(t). These moments and the correlation length are
in fact only necessary to get the solutions in terms of lifetime moments, The
correlation length A was changed to reach the best agreement with the data.
The assumption that the crack growth process A(t) is a diffusion Markov
process in an approximate sense and appropriate determination of the drift
and diffusion parameters replace in fact the stochastic process X (¢) by the
sum of the mean and a white noise and define the respective Ttd equation for
an equivalent diffusion Markov process. Thus, it could be expected that at
least {or the long lifetimes, T'(a) > A, the probability distributions (2.21) or
(2.23) remain approximately valid. The authors, however, assumed rather
arbitrarily the Weibull probability distribution of the lifetime. Though they
are satisfled comparing the experimental results, the agreement is far from
being excellent. Nevertheless, it is explicitly shown that the correlation
length significantly affects the variance of the lifetime and it is possible to
find such a correlation interval A which assures a very good agreement with
the mean and variance considered. _

Very consequent application of the theory' of Markovian processes is pre-
sented by SPENCER and TANG [18], TANG and SPENCER [20]. They assumed
the process X (t) to be generated by an exponentially correlated stationary
standard Gaussian process Z(t) so that

(2.27) X(ty = Fe'lo[z(m)]],

. where F3'(-) denotes the inverse of the one-dimensional probability distri-
bution, Fix(x), of the process X (). Assuming the process Z(t) to satisfy
the stochastic differential equation

dZ(t
(2.28) % - —a-Z+ (1),
where £(2) is the white noise, cf. Eq.(2.15), the crack length, A(f), is a com-
ponent of the two-dimensional Markov process [A(2), Z(#)] which is defined
by the system of two differential equations: Eq.(2.28) and
dA(t _
220 _ g(4)- FR' (D)
The stationary form of the correlation function of Z(t) has the exponential
form

(2.30) I('z('r.) =E[Z(#) Z(t+ 7)) = exp(~a-|7|).

(2.29)
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Using the correlation radius definition, 7oy, as

oo
_ J - Kz(r)dr
(2.31) Teor = g,
[ Kz(r)dr
0

we get 7eor = 1/ for the random function Z(¢) and, approximately, for the
random fluctuations, X (1), as well.

The proposed formulation of the problem allows the Authors to apply the
methods of the general theory of stochastic diffusion Markovmn processes
to derive a recursive set of boundary value.problems for statistical moments
and probability distribution of the lifetime. The finite difference method
is then proposed to find the solutions. In TANG and SPENCER [20] the
results of the model prediction are compared with the Virkler, Ghonem and
Dore data. The least square method was applied to establish the mean and
variance of the stochastic process X (1) as well as the parameters, ¥;, of the
assumed crack growth equation, g(a; #), which is considered further to be
deterministic. The model prediction of the mean and variance of lifetimes
given various initial and critical crack lengths approaches the experimental
data very well, being almost insensitive to the choice of the probability
distribution type of the process X (¢). There were considered three types of
the probability distributions of X (t): normal, log-normal and Weibull. Al
of them led to the results which are very close to each other.
~ In SpENCER and TANG [18] the effect of the correlation length, Teor =
1/a, was also studied. The similar conclusions to those in TIN and YanG
[11] could be drawn about its significant influence on the lifetime variance.
And again it appears that an appropriate choice of the correlation length
can assure very good agreement between the lifetime variances obtained
from the model and experiment. '

Swnmarizing the presentation of the models in which the time-dependent
stochastic process is assumed to describe the random fluctuations of the
fatigue crack growth process, the following remarks can be formulated:

1. The random function X (¢) as a factor in a crack growth equation ac-
counts for all uncertainties which affect the crack growth process. The model
parameters, ¥, in the crack growth law function, g(A; 9), are considered as
some deterministic quantities. Their values as well as the statistical pa-
rameters of X(¢) are determined from the least square regression analysis.
Sometimes X (1) is considered to account simultaneously for both loading
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and material uncertainties. All of these are not the inherent limitations of
the model but the usual procedure to handle it.

2. Only the Gaussian white noise model can be analyzed analytically
leading to the inverse Gaussian probability distribution of lifetimes. It gives,
however, too small variances of them. It seems that there are two sources of
this discrepancy. One of them has been discussed above and concerns the
zero correlation length of the white noise. Another one has been just noted
in the first remark. Since the crack growth paths show simultaneously some
statistical and stochastic uncertainties, it is not realistic to describe both of
them by a quantity that has purely stochastic nature. Mixed, random vari-
able and white noise model should give better agreement with experiments
but unfortunately such an analysis is not known by the author.

3. A significant improvement of the calculated lifetime variations by
introducing a finite correlation length of the process X (1) points out the
importance of the correlation in the stochastic model. The exact analytical
solutions are not available but the numerical results indicate a negligible
dependence of the lifetime probability distributions on the probability dis-
tribution of X(¢), TANG and SPENCER [20]. Since the correlation length
is expected to be short, the stochastic averaging is justified for longer life-
times. It, however, leads to the equivalent stochastic differential equation
which is driven by an equivalent white noise. Thus, the conclusions about
the inverse Gaussian or the Birnbaum-Saunders probability distribution of
the lifetime and normal distribution for the damage parameter, Io(t), hold
to be valid provided that a long lifetime and great crack length increment
are considered. The solutions, however, are very.sensitive to the length of
.the correlation radius.

4. The stochastic modeling of the fatigue crack growth by means of the
time-dependent stochastic process, X(t), was very extensively discussed in
the literature. It was natural then to apply the theory of diffusion Markov
processes which has very strong mathematical foundations and offers very
effective and well-developed mathematical tools based on the Fokker-Planck-
Kolmogorov equations to solve the practical problems. It seems however that
the modeling of the fatigue crack growth under constant amplitude loading,
when the random properties of the material are solely responsible for the
random behaviour of the crack growth process, by a stochastic quantity
which depends on time alone does not describe properly the randomness of .
the phenomena. Tt is obvious that the randomness of the crack growth de-
pends on the random properties of material around the crack tip. It means



TIME AND CRACK LENGTH DEPENDENT STOCHASTIC MODELS 401

it depends on a random quantity (random field, say) which depends primar-
ily on the crack tip coordinates. Because the relation between the time and
crack length is random, any mapping of the space coordinates onto the time
one would require at least an averaging procedure. Any transformation of
this kind depends on the load conditions so that the parameters of the func-
tion X (¢) would not be objective but load-dependent. Some proposals of the
crack length-dependent random models are presented in the next section.

3. MODFELS WITH CRACK LENGTH-DEPENDENT RANDOM FUNCTION

The modeling of stochastic fatigue crack growth by means of a space-
dependent stochastic function has not found so much interest like the models
previously discussed. The contributions to this subject are restricted to
a few papers only. They provide, however, some very interesting results
which combine the methods of material parameter identification and usual
reliability problems connected with derivation of the lifetime or crack length
probability distributions.

An original proposal of the random fatigue crack growth model is given
by DITLEVSEN [2]. A single cycle crack length increment Aay, is considered
to be equal
(3.1) Aa; = g(a;,@) - X; ’

where X; is the random variable reflecting the effect of material nonhomo-
geneity over the crack increment, A¢; = a;4; — @;. The parameter vector,
0, is considered to be random. The analysis is done separately for every
specimen so that all results are condi_tioned given the realizations, 9;, of the
random vector ©. It will not be explicitly written in the further notation.
From the logarithmic form of the Eq.(3.1) 7 '

InAe; =Ing(e;) + R(Aaj;a;);

the residuals, R(Aa;;a;) = In X;, are defined in the following integral form,
(the subscript i is omitted)

Aa -
(3.2) R(Aa;a) = \/—}5_7; . j{(a + s) ds,
: 0

where {(a) denotes the Gaussian white noise depending on the crack tip
location @ and of the intensity 2a. The crucial assumption in the approach
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is the averaging the integral in Eq.(3.2) with respect to the square root of
the integration interval v/Ae, and not to the interval length itself, Aa. Tt
assures the variance of the residuals to be independent of Aa. Moreover,
the covariance function, Kr(Aa;, Aas), of the residuals, R(Aa;-) depends
only on the ratio Ag¢;/Aa, |

Aal

Aas for Aay < Aa,.

(33) I(R(Aﬂ.l, Aﬂq) =2 -
Hence, because the process R(Aq;-) is Gaussian, it assures the equivalence
of two Gaussian processes

(34)  R(Aaja)= R[(a) o ]_R[-g%;a — R(z;a).

Using the notation o = A7y = Aa/g(a) the crack length increment, Aa, can
be found in terms of x as the solution of the first passage problem defined
by :
(3.5) ' Vz Inz =v2a - W(z),

where W{z) is the Wiener process starting at the origin, cf. Eq.(2.16). The
first order Taylor expansion of the left-hand side of Eq.(3.5) inz =1leads
to the first passage problem of a linear boundary by the Wiener process

(3.6) X =sup{z:W(z) <z -1}

which has been already discussed in the previous section but in a quite
different context, cf. Eq.(2.20). Equation (2.20) defined the random time
of the first crossing of a damage parameter level v by the random damage
parameter process Ip(f). Now, Eq.(3.6) defines a random increment of the
damage parameter corresponding to the crack length increment Aq;, Hence,
the resulting inverse Gaussian probability distribution of X; = AL’ has the
density function as follows:

(3.7) ‘h@0=x_¢%;;'w(;%;?)

with the mean and variance, respectively, IE[XT = 1 and Var[X] =
Returning to the damage parameter notation, cf. Eq.(2.12), the following
equation

A
(3.8) mm:/ ZX

i=1
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defines the random damage parameter increment which corresponds to the
crack length increment AA = A — qg after n load cycles. The Eq.(3.8) is
similar to Eq.(2.3) but the stochastic properties of the random variables
X; result from the first crossing problem for the damage parameter. They
are mutually independent and all with inverse Gaussian probability dis-
tributions, cf. Eq.(8.7). Thus, their sum (3.8) has the inverse Gaussian
distribution as well

(39)  Fr(nn)=9¢ (——TQT _”'7 ) + exp (g) @ (—————7.2_1_.._”_7__)

with the mean and variance, respectively, IE{Ig(n)] = n and Var[lp(n)] =
20 - n. The probability distribution, F4(a;n), of the crack length, A(n},
can be determined from Eq.(2.19) with Fr,(y;n) as in Eq.(3.9). Random
variables with inverse Gaussian probability distribution are nonnegative.
Thus, the relation (1.5) can be applied to determine the lifetime distribu-

tion. Assuming the constant {requency, w, of the load cycles, the probability
distribution function of the lifetime, T'(y) = N(v)/w satislies the equation

(3.10) FPr(ty) =1~ Fr(vin).

The second term in the probability distribution function (3.9) tends to
zero with increasing n. Neglecting this term the probability distribution
of the damage parameter now approaches the Birnbaum-Saunders probabil-
ity distribution, cf. Eq.(2.23). The probability distribution of the lifetime
corresponding to a damage parameter value 4 now becomes Gaussian with
mean and variance, respectively, E[N] = v and Vai[N] = 2a - v.

Furthermore, the sum of independent, identically distributed random
variables X; suggests the application of the central limit theorem of proba-
bility theory. Thus, for a large number of cycles, n — oo, or, equivalently,
long time, { — 00, the probability distribution, Fr;(y;t), of the damage
parameter, Ip(?), is approximately Gaussian with the mean and variance,
respectively, IE[Io(2)] = ¢ and Var[I5(2)] = 2« - . But the same type of the
probability distribution can be obtained by substitution X; = 1 + &;, where
&,i=1,2,..., are the zero-mean, independent, normal random variables
with variances Var[¢;] = 2¢ +¢. Substituting now the sum in Eq.(3.8) with
an integral over the interval [0, = n/w], an equivalent continuous model for
_the damage parameter

(3.11) Ro(t) =t + V2 a - W(t)
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can be written down with the standard Wiener process W(t). Thus, the
lifetime, To(7), is the random variable as it has been already defined in
Eq.(2.20) but now with px = 1. The probability distribution of the lifetime
is again the inverse Gaussian one, cf. Eq.(2.21) with px = 1. Table 1
summarizes the sequence of the assumptions and their consequences.

Table 1. Probability distribution types of the damage parameter
and lifetime resulting from the assumptions in the Ditlevsen model.

Assumption Fro(n;t) Fr(t; v)
In La 1 f&(a +s)ds | inverse Gaussian 1-Fr(t;y)
9(s) ~ VAa o
ney Birnbaum-Saunders Gaaussian
n— 00 Gaussian Birnbaum-Saunders
Al =14+& Gaussian inverse Gaussian

The logical sequence of the assumptions leads from the model in which
the stochastic material nonhomogeneity was described by the crack length
dependent white noise to the model in which the damage parameter is de-
fined as a sum of independent Gaussian random variables. Thus, the proba-
bility distribution of the damage parameter changes from the inverse Gaus-
sian one to Gaussian, and the lifetime probability distribution finally appears
to be the inverse Gaussian one. For the long times (a great number of cy-
cles) there is an equivalence to the model discussed in the previous section,
where the time dependent white noise reflected the effect of the stochastic
nonhomogeneity of materjal.

DITLEVSEN and OLESEN [3] presented a very extensive study of the
Virkler crack growth data. They admit the inverse Gaussian probability
distribution of the lifetime. The Paris-Erdogan equation, ¢f. Eq. (1.1), is
assumed with the parameters C' and m as random variables. In order to
improve the results the Authors introduce, rather arbltra,rlly, a Tshebyshev
polynomial up to the seventh order. The material parameters, intensity of
the white noise and polynomial coefficients, were estimated from the maxi-
mum likelihood method for every specimen. Very good agreement was shown
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between the experimental results and the combined method where both the
random variables and the random process are simultaneously considered to
describe the random properties of the fatigue crack growth process.

The approach just presented is virtually set up on the assumption that
the variance of the damage parameter increments does not depend on this
increment. Although the crack length dependent white noise is assumed at
the beginning to reflect the material stochastic nonhomeogeneity, the eventual
consequence of subsequent assumptions is that increments of the damage pa-
rameter may be modeled by independent, identically distributed, Gaussian
random variables. It leads back to the stochastic time dependent models
and results in the inverse Gaussian probability distribution of lifetimes. In
the previous section this model was discussed to yield ina,pprdpriate varia-
tions of the lifetimes. In DITLEVSEN and QLESEN [3] the agreement is very
good. However, contrary to those proposals the Authors consider here the
statistical, ©, and the stochastic, X;, uncertainties separately. The next
step would be to take the stochastic crack length dependent process more
consequently to describe the variations of material properties with account
for their correlations along the crack growth path.

Such an approach is proposed by OrTiz and KIREMIDITAN [13, 14]. The
crack growth rate equation is there assumed to be

(3.12) o = 9(a,0)- X(a),

where X(a)is a st:itionary, log-normally distributed stochastic process with
unit median. The logarithmic form of this equation

da
dt

involves the zero mean, Gaussian, stationary process, Z(a) = In X(e), with
the variance, 0%, and the covariance function

(3.14) Kz(a)=IE[Z(a)- Z(a + )] = ¢} - pz(a),

with pz(e) as the correlation function. Every crack growth path sample, j,
is analyzed by the least square regression procedure to obtain the respective
sample, ¥;, of the parameter vector, @, and the averaged residuals

(3.13) In — = In g(a;0) + Z(a)

Aa;
AN;
where Aa;/AN; is the averaged crack rate given from the experimental
data over the interval Ag; = a;41 — a;. In order to calculate the covariance

(3.15) ZA“-f,’j =In —Ing(a;9;),
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function of the locally defined process Z(a), the discrete averaged spectral
density, 5z,,(A), is estimated by the Fourier transform of the sequence
ZAa;,; and then the spectral density, Sz()), of the process Z(a) is obtained
by the relation from the filter theory, i.e.

(3.16) S5zaa(A) = [HaalN)| - S2(3),
where
VAR E
sin | Ay —
(3.17) Haa(N) = —nif—l
A -

is the filter function of an averaging filter with the window Aa. It is required
that all measurements are done at the same crack length interval, Aa; =
Aa = const. The inverse Fourier transform

(3.18) Ky(a) = f S2(A) - exp(ida)d

gives the covariance function of the local stochastic process Z{a) while the
variance of Z(a) is given by 6% = Kz(0). Repeating this procedure for every
erack growth path sample the set of parameter vectors, § 5, variances, o*%,j,
and spectral densities, Sz ;(\) are obtained. Hence, the statistical ensemble
parameters are easily calculated. In particular, the mean of the covariance
function, Kz{a) is estimated from the mean spectral density

. J
(3.19) Sz(A) = % Zsz,j(,\)

applying the inverse transformation (3.18).

The authors demonstrate this procedure using the Virkler crack growth
data and assuming the Paris crack growth equation. The analysis shows
that the exponent correlation function may be admitted, i.e.

(3.20) pz(e) = exp(~|al/ao),

where o denotes the correlation length estimated to be g = 0,12 mm.
In order to estimate the probability distribution of the lifetime, the ef-
fect of the two types of randomness, the statistical and stochastic ones, is



TIME AND CRACK LENGTH DEPENDENT STOCHASTIC MODELS 407

separated in the integral solution of Eq.(3.12), i.e.

a

| da
S Y da [ da c!m
(3.21) To(a;9)=aofm=lg(a;@)' [ da
tl{y(a;é)

= Ig(a; (“)) : IX(as(:)) »

where @ = IE[@]. Moreover, it is assumed that both random functions,
Z(a) and X({a), have the same correlation function (3.20) and the second
factor in Eq.(3.21), Ix{a;©) has the log-normal probability distribution.
Its effect on the lifetime, especially on the lifetime variance, can be easily
investigated. Comparison with the Virkler data shows very good agreement
but the results are also very sensitive to the correlation radius. OrTIZ and
KIREMIDIIAN [14] examined three possibilities for the process X (a):

1. X(a) is equal to one — it gives the random variable model with C and
m as random variables;

2. X(a} is the white noise with log-normal probability distribution;

3. X(a) is the log-normal stationary stochastic process with the expo-
nential correlation function (3.20).

The analysis allows the Authors to draw the following conclusions:

1) the random variable model predicts properly the variance of the life-
time for great crack length increments but underestimates it for the shorter
ones;

2) the white noise model predicts properly the variance of the lifetime
for median and large crack length increments but overestimates it for the
short ones;

3) the model with finite correlation length is able to predict very well the
lifetime variance over the entire crack length increment range provided that
the correlation length is properly chosen. The prediction is very sensitive to
the change of the correlation length as it could also be concluded comparing
the random variable and white noise models.

4. CONCLUDING REMARKS

The fatigue crack rate depends, in general, on the stress/strain state
in the neighbourhood of the crack tip. Thus, the material properties in a
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material volume surrounding the crack tip affect, in fact, the crack growth
process. In the most stochastic models of the fatigue crack growth this
feature is not considered. The time or crack length dependent stochastic
{unctions which are assumed to account for the effect of stochastic material
nonhomogeneity are not related explicitly to the crack tip affected zone.
Since the size of this zone depends on the crack length, the properties of
the random functions should change while the crack is growing up. Thus,
the assumption that the functions are stationary does not reflect the real
“circumstances of the material nonhomogeneity effect. The stationarity of the
crack length dependent random function, X (a}, means that the crack rate
is affected by, the material properties averaged over a constant size volume
attached to and moving with the crack tip, say. The correlation function and,
particularly, the correlation radius correspond, implicitly, to the shape and
dimensions of the volume. In the limit white noise case the volume reduces to
the point or a surface given its gradient is not orthogonal to the crack growth
direction almost everywhere, Because of the nonlinear relation between the
time and crack length the stationary time-dependent random function, X (t),
does introduce a non-stationary effect of the material nonhomogeneity but
its specification is hardly possible. An attempt to derive the statistical
properties of the random function X(a) from a mechanical model of the
fatigue crack growth is presented in the forthcoming paper, DoLINSKI [5].
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