ENGINEERING TRANSACTIONS o Engng. Trans. + 40, 4, 483-500, 1992
Polish Academy of Sciences ¢ Institute of Fundamental Technological Research

DISCRETE MODELLING OF WAVE PROPAGATION IN BARS
WITH PIECEWISE-LINEAR CHARACTERISTICS

Z. SZCZESNIAK (WARSZAWA)

A method is proposed to model one-dimensional wave propagation problems in a
discrete manner as applied to the material with piecewise-linear stress-strain relationship
in loading and rigid-elastic behaviour in unloading. The method consists in a simple
combination of basic models, 1.e. an elastic model and a plastic model with rigid unloading
o obtain a combined model. It turns out to be accurate and effective. Numerical algorithm
is described. Errors are discussed and an example of unloading stress wave is given.

1. INTRODUCTION

Much effort has been devoted in the literature to the problem of propa-
gation of one-dimensional plastic waves. Solutions to specific problems can
be found e.g. in [1, 2, 4-12, 18-20] with the use of both analytical and
numerical methods that, in turn, were described in [1, 4, 5, 9, 11]. Method
of characteristics in conjunction with finite difference technique was pointed
out as a powerful tool [1]. Some problems were solved by means of that
procedure in [2, 3, 13-16]. However, some difficulties are mentioned in these
papers such as general nonlinearity of unloading waves, moving boundaries
of loading and unloading regions and a multiphase character of the process.
These difficulties can often make it impossible to arrive at an effective solu-
tion to some more complex engineering situations. For example, problems
of dynamic soil-structure interaction belong to this category.

A discrete modelling method, presented in [21-23], offers an effective tool
to solve the above wave propagation problems. Relevant models consist of
rigid masses and deformable connections with the following properties: lin-
early elastic in loading and unloading as well as linearly elastic on loading
and rigid on unloading. Respectively, an elastic or plastic model can be
obtained with one of above connections. Wave problems that are analysed
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with the use of plastic model have in general a nonlinear characteristics. The
described elastic and plastic models are called BASIC ones. Except for rigid
unloading, the wave processes are analysed to within an accuracy of com-
puter truncation errors, due to the applied principle of errorless difference
approximation [21].

In this paper some possibilities will be indicated to apply the discrete
modelling method for materials with complex ¢ — ¢ relationships in the
loading and unloading processes. Loading processes will be analysed with
the use of the so-called soft o — ¢ relationship. In the case of unloading much
attention will be focused on a nonlinear characteristics that commences with
rigid behaviour. Such stress-strain relations are known to represent mechan-
ical properties of certain soils [1, 2, 4, 5, 17-19, 23-28]. The considered ¢ —¢
relations take no account of viscous effects and cyclic loading. The most
general form of the ¢ — ¢ function for wave problems can be found in [29]
where the constitutive equations are shown for elastic-plastic solids with
discrete memory.

Fia. 1.

The proposed discrete modelling requires the constitutive relationships
for both loading and unloading to be linearized. For example, the ¢ — ¢
relationship for soils in the range of medium pressures can be approximated
by a multisegmental loading branch and rigid-elastic unloading as shown in
Fig.la. No wave propagation processes based on such a deformation model
have so far been discussed in the literature. The unloading branch can be
simplified by assuming either Aog = 0 or Agg = og. Particular cases of
the o — ¢ relationship are shown in Fig.1b and 1c and discussed in detail in
[1, 4-10, 18-20, 23, 28].
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Construction of a combined model for an elastic layered bar was described
n {21]. Such a global model consists of a number of suitably linked basic
elastic models., In this paper another combination model will be proposed
— namely that correspoding to a piecewise linear o — £ relationship and
consisting of a suitable number of basic elastic and plastic models to form
a COMBINED DISCRETE MODEL. Specific type of linearization of the
physical relationships will be used, separately for loading and unloading.

2. DISCRETE MODEL OF LOADING WAVE PROPAGATION FOR A PIECEWISE
LINEAR ¢ -~ & RELATIONSHIP

2.1. Piecewise linear o — ¢ relationship for loading

Basic discrete models were introduced for linear ¢ — ¢ relationships on
loading process. Their structure results from an errorless difference approx-
imation by a relating a spatial step Az to a temporal step At with the
use of

(2.1) Az = aldt,

where a is a wave velocity corresponding to an assumed ¢ — ¢ relationship.
Thus a nonlinear o —¢ function should be transformed to become a piecewise
linear expression. Fach segment of such a relationship will correspond to
a different wave velocity. The linearization cannot, however, be arbitrary
since the condition (2.1) is required to be satisfied for each segment of o — ¢
plot. Particular relations among characteristic wave velocities a; must hold
good in a multi-segmental o — ¢ relationship, Fig.2.

Let us assume that _

(2.2) a; = -]ii%”—j—al ,

where j = 1,2,...,k — number of a ¢ — £ segment along the loading branch
(Fig.2), & — number of segments on the loading branch, a; — a suitably
assumed first wave velocity (may be treated as an "elastic” one).

Slope of the j-th segment is F; = a?p, where p denotes density of the
material. From the formula (2.2) it follows that consecutive wave velocities
satisfy an inequality a; > a;4y. A particular case of k = 1 and j = 1
leads to the o — ¢ relationship in the form of a single straight line with the
characteristic velocity a.
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FiG. 2.

The multisegmental o — ¢ relationship can be described with the use of
characteristic stresses a1, 011, - - -, Tk—1 that depend on a shape of approxi-
mated o —e curve. The proposed manner of linearization corresponds to the
so-called soft characteristic of the o0 — ¢ curve which can be shaped in a de-
ing a given wave velocity a; as referred to a selected

sired way by emphasiz
Two examples for k= 4 are depicted in Fig.3.

plastic wave velocity a;.

i |
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2.2. Combined model of loading process

Consider the propagation of loading wave in a semi-infinite bar with a
multi-segmental o —e relationship as shown in Fig.2 and the unit cross-section
surface. The bar is subjected to an arbitrarily increasing end load p(t). The
problem will be solved with the help of a suitable discrete model. The lin-
earized o — ¢ relationship is chosen in such a way that the combined model
can be composed of k£ independent basic models which were explained in
[21]. Each segment of the o — ¢ rclationship will correspond to a suitable
basic model. Each of these, in turn, is capable of propagating stresses within
a certain interval described by the values Aoy, Aoy, ..., Aoy, Fig.2, and
associated mass velocities Awv;

Ao
. Av; = —
(2.3) b=
where 7 = 1,2,...,k — number of a stress interval {of a basic model}, a; -

corresponding wave velocity.

Lach stress interval is associated with a characteristic maximum deforma-
tion that can be conveniently expressed in terms of a mutual displacement
Awu; of two neighbouring masses of the discrete model,

AcjAz

(24) Auj = B

where Az — an assumed spatial step, E; = af-p as before.

The above relations are of a general nature. Further procedure must
depend on the assumed concept of modelling. One way to follow is to assume
a constant time step Af which leads to differentiating the spatial division
of each basic model according to Az; = a;At. This circumstance does not
allow for superimposing the actions of basic models. Moreover, some of the
modelling principles given in [21, 22] would not be satisfied.

The other concept to follow is to introduce a constant spatial step Az
for each basic model labelled j. This will clearly lead to unequal time steps
At; and according to Eq.(2.1) we have
(2.5) Ath“éfi, i=1,..,k.

@

However, remembering the relation (2.2), we can synthesize actions of

basic models at each step At,

(26)  Aby= kAl = (k— 1Aty = (k- 2)Als = ... = Aly.
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This means that the step At, is the longest from all those corresponding
to the basic models, that are involved in the wave process. From Eq.(2.5)
it follows that the wave fronts in particular basic models are, after n steps
At, have possed, spatially displaced by a distance equal to nAz. This fact
for n = 1 is visualized in Fig.4. What is obtained can be called a spatial
"smearing out” of the stress distribution that corresponds to a soft o —¢
characteristic. Parameters of the stress wave for the i-th mass and at the
consecutive step At; can be calculated from the fromulae:

i=j

Au?,n-}-l — Z Au'n. a1 ,
F=i
u’:a.-l-l — Z un+1
(2.7) ‘

i=Ji

1}?""1 = ZA@“H

n+l n+1
a; = ZAU



DISCRETE MODELLING OF WAVE PROPAGATION IN BARS 489

where 1"t = "+ Atl,, i — number of the lumped mass in the discrete model,
7 —number of the discrete model, j; — the largest number of the basm model
comprising the i-th mass Am = Azp.

Displacement of the i-th mass in the j-th discrete model can be deter-
mined according to [21]. Values of A’u,"j‘l, Aul” ”"'.1 are to be found from
the formulae (2.3), (2.4), respectively. _

Thus, the combined model for loading process has been constructed with
the use of a particular type of superposition, namely: A sum of reasons
(Ae;) that exhaust particular regions of local linearity lead to a result that
is a sum of associated partial results (Awv;, Auy).

3. DISCRETE MODEL FOR PROPAGATION OF RIGID-ELASTIC
UNLOADING WAVE

A unit cross-section surface bar made of the material with the o — ¢
relationship as shown in Fig.5 is acted upon by a suddenly applied load p{t)
and then monotonically decreasing to zero.

NV

FiG. 5.

Consider an unloading stress wave by following the bisegmental unloading
branch. Its first segment 0 — a corresponds to rigid unloading whereas the
other one, @ — b, to a linear behaviour as at the initial elastic stage. That is
why the branch 0—a — b will be called a rigid-re-elastic unloading, or simply
a rigid-elastic one. The loading branch can clearly consist of more than two
segments that are considered here for the sake of brevity.
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The model for solving the stated problem consists of three basic models as
described in [21-23] and is shown in Fig.6. Elastic model serves to describe
loading process, two models — a rigid (plastic) model and a re-elastic model
- to describe unloading process. Front of the rigid model coincides with
the front of unloading wave. An important component of the proposed
model is constituted by a part of the rigid model that is located between
the elastically loaded and the unloaded regions. Although this component
remains an integral part of the rigid model, it is here isolated and termed
a connecting element J. Its role is to ensure a smooth interaction of the
unloading wave front with the remainder of the discrete model. That is why
its property must remain rigid, thus ensuring no waves propagated through
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it. Continuity requires that the front of connecting element must move with
the velocity a2 and interact, at the same time, with the unloaded region
in which the velocities af, and ag are present, both different from az. In
addition, the front of connecting element acts on the neighbouring elastic
region in which the wave velocity is equal to a;.

Let the unloading region be divided into segments Az. To allow the
unloading wave front fo move with the velocity a; (under constant step At),
the connecting element should consist of successive segments each Az long:

Az

(31) Azl = E,
]

(32) Ho = ag.

Number pg can be conveniently assumed to be an integer. Thus at each step
At the connecting element get longef by a segment Az;. This procedure is
shown in detail in Fig.6. When the connecting element reaches its maximum
length equal to pgAzy, it is transferred to the rigidly unloaded region. Such
an expansion of the rigid region is realized with a suitable discrete model
which is described in [23]. The whole rigidly unloaded region of the model
moves with uniform mass velocity v»§ which is determined at each time
step At by means of the momentum conservation principle. The following
relationship applies:

VEAm" + Amyvl o+ AcAt

mﬂ-i-l ?

(3.3) pitl =

where Am = (I, + 0.5)Am + jAmy, Am o (Is + 0.5)Am(j + 1)Amy,
Am = Azp, Amy = Azp, AU:Uﬂ _0-:":,41-3'-{»-1? 7=0,1,2,...,
1o — 1 — subscript for a current length of the connecting element, I, = {o— %
— number of rigid segments with the length Az each.

Knowing the velocity v+, accelerations #2mt?

of particular masses within the rigid region can be calculated (r = i; +1 to
io+ 7 )

and displacements u™¥1

n+1
«m, 741 ) - 'U?
u"t‘ At b
(3_4) /_\u?:m+1 — Au;z--l.n + ,&:r-.n+1At2;
n+1  _ ) nymtl
(o = ul + Au, .

Stress gg(z,1™) at the front of the unloading wave can be found according
to the rules given in Sec. 2.2. Stress inside the rigid region is given by the
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formula
(3.5) ot = g™ — Am,

—

pptt — o
At ’
where i1 +1 < r <d9+j.
The procedure of successive expansion of the rigid region described above
enables the re-elastic unloading to be made with the velocity ag accompanied
by the constant step At. The segment Az with the number ¢;+1 commences

re-elastic unloading when the following condition is met
1 '
(3.6) U'g-fi——l = 00,i+1 — D00 = Ty 415

where 0g,41 — stress at the front of unloading wave remembered at an
instant of transfer of the connecting element to the unloading region, cr:fl'fl_ll
— stress calculated according to Eq.(3.7).

Stresses inside the fe—elastic unloading region are given by the formula

s | M n+1

(3.7) ottt = ("—A—zyi - 80,;) Ey+ ag;
where €04 — strain at the front of unloading wave at the beginning of rigid
unloading of the i-th segment Az, Eo = alp.

Displacements ﬂ?“ are calculated as shown in [21]. Thus, the displace-
ments of interior masses of the re-elastically unloaded region 2 < ¢ < 4
are:

wnntl 0’?_1 — U?
b - Am
(3.8) Aup™t = AR ERTAL,
u;’;‘“ = ul+ l&'bﬁ?’ﬂ'"'1 ;

It is only natural to form an exterior mass (i = 1) as 0.5Am, see 21,

22] for boundary conditions. This results in an accurate realization of the
e, i+l .

reflection from the free end. Acceleration of the edge mass i, is given
by the formula
| Wl pz(tn) —
(39) T T 05Am
n,n+1

Increment of the displacement Au}™ " and the displacement w71 can be
calculated from Eqs.(3.8); and (3.8)3, respectively. Magnitude of the dis-
crete form of load p(1) is denoted by p.(t*). As indicated in [21], the forma-
tion of a ha]f mass is associated with

(3.10) | - pz(t”‘)~—p(t“)
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It should be noticed that a jump in the stress oo(2,1") — 0, is present at
the front of the unloading wave.

Consider a case of the re-elastic unloading as shown in Tig.7b. The
corresponding discrete model is given in Fig.7a as a specific case of that
shown in Fig.6. The rigid unloading region reduces to the connecting element
J which plays here the same role as in the more general case. J separates the
loading and the unloading regions in which waves propagate with different
velocities. The formula (3.3) should now be simplified by insisting on I, = 0.
Moreover, Agg = 0 should be assumed in £q.(3.6) which leads to 06'5 = g0,

The discrete model of Fig.7a propagates the unloading wave with the
velocity @, so long as

(3.11) aolz,1") > 0.
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At an instant * the condition
(3.12) oo(e*, 1) = o,

is satisfied and the location of the unloading wave front enables to determine
the length of plastically deformed bar z* together with the length of the
connecting element J*. The latter element will no longer change. In this
_situation only elastic waves propagate in the bar. Their velocities are: ag
for z < 2* (re-clastic behaviour) and a,, for z > 2*. Interaction of these two
regions is ensured by the connecting element thh the length J*, fixed at an
instant ¢*".

4. NUMERICAL EXAMPLES AND ACCURACY. OF CALCULATIONS

Two examples will now be given to illustrate the discrete method as
applied to the analysis of unloading waves. The first example deals with
a straight-line unloading behaviour as shown in Fig.1b, the other with a
two-segmental rigid-elastic unloading as depicted in Fig.5. To focus our
attention on the unloading process, let the loading behaviour be described
by a single straight line. More complicated loading behaviour would not
contribute to better understanding of the problem, anyway. Moreover, cal-
culations in the loading regime are made according to the rules of errorless
difference approximation.

Let the load p(t) be

t\B
p(t) = pg(l——) , for 1<,

r

(4.1)

p(t) = 0, for t>r1.

Ezrample 1

As explained above, it is the ¢ — ¢ relationship shown in Fig.1lc that is
relevant for the purpose of unloading analysis. The obtained solutions will
be compared with the exact one given in [10]. Accuracy of the stress at
the front of unloading wave will also be discussed. The discrete model from
Fig.7 will be adopted, except for the elastic loadmg region which will be
ignored.

The following data are assumed: 7 = 0 1 85, p= 1800 kg/m>, ag = 100 m/s
and, for the sake of comparison, ap = 300 m/s. Wave velocity ratio gy =
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ag/as will change from 1 to 5, the exponent 8 from 1 to 7. More specilic
data on the o — ¢ curve are shown in Fig.8.

No error arises, within all the assumptions of the method, so far as the
location of the unloading wave front is concerned. It is the stress at this
front that may attain inaccurace values. Let this stress be expressed in a
dimensionless form as @o(z) = co{z)/po. Main source of the discussed error
is the presence of a fictitious rigid connection in the discrete model. The
obtained results, collected in Table 1, show that already for Az = 0.1m

Table 1. Dimensionless stresses o(z) for Az =0.1m, g0 =100m/s, F=1.

2 |m
o [m] 1, 2. 3. 4. 5.
exact 0.866666 | 0.733333 | 0.599999 | 0.466666 | 0.333333
solution
o =3
ical
NUMENCAt | b ae6643 | 0.734207 | 0.598679 | 0.468519 | 0.335340
solution
. -
exac 0.8124999 | 0.6249999 | 0.4374998 | 0.2500 0.0625
solution
o =4
numerical | o 112497 | 0.6195660 | 0.4362508 | 0.252476 | 0.0626754
solution
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(irrespective of the value of jto) the numerical results practically coincide
with the exact ones [10]. Accuracy of the numerical solution can always be
enhanced by decreasing the step Az. However, in the example worked out it
is not worth: while: e.g. for 8 =1, po = 3, a3 = 100m/s, z = 2m the exact
answer is do(z) = 0.73333(3), whereas the numerical solutions for Az =
0.1m and Az = 0.005m are Fo(z) = 0.734207 and 0.733742, respectively.
Accuracy of the solution increases together with an increasing velocity ag
of the unloading wave as a result of the type of the ¢ — ¢ relationship
(compare diagrams a and b in Fig.8). A certain part of the results is shown
diagrammatically in Fig.10 to follow. It enables to compare the present
results with those for the rigid-elastic unloading. Assessing the accuracy of
results it must be remembered that Prandtl’s constitutive model on which
the exact solution is based is only an idealization of real behaviour of the
material, Thus the proposed numerical model should be verified by means
of suitable experiments. Soils have been found to better conform to the
discrete model with a rigid connecting element than to Prandtl’s model.

Ezample 2
G4
A
N ———— —_—
%
5 a,

Fia, 9.

An influence of the rigid-elastic unloading behaviour, shown in Fig.9, on
the dimensionless stress o(2) = 0o(#)/po and on the time-spatial spread of
rigid region will now be examined. Remembering the remarks at the begin-
ning of Sec.4, let us assume the same data as in Example 1. The discrete .
model will be similar to that given in Fig.6. Effects of the magnitudes Agy
on the stress 7o(z) at the unloading wave front will be analysed, where A&y
is a dimensionless length of the rigid part of unloading branch. Various
values of the ratio pg (from 1 to 5) and Ad(0.1;0.2;0.5) were used. The
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obtained results were compared with those corresponding to limiting cases:
AGg = 0 (Prandtl’s model) and Ago = 1 (perfectly rigid unloading branch).
From the results depicted in Fig.10 it follows that for pp > 3 the results

52

P
10 @

08

a6

a4

2.2

Fia. 10.

for different o ~ ¢ relations practically coincide. Influence of the spatial
step length Az on the accuracy of results is shown in Table 2. The pro-

Table 2. po =3, Age = 0.2, ap = 100m/s, § = 1.

z [m] 1. 2 3. 4. 5,

Az=10.01m | 0.851573 | 0.713388 | 0.578311 | 0.444116 | 0.331245

c'm(z)
Az=01m 0.850901 | 0.712886 | 0.577387 | 0.442673 | 0.331559

posed model disposes of the difficulties mentioned in the literature, e.g. in
[1], namely: phase type of the studied processes, nonlinearity and arbitrary
variations in the load p(t). Time-spatial distribution of the rigidly unloaded
region in the worked out example is shown in Fig.11. It follows that, for the
assumed data, the rigid unloading affects the wave propagation process in a
predominant manner within the soil layers up to 1.5 m or even 2.0m thick.



498 7. STCZESNIAK

z,{1)
4 5 & ot
! ——— Elasfic unloading
2 region
= mememmeen  R1gi0 unloading
3 > région
4
5 i i
s o | Ag =02, 1=01s
z
[V
Fra. 11

Substantial part of these thicknesses are occupied by rigid regions as seen
in Fig.10. From the above as well as from [1,4, 5] it can be observed that —
in particular for rather thin soil layers — the unloading branch of the o — ¢
curve can be perfectly rigid. Thus even simpler discrete model, described in
[23] can be employed.

5. CONCLUSIONS

One-dimensional discrete models for wave propagation problems were
put forward in [21-23]. The elastic model is suitable to deal with lincarly
elastic materials, that are inherently insensitive to loading-unloading. The
plastic model differs in that the unloading branch follows a rigid behaviour.
These two basic models have the property that, except for rigid unloading,
all wave propagation processes are analysed under the condition of errorless
difference approximation.

The basic models are applied to solve the problems for materials with
piecewise linear o — ¢ relationships in loading and a specific, rigid-elastic
behaviour in. unloading. ‘The method consists in the superposition of basic
models in a manner suitable for the particular situation under consideration.
Thus a combined model is obtained that preserves the main characteristics
of basic models such as a high accuracy and clear physical meaning. The
worked out examples indicate adequate efficiency and potential of the pro-
posed method to be used in complex engineering situations.
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