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HEAT AND MOISTURE TRANSFER IN A TWO-LAYER

BUILDING WALL AT SLOW HARMONIC CHANGES OF

THERMO-HUMIDITIVE ENVIRONMENT PARAMETERS

BASED ON THE THEORY OF THERMODIFFUSION IN
SOLIDS

W. DUDZIAK and R. UKLEJEWSKI (POZNAK)

In order to describe the thermo-humiditive processes occﬁrring in external building walls,
the theory of thermodiffusion in elastic solids is used. This theory allows to take into account
the internal coupling between the processes of heat conduction and moisture transfer, as well
as it makes it possible to determine the stresses during these processes in the wall material.
The solutions of the equations describing the process of heat and moisture transfer in a two-
layer (and, in general, n-layer) building wall at slow harmonic changes of thermo-humiditive
environment parameters are presented. The solutions obtained are of importance for thermo-
humiditive design of building walls; the mean month’s values of external climate parameters
are assumed to vary sinusoidally during the year. The method of sclution, as well as some

notions, are hased on the theory of electric transmission lines.

- 1. INTRODUCTION

This paper offers a description of thermo-humiditive processes in
building walls, based on the Podstriga¢—Nowacki theory of thermodif-
fusion in deformable solids [1, 2]. The diffusing medium in building walls
is the moisture, the humidity defines its concentration, and the role of
chemical potential of diffusing medium plays the moisture potential, a
quantity used in various theories of moisture exchange [3]. The descrip-
‘tion proposed enables a unified approach to the coupled processes of heat
and moisture transfer in building walls and, moreover, within the same
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theory, it gives a possibility to calculate the stresses and strains which
occur during the thermo-humiditive processes in the wall material.

Although the above processes are seen to be coupled, due to the diffi-
culties encountered in mathematical calculations, the fields of tempera-
ture and the moisture potential are usually determined separately from
two partial differential equations with variable coefficients of the Fou-
rier’s heat conduction type. The method of solving the one-dimensional
problems of heat and moisture transfer in building walls presented in
this paper follows the one used in the theory of electric transmission
lines. That method allows to obtain the formulae for analytic solutions
which are relatively simple in comparison with the solutions obtained
by means of the traditional integral transformation methods used in
the theory of thermodiffusion. The methods of the electric transmission
lines theory are particularly useful in the analysis of one-dimensional
systems with distributed parameters, subject to harmonic excitations.

Periodical changes of external climate parameters are a characteri-
stic feature of the environment of building walls. Annual variation of
mean month’s values of external climate parameters are approximately
sinusoidal.

The solutions obtained in [4] will be used in this paper to construct
the solutions describing the heat and moisture transfer in a two-layer
(and, in general, n-layer) building wall.

2. HEAT AND MOISTURE TRANSFER IN A TWO-LAYER, EXTERNAL
BUILDING WALL DURING ONE YEAR

Consider the process of heat and moisture transfer in an external
building wall made of two material layers possessing different physical
properties, under sinusoidally changing (T' = 1 year) external climate
parameters, i.e. mean month’s values of external air temperature and
humidity (instantaneous deviations of the parameter values compensate
each other at the level of mean month’s value [3]), Fig.1.

We assume that: :

1. In the range of the considered values of the temperature, humidity
and time, the system (i.e. the building wall) is linear and stationary;

2. In the region of each layer the building material is homogene-
ous and isotropic with respect to the thermal, humiditive and elastic
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Tig. 1. Heat (and moisture) transfer through a two-layer building wall at slow harmonic
state changes; T’ = 1 year, w = 27/T - pulsation, ©(0) - temperature on external surface I,
O(h + &) — temperature on internal surface 111, Apg — temperature phase shift across the

wall, II — dividing surface between the layers 1 and 2.

properties; .

3. The temperature and humidity fields in the wall are one-dimen-
sional;

4. The moisture termodiffusion process considered is slow and, the-
refore, the mechanical inertia of the building material may be neglected;

5. The effect of stress on the heat and moisture transfer is negligible.

The temperature and the moisture potential fields within the region
of a two-layer building wall at slow harmonic changes will be determined
from the equations of the Podstrigas — Nowacki theory of thermodiffusion
in deformable solids [1, 2], using the solution for a one-layer building wall
given in [4] and in Appendix 1.
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One-dimensional, non-stationary process of moisture termodiffusion
in an elastic material layer (the influence of stresses on the heat and mo-
isture transfer being neglected) is described by the following equations

[1,2,4]:
The complete set of equations of thermodiffusion theory
Pw 00 dc
(2 + A)_éﬁ =15 T V55
0*0 00 dc
(21) . ka 7 — Ceeas a1 +T0d8t 0
8¢ dc . 9O
Deger ~ 5t Prgaz =%

the constitutive relations

o1 = (2p+ Aen — 10 — e,

(2.2) _ S = mO —dc,
M = dO+4nc,
the laws of heat and moisture conduction
80 oM
(2-3) q= “k%, n= —5"3”;,

and the relations
%0 . OM
= K————

(24) '. S = k@:c?’ = K
(25) n= D%—DTZG’ pc=ﬁ'ﬂ, .DT=K'd.
Here

©=T-T, relative temperature,

Ty  initial state temperature,
S entropy per unit volume,
g  heat flux,

M  moisture potential,
¢ humidity (= concentration of diffusing rnedium)
n  moisture flux,

oi{z)  wall material stresses in z-direction,
w(z)  displacement vector component,
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gy = Ow/Oz strain in z-direction,
o Ay YTy Yoy dy M, 0 basic material constants appearing in
constitutive relations,
A Lamé elastic constants,
k heat conduction coefficient,
K moisture conduction coefficient.

We assume that the following quantities vary sinusoidally in time
(the building wall considered is a linear and stationary system)

dw

on (z,t) = Reloo(a)e!], 57 = v(@;1) = Re[wo(z)e’],
(26) O(z,8) = Rel@(a)e], a(,1) = Relgo(2)e!],
M(z,t) = Re[My(z)e™"), n(x,t) _=_Re[n0(a:)e-’”t],

where j = +/—1 is the imaginary unit,
oo(z) = oom(2)e @) wy(x) 1= vg(x)e?P ),

(2.7) 96(3:) = eum(m)ejf"e(‘”), w(2) = qo (w)e-”"ﬂ(‘")
My(z) = Mom(a;)eJV’M(z), m(x) = no (m)e"""(”)_

The quantities with with subscript 0 are the complex amplitudes; they
are vectors in the Gaussian complex plane, and in Eqs.(2.7) they are
expressed in terms of real amplitudes (the quantities with subscript Om)
and of the appropriate phase shift angles ()(z). For example, My(zx)
is the complex amplitude of moisture potential, and ¢y () is the phase
shift angle of the moisture potential.

The one-dimensional process of linear thermodiffusion of moisture
through a two-layer building wall in direction x at slow harmonic state
changes can be described, by analogy to Eqgs.(1.11) and (1.12) (see Ap-.

_pendix 1), by means of the following equations:

[ q0(z) 00 9 -l @]
(x) @ @) (m)
(2 8) d o 0 0 —Zy Zs 0
' dz T ’
7| ©(2) £ 0 o 0 Oo(2)
| My=)] |0 V5 0 o | [ M)
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dvg(:s) doy(z)
dz
where 1 = 1, 2;i=1for z € (0,14) the layer 1, i =2 for z € (I, 1 + 1)

the layer 2,

(2.9) =2 ao(a)+ P12 () + s My(z), =0,

@ 1 0 . mn @ 1

(2.10) Z1 = jw—Tr, Z2=_1LLJ-.—+, Z3= jw=,
2@+ 3 n W

. @ 00 _ (@) . )

0! i — 0) Y G . d
(2.11) Z12 = jw "')I"(——?%, L= (,)—ic(t)_’ Z23= JW s
QW+ (2 1+ X) n

(3) 1 ) 1
(2.12) Y, = Tﬂ@: Y= ﬁ

The quantities (2.10) and (2.11), by analogy to the electrical impedances
(1.13) (Appendix 1), may be called the thermo-humiditive impedances
of the building wall layers.

We assume that at the plane dividing the layers 1 and 2 (surface II,
Fig.1), the boundary conditions of kind IV are satisfied, i.e. the heat
and the moisture fluxes are continuous,

(0 d@o(.‘r) 2 deg(.’l,‘)
2.1 — = _
( 3) * dx z=I] : d:l‘,‘ z=If ,
(2'14) (};) dMo(m‘) — (IQ‘C) dMQ(:B) ,
dr |, _;- dr |,_p

the temperature moisture potential are also continuous,

(2.15) 60(23 =1) = @0(.1? = li{-),
(2.16) Myz=1) = Myz=1}).

At surface I of the wall (Fig.1) remaining in contact with external air
at temperature ©, and moisture potential M, the following conditions
are fuifilled:

heat exchange
1) dOy(z
(2.17) 0, (0, -9z =0))+rA.=—k dLaE) ,

=0
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moisture exchange

- 3. 3
dx 20

(2.18) = BM.— My(z=0)) = _ () dMy(z)

here o, — coefficient of surface heat exchange (due to heat convection
and radiation), 8, — coefficient of moisture exchange between external
air and the wall, A, — intensity of the incident solar radiation at the
external surface of the wall, r, - coefficient of solar radiation absorption
by the wall surface.

Similarly, at surface III of the building wall remaining in contact
with the internal air at temperature 0, and moisture potential M,, , we
have

(2.19) @u(Ow—Oy(z=h+h)) = _@ dOo{x)

d z=h+i2 ’
2) dMo(x
(2'20) ﬁw(Mw - MG(-T: = ll + 12)) L= —-—(ﬁ;) .TO(.). ,
* =i+l

where o, (B, are, respectively, the coefficients of heat and moisture
exchange between the wall and internal air; it was assumed that no
internal radiation sources occur (ry, A, = 0).

The boundary conditions (2.17)-(2.20) determine the relations be-
tween the temperature of wall bounding surfaces {external or internal)
and the heat flux through the surfaces, and the relation between the mo-
isture potential of the wall bounding surfaces (external or internal) and
the moisture flux through the surfaces. Knowing (from measurements)
the values of the temperature and the moisture potential for the exter-
nal surface of the wall, we can determine, on the ground of conditions
(2.17) and (2.18), the values of the heat and moisture fluxes through
that surface.

In the following it will assumed that the values of go(0), 70(0), ©o(0),
M;(0) on the external surface of wall are known. We will be interested
in the determination of the temperature and moisture potential fields
within the two-layer building wall, and in the description of the thermo-
humiditive insulation properties {or the transmission properties) of the
wall, such as the amplitude attenuation factor of the temperature and
that of the moisture potential.

Equation (2.8) is the so-called homogenous state equation; it can be
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written in the compact form

=1,2
4 ; 1 ) “y
(2.21) ___3(9;) =Rs (@), i=1 if 2e(0,h),
x i = if z€{h,h+1h),
where
(@) i)
(=) 0 0 Zy -—Zo
a0 (i) 0 0 —.(’2 7
(2.22) S(z) = no(x) . A= | . n  Z3
By(x) 1(5)2 0 0 0
My(z) )
0 Ys 0O 0

(state vector) (matrices of the layers)

Equations (2.21) for the case ¢ = 1,2,...,n, describe the heat and
moisture transfer through a n-layer building wall. These equations may
be solved in two manners: 1) step by step, i.e. by determining the fields
of temperature, moisture potential, heat flux and moisture flux in the
first layer, and then consecutively up to the layer ¢, or 2) in a selective
manner (what is of importance in the case of multilayer building walls),
ie. by determining the fields ©y(z), My(x), qo(z), no(z) directly for
the layer i, use being made of the concept of transmission matrix for
the chain connection of the layers 1 to i — 1, adopted from the electric
four-terminal network theory (Appendix 1). Let us present both the
ways.

The solution of the state equation (2.21) for layer 1 is the state vector
S(z) represented by the following transmission equation (App. 1)

(2.23) S(z) = [ehnx]S(O), z € (0,4},

o)
where eA? is the transmission matrix of the layer 1 (App. 1), and

S(0) = [g0(0),10(0), Bp(0), Mp(z)] is the state vector at the external
surface of the building wall.

For layer  of the n-layer building wall the solution of the state equ-
ation is given by

()
(2.24) S(z) = [e*IS(hh + ... + li1), we i+ .+l b+ ..+ 1),
i=1,2,..,n,

)
where eA* is the transmission matrix for the layer 4, and
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Sl + -+ li-1) = [go(li + - + Lica), mo(l + - + 4ic1),
90(11 + ..+ l,'_l), Mg(h + ...+ I,'__l)]T

is the state vector at the interface between the layers ¢ — 1 and <.

The transmission equation (2.24) makes it possible to determine the
fields of temperature, moisture potential, heat flux and moisture flux
in consecutive layers of the multilayer building wall, starting from its
external layer. _

Introduce now the concept of chain connection of the layers of a
building wall.

The chain connection of the layers of a building wall is called a
connection in the case when at the interfaces between the layers the bo-
undary conditions of fourth kind are satisfied, i.e. the heat and moisture
fluxes are continuous (see (2.13)-(2.16)).

The concept of chain connection of the layers corresponds to the
concept of the chain connection of the electric four-terminal network
(App. 1).

The fields of temperature, moisture potential, heat flux and moisture
flux in the region of the layer 7 of a n-layer wall may be determined
directly (i.e. without determining the fields in the preceding layers)
from the following transmission equation:

) i=1 1)
(2.25)  S(z) = [eA%][eAb x ... x eAP]S(0), i=1,2,..n,

gelh+..+hinh+..+1),

which is derived from Eq.(2.24).
The matrix

‘ .‘:‘1“ %)l .':‘1!. -'Az.l.; (}\)I
(2.26) [eAl1x ... x eAl] = [eAli]ledh2] . [erY],

is the so-called transmission matrix of the chain connection of the build-
ing wall layers from 1 to i — 1, associated with the following transmission
equation:

i-1 n
(2.27) S(ly + ... + lio1) = [e A1 x ... x eA1]S(0).
The transmission equation {2.25) allows for a direct analysis of the

influence of external climate conditions represented by the state vector
S(0) = [g0(0), 70(0), ©g(0), My(0)]” acting at the external wall surface,
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on the distribution of temperature, moisture potential, heat flux and
moisture flux within the region of the layer ¢ of the wall. The trans-
mission matrix (2.26) of the chain connection of the wall layers 1 to
i— 1 is equal to the product of the transmission matrices of those layers.
Since the matrix product is, in general, noncommutative (AB # BA),
therefore the sequence of transmission matrices in the product (2.26) is
important: the transmission matrices of wall layers occur in the product
{2.26) in the order inverse to that of the layers.

If we consider only the insulation properties of a multilayer building
wall as a whole, it is useful to introduce the notion of an equivalent
one-layer wall, which is equivalent to the wall considered as far as its
thermo-humiditive properties are concerned [3]; the real distribution of
temperature, moisture potential, heat flux and moisture flux within the
region of the wall is here of secondary importance. Using the termi-
nology proposed in this paper it is possible to describe the insulation
thermo-humiditive properties of the wall equivalent to a n-layer building
wall, by means of the following transmission equation

(n)

(2.28) S+ ... + 1) = E S(O),

. (n)
where the transmission matrix of the equivalent wall ]?) is equal (on the
M

basis of Eq.(2.27)) to the transmission matrix of the chain connection
of layers 1 to n of the n-layer wall considered

(m) (1)
(229) B = [oRe s x el

m

It is, of course, true under the assumption that at the interfaces
between the component layers, the boundary conditions (2.13)-(2.16)
are fulfilled. '

For n = 2, i.e. in the case of a two-layer building wall, the distinction
~ between the above two methods of solving the state equation (2.21) is
of no importance.

The transmission equations for the two layers of the building wall
presented in Fig.1 have the form

(2.30) S(z) = [eg‘)x]S(O), for z € {0,1;),.
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(2) )
(2.31) S(x) = [eAEMWIS(l), for z € (Il + 1),

where S(I;) is the state vector at the interface of the wall.

Solution of the state equation (2.21), i.e. determination of the state
vector S(z) = [go(z), ol ) @0(2:) My(z)] reduces to the evaluation of
the transmission matrix e . Applying the Cayley—Hamilton theorem

(@)
to matrix A of order k = 4, it is possible to express the transmission
(i)
matrix eA” in the form (App.1)

' O OIS
(2.32) e* _go (2)1+ 9‘1(38)A + 92($)A2 + g s(x)A%, i=1,2,

where
O o G @
) _ 71 Ch”Yga:-—'ygch'ha:
9o (v} = @0 ’
v -
@ @
o) ¥4 sh ¥y x fygsh’ha:
gi1{z) = —— )
A @) (’) (1) (’% (')2
Ye(V1—7) Ti(vi—)
(2.33)
%) ( ) _ ch(’?1x—ch(';/)gw
AN q @
" — 72
(,&) (5) = sh (’;’)1 z sh (’})2 z
s BN
1 (71— ’Yz) Y2 (v — 73)
and

' (#) () (¥) (i) ) (3
(2.34) Yi=Y(EP)+ K, Yo={(2P) - K,

Q] 9‘2"’523 ] (#) (3) fj’z 123 NAORO)
(2.35) BP= 2222, K= \/(AP)+Q2 AP= ===, Q"=(yy,

ORONS) ORNONO! @ &) @ ()G
(2.36) Py=Z3Ys,  Ps=Z3Y; (y=YaZn, =YsZax.

i) (i) (@) i i
The quantities fZ)Q, Z3, Z23, §)2, )}{)3 are given by the formulae (2.10)-

(2.12).




14 W. DUDZIAK and R. UKLEJEWSKI

Components of the state vector S(z) coustituting the solution of the
state equation (2.21) for the layer 1 of the wall (x € (0,{;}), i.e. the fields
of heat flux go(z), moisture flux no(z), temperature G¢(x) and moisture
potential My(z) in layer 1, have the form:

y M

237 go(w) = E T AP (((11)) s a(0) a9
2 K

N
(K+AP) 32 (0)— Q383 (0) M

(1)%2 sh 7
(L

(1
(K — AP)mo(0)+ Qs %(0)
0]
2K
OEENONES) M @
(K = AP) B2 (0)+ G383 (0) ; )
M)
2K7s

_I_

"/235

-+

0 Shao im0
(238)  miz)= EED0O- Lm0y ,
2K

O e ONEN
(K — AP) Bs (0)- @58, (0)
o)
2KY

+

43 (1)
(K + AP)g(0)- Qz 70(0) (1)
+ (1) ch 74
K

(1)
(K + AP) Y2 no(0)— Q2Y3 70(0) h
()

2Ky

OIS W
K + AP)94(0)~ @y My(0) . )
a ch 7z

2K

( _|_ /_\P) Y2 70(0)— Q2Y3 Q'O(O)

11

(239)  Ogfz) ="
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QM
(2.39) L& AP)BG(;H @, My(0) , O
| 2

. [cont.]

—

(1 O
(K — AP) Y2 m0(0)+ Q2Y3 g(0) . V)

sh Yoz
(D) !
2K7

4

(240)  My(z) = E= AP )Mo((%) Qs ©o(0) ,

_ 0

® @ W (

(Ilf — AP) ?(&5)3 q0(0)— Q.D,Y)z 770(0)

1)(1
2}{()

+

K+ Abyaoyr 9y 000)

1
(1)
(K + AP) Y3 qO(0)+ QaYz 0(0) _ (1)
72

.'.::._;'where z €< 0,l; > and

M M ) ()
- (241) B, (0) =22 ©0(0)— Zy3 Mo(0), By (0) =75 My(0)— Zo3 ©o(0).
If the state vector S(I;) at the dividing surface between the wall layers
‘1 and 2 is known, then the fields of the heat flux go(x — I;), moisture
- flux no(2x — ), temperature Oy(z —1;) and moisture potential My(z — )
. inlayer 2 x € {(h,l1 + l»), have (on the basis of Eq.(2.31)) the form

(2) (2)
K + AP)ny(l ! @
: (2.42) q0($ - ll) ( )"?0((;)) Q3 Q(}( I)Ch ’fl (il? _ ll)

(2) 2 @ (2 (2)

K + AP) B; (0)- Q3B @

+( ?) ?2)((2)) 35: (0 )°h Yi(z—1)
2K7
((12{) A(}J) L)+ Q (M) 4
+ o (;) 3 qolt1 (m _ 51)

2K
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(2.42)

[cont.]

(2.43)

(2.44)

(2.45)

W. DUDZIAK and R. UKLEJEWSKI

@ - AP B, 00+ 0.8 (0) . @
+ fz)(z) = s (o — ),
21{72
R = APygo() Oy o) . @
mo(z ~ 1) = %0 (;) 2, 9, (2 - 1y
2K
®R-27) B 0- 330, o
+ ?2)(2) sh Yy (e =)
2 K7
(2)
+ APl !
(K )qo((g anu( 1) - (@ — 1)
2K
2
R+ A Py ma P 0(0) . @
( ) 2?22)((21)) Q2 3q°()h'y (z —h),
2 K7
K+APG) l My(l
Ouz — 1) = ¢ )"((122 o o), D, (@ - 1)
2K
@ @ @
(K + AP) Yo no(l1)~ QzstIO(h) y
+ @) Tt
2 K71
(R - AP)ON1)+ @y Myl
+ 0(2) 2 My 9, (@ =0
2K
® = &) D, o1+ 0o ao(tr)
+ 2??((;)(;) 2 ¥ 3 golt1 h'r (z - 1),
2 K7,
(% ~ AP)ay(1)— Gy 00t
Mz — 1) = 0(21) 3 =0 luh’Y (z - 1)
2K
R - AP ¥ )= &Pa m@) . @
q
+ 3 212)(2) 3¥ 2 Toih sh ¥ (z — 1)
2K%

(2 (2)
+(K + AP)My(l1)+ Q3 90(11) ( I
O e-h)
2K
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2 (2
L R4 8k Praone @Paman , 0

(2.45) 00 (a: -1y,
[cont.] _ 2K%,
where z € {I1,11 + l3),

2) (2) {2)

B2(0) = Z90¢(l1)— Zog Mp(lh),
(2.46)

(2) 2) (2)
B.’:} (0) = Z3 Mg(ll) 223 @g(h)
The state vector S(I1) = [go(11), 10(11), ©o(l1), Mo (%1)]T may be calcu-
lated from Eq.(2.30) or from Eqs.(2.37)-(2.40) for z =1I; .
If we determine S(l;) from Eq.(2.30) and substitute it into £q.(2.31),
we obtain

@ W
(2.47) S(z) = [eAEW)[eAN]S(0), = € (Il + o).

The product of transmission matrices occurring in Eq.(2.47) may be
derived as follows:
(@) (2)
(248)  [eAIeRn] = [go (z — )1+ Eq? (x ~1) A+ 2 (2 — 1) A’
2) : b0 g O
P8 ) A (8 e 8 ) R+ B ) A%+ 8 Al

9 1 9 1 (1 9 1
- R E- )P WA+ - Ry D

(1) 1 @0 (2 (2)
R (@-n) A%+ 8 (a’:—h)()(11)AA+(92)($—11)A2

+ go (- 1) 93 (L) A+ 41 (= — 11) (51) AA

@q @)
+ @@ (zl) Aziﬁ + B @) P 1) A?
(1) ) W, @0

+91 (x=11) g3 (51) A + (w—h)gz (I)AA
(1) VI @ o),
+g3(w—h)g(l)AA+gz(fv—h) } (1) A’A
@ w00 @

+ 08 (z=0) 9 () APA2 + 5 (2 — 1) B3 (1) ABAS,

where 8,3 (- i =12, k=0,1,2,3, are given by Eq.(2.33). The
transmission equation (2.47) makes it directly possible to analyse the
“influence of the external climate conditions, represented by the state
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vector S(0), on the distribution of the temperature, moisture potential,
heat flux and moisture flux in the region of the internal layer of the
building wall (layer 2).

The formulae (2.37)-(2.40) and (2.42)—(2.45) constitute the solution
of the problem considered. They present the complex amplitudes of the
fields of heat flux, moisture flux, temperature and moisture potential,
describing the slow, linear and harmonic process of heat and moisture
transfer in a two-laver building wall; the instantaneous values of those
fields can be obtained on the basis of Eq.(2.6).

The solutions presented in the form of complex amplitudes allowed,
owing to Eq.(2.7), for the determination of the following insulation pro-
perties of building wall:

the attenuation factor of the temperature amplitude

_ eOm(Il + '!2) ,
(249) fe - eﬂm(o) )

the attenuation factor of the moisture potential amplitude

_ Mﬂm(ll + 12)

2.50 = ;
( ) Em M{)m(O)
the temperature phase shift
(2.51) Apo = po(lL +12) — pe(0);

and the moisture potential phase shift

(2.52) Apyr = pu(li + 12) — ou(0).
The insulation properties of the two-layer building wall depend on
the thermo-humiditive impedances (2.10)-(2.12) of both the layers.
The stresses induced in the building wall material during the process
of moisture thermodiffusion are the same in any direction, and, due to
physical relations (2.2), they have the form

(2.53) o®%(z,1) = —yrO(z, 1) - v.c(, 1),

where ©(z, t) is obtained from Eqs.(2.39), (2.44) and (2.6). The instan-
taneous values of the field humidity ¢(z,¢) within the building wall may
be obtained as follows:
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From the balance equation of mass we have

@254 e t)= —divy(s,t) = -—%n(m,t},
thus 5
(2.55) oz,?) = [ 5o =z, )ldt.
Using Eq.(2.6) we obtain
_ i d’?ﬁ(f‘:) it
(2.56) e(z,t) = Re {w Bl

The derivative of the moisture flux complex amplitude 7y(z) with
respect to z occurring in Eq.(2.56) may be calculated from FEgs.(2.38)
and (2.43), by taking into account that

%[chz()(w)] = shzy(z), a%[shz{)(:c)] = chzo(z),
where z(z) is an arbitrary complex function.

Since the stresses practically do not influence the process of heat and
moisture transfer occurring in the material [3], the formulae for the tem-
perature field ©(x,t} and the humidity field ¢(z, t) derived in the present
paper allowed to determine the stresses induced during the process of
moisture thermodiffusion in the wall (from Eq.(2.53)), independently of
the stress state resulting from the loading imposed on the wall boundary.
For example, if we assume for simplicity that the building wall material
can be freely deformed only in direction ®, whereas the possibility of
wall deformation in directions perpendicular to z is strongly restricted
(e.g. by the proper fastening of the wall to the building structure), then

(2.57)

G"11(',’1”" t) = (2,& + A)511(:’175 t)a(-),c(w’ t),
(2.58)
oz, t) = oz, t) = 09z, 1),

where 0®°(z, t) are given in Eq.(2.53), and the strain field £4;(z,t) may
be determined from Eqs.(2.9) and (2.6):

ey _ 'B'U(:r:,t) _ 1 due(z) ;.
(259) é‘n(.’E,t) = /Eu(.’b‘,t)dt = / ————a—&:————dt = Re [J_w 761 .
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3. FINAL REMARKS

In determining the thermo-humiditive characteristics of building
walls, coupling between the processes of heat and moisture transfer in
the wall material is usually not taken into account, and only the de-
pendence of heat conduction coefficients on humidity of the material
is accounted for {3]. The temperature and moisture potential fields in
the walls are usually determined from two uncoupled partial differential
equations of the type of Fourier’s heat conduction equation with variable
coefficients. This approach disregards the influence of the slow process
of moisture exchange on the temperature field within the wall.

The equations of the Podstriga¢ — Nowacki theory of thermodiffusion
in deformable solids, [1, 2] make it possible to treat both the coupled
processes as one thermo-humiditive process of moisture thermodiffusion
in the wall. In addition, equations of this theory make it possible to
determine the stresses induced during the moisture thermodiffusion in
the wall.

The solutions presented in this paper describe the process of moi-
sture thermodiffusion in a two-layer building wall occurring under slow
harmonic changes of thermo-humiditive environment parameters. An-
nual distribution of mean month’s values of external climate parameters
[3] is sinusoidal. The solutions have been presented in a manner which
enables them to be used for determining the insulation properties (ther-
mal and humiditive) in the general case of a n-layer building wall, under
the assumption that on the surfaces dividing of the wall the boundary
conditions of fourth kind are fulfilled (continuity of heat and moisture
fluxes, of temperature and of moisture potentials).

The methods used here are taken from the theory of electric trans-
imission lines and the theory of electric four-terminal (or 4n-terminal)
networks. They make it possible to obtain relatively simple formulae
for the analytic solutions, simpler than those obtained from the the-
ory of thermodiffusion by means of the traditional, integral transform
methods.

The engineering application of the solutions presented in the paper
depends on experimental determination of the numerical values of the
basic material constants: d, m, n, k, k for the moisture thermodiffu-
sion process, and the constants g, A, +r, 7. which are necessary for
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determining the stresses induced.

APPENDIX A

A.1.  Electrical analogies

Slow, linear process of moisture thermodiffusion in a one-layer buil-
ding wall described by the Egs.(2.1)—(2.5), corresponds to the system of
three magnetically coupled electric transmission lines, which is presen-
ted in Fig.2. Line 1 corresponds to the elastic deformation of the wall
material, line 2 — to the heat conduction, and line 3 — to the moisture
transfer.

; L Ax ; b
iy 6{3‘7 Lox .r,(x+£x, l ________ .

“1(0,0; "4y lot) 7 - }UJX*“XJ‘) j”vf’f”ﬂ‘)
LBAX/ L.rzdx _‘_IZU
@ qum,f) Tl,'z(x,f-) Gpdix Tuz(xm;r,f) |u2(x=1,1‘)
Lo LA f(x+A;f_) _______ T
% fa(xt) lastx £t )

u3(0,t); upt ] L8 (e *us(xmx,f) ?ug (x=l,t)
s
i Ax 1

f - A

Fig. 2. System of three electric transmission lines coupled magnetically — the electrical
analogue for a slow, one-dimensional process of thermodiffusion in elastic solids.

In Fig.2 u;, ug, us are the line voltages, iy, 4, 13 — the currents, L;,
Lo, Ly — the self-inductances per unit length, L1y, L13, Ly — the mutual
inductances per unit length, Gy, G3 — the self-conductances per unit
length.

The system of electric transmission lines presented in Fig.2 is de-
scribed by the following equations analogous to the Egs.(2.1)-(2.5) of
moisture thermodiffusion in building walls:

1 9(=t1) Ll +L13L23i Liy 9(—13)

' (Al) n= JLA - Ll Jx L1L3 2 L1L3 oz ’
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=) 33\ Lay0(—3)
Al ———= = (Ly— )i — ———,
([cont.; Oz ( 2. Ls )iz Ly Oz
. roa L. 10(=%s)
23—.]3 ——J;;“:;32+L3 Bz .

Here Ji, k = 1,2,3, is the current density in line k, A is the cross-
sectional area of each transmission line, i} is the magnetic flux associa-
ted with the corresponding line.

The following relationship holds true between the line voltage and
the associated magnetic flux:

A .
(A.2) w=5F k=123
Equations (A.1) are analogous to the physical relations of thermo-
diffusion (2.2).
On the ground of the Kirchhoff law [8] for the lines 2 and 3 we obtain
the equations

. 1 .
(A3) Uy = 1 332 823

TGy oz T TGy oa
which are analogous to the Eqgs.(2.3).
Substituting i3 from Eq.(A.1);3 into Eq.(A.3)2, we obtain the equation

1 3(=thy) Ly 0@y
L3G3 Oxz? L3G3 355’
which corresponds to Eq.(2.5).
The complete set of differential equations of thermodiffusion (2.1}

has the same form as the equations describing the electric system from
Fig.2

_Lag(‘“?zbl) _ LgLip + LigLyy Oip | Lng 3*( =)

L1 65[72 - L1L3 Jx L1L3 633'2 ’
(A.5) Iy 0%y _ Ioo(LeLs - L3;) Oiy  InoLyy 8(—us) _0
i G Ox? Ls ot Ly ot ’

1 9* 3(=y3) 2 O(—ys) + Lyy 0%y 0
L3G3 8372 a.’E 8t BLE L3G3 83:2 o
Comparison of the analogous sets of equations yields the following
relations:

ow  O(—
(A6) oueJi, en= 3 & (afl)

ow
3 v = 5{ — (“‘ul)a
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A(—1b2)
R

_ (—
M — Jy, ce (a—:;bs): L (_u‘3)a

which constitute the system of electro-elasto-thermodiffusive analogies

[5]-

A.2. Electric transmission lines under sinusoidal excitation

Consider the system shown in Fig.2 with the sinusoidal current exci-
tation. The instantaneous values of the hne voltages and currents are
given by

ur(z,t) = Re[Ui(zx)e™],
(A7)

ir(z,t) = Re[li(z)e™], k=1,2,3.
where Uy(z), I;(z) are the complex amplitudes of voltages and currents,
respectively, j = +/—1 is the imaginary unit and w is the angular frequ-
ency.

The system of electric transmission lines from Fig.2 is described by

the following equations [8, 9]

' C8(—w) L 0 diy di3 Biy
(48) o Ligy + Ly + Lugys 3, =0,
g —Ug _ 332 81,3 31:2 .
A9 5 = b e o =
O(~ug) iy iy iy
(AlO) e = —Lgg— EY + Lg—- e 5:; = —{Fzus

If we introduce (A.7) into Eqgs.(A.8)—(A.10}, we obtain the following
set of equations for the complex impedances

d(-U . . . dI
(A.11) _(551_) =790+ 295 + 291, d—; =0,
~Uy(z) 0 0 Zée(’) - (é)? ' _Uy(a)
(A.12) i '—U3(ﬂ’:) - 0 0 ‘—‘Z2§ Zae —U3(.’E)
dz | Inz) Y® o o0 o Liz) |’

Ig(:v) 0 Yé(e) 0 0 Ig(ﬂ&')
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where

Z = jwL, 2§ =jwls, 2 =jwLs,
(A13) 28 = jwLy,, Z8=jwLly, Y =Gy,
Z?EE) = j""JL3) 1/'3=G31

are the complex impedances.

Multiplying both sides of equations (A.11) and (A.12) by €' and
taking their real parts, we obtain equations (A.8)—(A.10) in which the
instantaneous values of voltages and currents are given by (A.7).

Equation (A.12) is called the homogenous state equation and can be
written in the form

(A.14) dS(z)

dx
where S(z) = [-Us(z), —Us(z), Io(z), I3(z)}]" is the state vector, and A
is the matrix of the system.

The solution of Eq.(A.14) is given by the following formula

(4.15) S(x) = [*]5(0),

= AS(a),

where S(0) is the state vector on the input of the system, e is the
so-called transmission matrix (or transition matrix) [7-10].

Thus, solution of the state equation (A.14) is reduced to the deter-
mination of the transmission matrix eA®. That matrix can be defined
by the following power series |7, 8]

Eoad

Az o (Aﬂ?)
(A.16) A=y

The series is absolutely convergent for every finite value of z [10).

Any convergent power series of a matrix of order m can be presented
in a form of the uniquely determined polynomial of order m — 1 of this
matrix {10] (to prove this theorem the Cayley-Hamilton theorem must
be used). Thus, for m = 4 we have

(AIT) A = gl +gA+ 92A2 + ggAs,r

where g, g1, g2, g3 are the coeflicients of the so-called generating poly-
nomial g(s) of a complex variable s '

(A.18) 9(s) = go + g15 + g25” + gss°.
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II.‘he following conditions are fulfilled:

o) —eM® = 0, k=1,23,4,
(A.19)
gf(A)—eM = 0,

where )\ are the eigenvalues of matrix A, and
(A.20) Al = i’rl, Azq = £,
where

T1o= m, Yo = \/}:}——K,
(A.21) P = @, K = (AP} + @2,
B ; P3a Q* = Q2Qs,
P=20%0, R=ZYP, =Yz, &=%"73

The existence of solution of the set (A.19) requires the main determinant
of the set to vanish,

AP =

n on oA
-n v -1 e
v M W |=0
-7 7 =73 e
A A2 A} eAs

(A.22)

e B R

Developing the determinant {A.22) with respect its last column, we ob-
tain

h h hy;z — ch _
(A.23) eh® = [ SInG St }A*"HL—MC Ne — CNT A2
(i =) rli-—) v — 7
Tishysw vashmim Yichyz — yichnz
p) N 2 2 A 2 7 1.
Yolvf —v8) v —v) Y — 7

Knowing the transmission matrix e** we can determine from Eq.
(A.15) the components of the state vector S(z) representing the solution
of equation (A.14).

If the analogies (A.6) are used to express the components of the state
vector S(z) in terms of the quantities describing the process of moisture

“thermodiffusion, i.e.
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S(z) = [qo(z), m(z), Oo(z), Mo(2)]" (see Eq.(2.22)), and the matrix
A in terms of the thermo-humiditive impedances (2.10)-(2.13), we ob-
tain the solution of the state equation (2.8) in form of the formulae
(2.37)-(2.40).

A.3. A maultilayer building wall and the chain connection of four-
terminal electric networks

, n ) {2
i 4 et L
——— e —— — YY L o— VY :
Uy(ﬂ,f)[ : 1!1,, (i,E) / ¢u1(11+;'2,t)
. f/ I f
i1} ) {2} ) 1
[13 L12 Lﬁ / l".2‘3

— 7 7y~ 72 ~iai
b (t) \‘iz G£ [t L G,
RN ] @)

B éffﬁ,’ " \”Lzs t‘LZa

z{?m;r)p T @?,;T“‘L sl Jﬁ:@zf?:
}_ y | b l
=1

i

u,(G1) {

v, J—

115}‘?—7.'1“

.r"'—ﬂ-q_.

Fig. 3. FElectrical model for heat and moisture transfer in a two-layer building wall — the
chain connection of two systems of coupled electric transmission lines; Iy, I — line length of 1
(or 2) system, corresponding to wall layers thicknesses.

In Fig.3 the electric analogue for a slow process of moisture thermo-
diffusion in a two-layer building wall is shown.

The heat conduction and moisture transfer in building walls are
coupled processes and, therefore, the transmission lines 2 and 3 of two
systems of transmission lines (Fig.3) are magnetically coupled, within
each of these two systems. Lines 2 and 3 of the first system, as well as
those of the second system, may be replaced by a 8-terminal network,
i.e. by an element of four input terminals and four output terminals (see
Fig.3). .

The stress state of wall material does not practically influence the
process of moisture thermodiffusion in the building wall [3); thus, in
the electric diagram in Fig.3, the influence of the electromagnetic field
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of line 1 on lines 2 and 3 is disregarded. On the other hand, the in-
fluence of electromagnetic fields of lines 2 and 3 on the line 1 is taken
into account; it corresponds to the stress induction during the moisture
thermodiffusion in the wall.

The 8-terminal electric network equivalent to the transmission lines 2
and 3 of each of the systems of transmission lines in Fig.3 is a particular
case of a 4n-terminal network [8, 9], Fig.4.

a
input output

i
U,§ 1 13 b
4n-terminal

I I
network m ou
L i { i B i Umi A i . IUBU
u, 2 n n - i

Fig. 4. 4n-terminal network diagrams: a) general diagram with terminal pairs, b) equivalent
four-terminal network with matrix parameters.

Since any 4n-terminal can be replaced by a four-terminal network
with matrix parameters A, B, C,D (Fig.4b), we present here the results
of the four-terminal electric networks theory, which are valid also in the
general case of 4n-terminal networks.

The chain connection of four-terminal networks is a connection in
which the output terminals of one four-terminal network are connected
to the input terminals of the next four-terminal network.

Consider the chain connection of three electric four-terminal net-
works described by the following transmission equations:

_U?‘_ _ -Ul-
_I2_.—aI_I]__,

’ -Ug- . —UQ-

(A.24) i 1—3 ] - a2 ] 1'2 ] ?
R _ Us |

-I4- —_— 3-1.3.-.

In the transmission equations (A.24) the output voltages and cur-
rents of each of the four-terminal networks are expressed in terms of the
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input voltages and currents, and by means of the so-called transmis-
sion matrices a;, ag, ag representing the transmission properties of the
four-terminal networks.

After substitutions we obtain from Eqgs.(A.24)

(A.25) [%}zaf,azal[%].

The transmission equation of an equivalent four-terminal network
replacing the chain connection considered is given by

Ui _ | D
o @) _[a)
From the comparison of Eqgs.(A.25) and (A.26) it follows that

(A.27) : a = ag ag a.

For a chain connection including n four-terminal networks characte-
rized by the transmission matrices a, as, ..., a,, the transmission matrix
of the equivalent four-terminal network is given by

(A.28) a=a,a,_i .. a.

It follows that the transmission matrix of the chain connection of
a number of four-terminal networks is equal to the product of their
transmission matrices. The sequence of transmission matrices in the
product (A.28) is reversed as compared to the sequence of four-terminal
networks in a chain connection, what is important since the matrix
product is, in general, non-commutative (a; a; # asa;) .
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STRESZCZENIE

PRZENOQOSZENIE CIEPLA [ WILGOCI W DWUWARSTWOWEJ PRZEGRODZIE
BUDOWLANEJ PRZY ZMIENIATACYCH SI¥ SINUSOIDALNIE I QUASI-STATYCZNIE
WARUNKACH TERMICZNYCH I WILGOTNOSCIOWYCH OTOCZENIA, NA
PODSTAWIE TEORIL TERMODYFUZJI W CIALACH STALYCH

Do opisu proceséw cleplno-wilgotnodciowych w zewnegtrznych przegrodach budowlanych
zastosowano teorig termodyfuzji w cialach stalych, odksztalcalnych sprezyécie, ktora umozliwia
uwzglednienie wzajemnego sprzeZenia proceséw przeplywu ciepla i przenikania wilgoci oraz

wyznaczenie naprezefl powstajacych w wyniku tych proceséw w przegrodzie. Przedstawiono

/
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rozwiazania réwnafi opisujacych liniowy, quasi-statyczny i sinusoidalny proces termodyfu-
zji wilgoci w dwuwarstwowej (i ogélnie w n—warstwowej) przegrodzie budowlanej. Otrzy-
mane rozwiazania maja znaczenie dla obliczen cieplno-wilgotnoéciowych przegréd budowla-
nych, obejmujacych okres 1 roku ($redniomiesigczne wartosei parametréw klimatu zewnetrznego
rozkladaja si¢ w ciagu roku sinusoidalnie). Metoda rozwiazania réwnan oraz niekidre wprowa-
dzone pojecia pochodza, z tearii elektrycznych linii przesylowych.

PeanomMe

TEIUIONIEPEHOC U BATOIIEPEHOC B J{BYXCIOKCTOU CTPOUTEILHON
NMPETPAJE TIPM U3MEHAKLIIMXCS CHHYCOMAJIBHO U KBA3UCTATUYECKHU
TEPMWYECKHMX U BIAYKHOCTHBIX YCIIOBUAX OKPYJKAIOIIEN CPEALI HA
OCHOBE TEOPWUU TEPMOIHUPDY3UN B TEEPILIX TEJIAX

Jlna onucaH#d TepMO-BIaXKHOCTHBIX NPONECCOB, BO BHEIIHEIX CTPOKTENLHEIX IPErpa-
[aX, IpAMeHeHa Teopud TepMonuddyszn B TBepOnix, yupyro OedhopMupyeMsIX Telax, Ko-
TOpaA JaeT BOSMOMCHOCTL YUETa BIAMMHOTO CONPIAKEHAN IPOIeCccop TeNA0NepeHoca u Ipo-
HEKAHHA BAAYKHOCTH, 3 TaK)Ke ONpeleseHAA HaNDAKeHUH, BOSHUKAWIIHX B peaylNhTaTe
3THX mpoueccos B uperpane. JIpeacrapnensl penlenus YNpaABHEHHH, ONNUCLIBAIOMEX IHHEN-
HEILl, KBasSHCTaTHYECKNH H CHHEYCOMAANLHEIN Ipoliece TepMoasihEI3MN BAaKHOCTH B ABYX-
cnorcroll {4 obngam 06pasoM B r-COMCTOI} CTPONTENLHOI Tperpase. Ilonyvennkie peme-
HHUA HMEXT 3HaYeHHe IS TePMO—BIa’KHOCTHEIX PACYETOB CTPOUTENBHEIX [perpan, OXBa-
TRIBAIOINYX MePUOJ, ONHOBO rofa (CpeHeMeca HEIe 3HAYEHRA [1apaMeTPOB DHENIHEro KIE-
MaT3a pacnpeleldioTCA B TedeHre Fofia CHHyconansHEM o6pasom). MeToy pelenns ypasHe-
HHH ¥ HeKOTOPEIE BeeHLIe NOHATAL IPOUCKXONAT B3 TEOPAN NeKTPHYEeCKUY JIUHRTE mepe-
Oa4d.
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