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INFLUENCE OF BOUNDARY CONDITIONS ON DAMPING
PROPERTIES OF FLUID-SATURATED POROUS MATERIALS

SJ. KOWALSKI andT. SWIDERSKI (POZNAN)

The object of this paper is the analysis of damping properties of elastic porous media
filled with a viscous fluid and, in particular, examination of the influence of boundary
conditions and material constants of the medium on the effect of damping. The problem
is illnstrated by an example of damped vibrations of a fluid-saturated porous cylinder. The
attention is concentrated on the analysis of the damping coefficient and the dependence
of this coefficient on the boundary conditions and the material constants. The examples
analysed show that there exists a broad possibility of controlling this coefficient by a
suitable choice of the material constants and the boundary conditions.

1. INTRODUCTION

. Mechanical properties of fluid-saturated porous materials depend not
only on physical properties of the components but also on the structure
of porous material. It was ascertained in Ref. [1], where vibrations of a
fluid-saturated porous cylinder were analysed, that the damping of vibra-
tions depends not only on Darcy constant which for a given medium is a
function of the fluid viscosity, permeability, and porosity, but also on the
boundary conditions which stimulate the pore pressure and the amplitude
of fluid displacement with respect to the skeleton.

The main aim of this paper is just a broader analysis of the influence of
boundary conditions on damped vibrations of a cylinder consisting of porous
elastic solid filled with a viscous fluid. We concentrate our attention on two
kinds of boundary conditions: firstly, the stress in fluid on the boundary
is assumed to be constant, and secondly, the value of this stress is varied
proportionally to the value of the fluid displacement on the boundary.

The solution for vibrations of fluid-saturated porous cylinder is performed

- here, similarly as in Ref. [1}, in the form of a series expanded with respect

to two different sets of eigenfunctions. The duality of the eigenfunctions

- results from the biwave character of equations of motion.

Generally, each harmonic component of vibrations (mode shape) is char-
acterized by its own damping coefficient. Only in the case of free vibrations
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with free boundary surfaces, the damping coefficient is common for all mode
shapes of the first set of eigenvalues and common for all mode shapes of the
second set of eigenvalues but, generally, different for these two sets.

The efficiency of damping of the first six mode shapes for each set of
eigenvalues, being a function of pore pressure and the amplitude of fluid
displacement that are directly influenced by the boundary condition, is ex-
amined. The analysis was carried out for various combinations of the ma-
terial constants. The results obtained have shown that the mode shapes
of slow vibrations, i.e. for the first set of eigenvalues, are generally more
strongly damped than those for the fast vibrations, i.e. for the second set
of eigenvalues, but there is a possibility of such a selection of the boundary
values and the material constants that the relations become reversed.

2. FUNDAMENTAL EQUATIONS

The objective of the study are the damping properties of an elastic porous
medium filled with viscous fluid and, in particular, some possibilities of con-
trol of these properties through adequate selection of the boundary condi-
tions and constants of the medium.

It was ascertained in Ref. [1], where the vibrations of a porous cylinder
filled with a viscous fluid were analysed, that the damping of vibrations
depends not only on the parameter called the damping coefficient (Darcy
constant) but it depends also on other parameters resulting from the ad-
equate realization of boundary conditions and suitable choice of material
constants. In this paper, we have focused our attention on these parame-
ters.

The general solution for the vibrations of fluid-saturated porous cylinder
has the following form {1]:

w(, ) = Y [UD@TOE + U@,
(2.1) ~
ylzt) = 3 [URE@TO + U@,
n=1
where u, and u; are the displacement of the skeleton, and of the fluid in

pores, respectively. Eigenfunctons for the skeleton ,E}) related to the slow

vibrations (first set of eigenvalues) and US? related to the fast vibrations
(second set of eigenvalues), and the corresponding eigenfunctions for the

fluid U}:;,) and U }i) have the forms
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016 = a8 e (1) o] + 8 [(-187/)
A9 e [(100e) o] 4 AB o [(-1070) o],
04000 = 0 (A e (1) ] A (-1 ]
i {48 exp [ (19 er) ] + A exp [(1080,) o]}
for k =1,2, where
& = —(1-cifad)a,  b2=-(1-cifal)]m,

(2.2)

2, = 0.5{a? +a} - [(a? — a})? + 4a10302a3]"%},
(2.3) e = 05{a+ a,} +[(a? - a§)2 + 4a1a2a§a§]0'5},
az (2N + A)/Ps: ﬂ_2f = R/pf,

a = Q/2N+A4), a=Q/R.

Here N, A, R, @ denote the material constants of a fluid-saturated porous
medium, introduced to the theory in Ref. {4], p, and p; stand for the partial
mass densities for the skeleton and fluid, and quantities ¢,, and ¢; are called
the slow wave velocity and the fast wave velocity, respectively. Eigenvalues

w.,(ll) and w,(;") are the n-th natural frequencies of vibrations of the slow wave
(first set of eigenvalues) and of the fast wave (second set of eigenvalues),
respectively. Letter ¢ in Eq. (2.2) denotes the imaginary unit.

Eigenfunctions have to satisfy the orthogonality condition of the form
1, 2]

h
24) [ - o] [ [pUB@)U) + 02U ()] do
1]

+{[eV + AT @)+ QU ()] U@ + [QUH (@)

+RUY @) U0 @) - [@0 + AU () + QU (@) B )

- [@u (=) + RUY ()] U (=)} '

where k,l=1,2;n,m =1,2,3..., primes over the symbols denote ordi-
nary derivatives, and h is the height of the porous cylinder.

A generalized coordinate T,gk)(t) results from the solution of the following
differential equation, [1]:
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(25) T @) + 2P T (@) + e L) = 0,
in which
(2.6) 260 = bHM (M),

stands exactly for the damping coefficient of the n-th mode shape. This is
the quantity which is examined here with great care. The constant b which
occurs in Eq. (2.6), is sometimes called the Darcy constant. This constant
depends on the fluid viscosity p, on the porosity f, and on the permeability,
k:

(2.7) b=pflk.

However, we are interested first and foremost in the influence of the param-

eters H’,(lk) and M,(tk) on the damping coefficient of the n-th mode shape.
The first one is a function of square of the amplitude of the relative fluid
displacement, [1]:

h
(2.8) HP = j 08 (@) - UB ()] da.
{

The second one expresses a generalized mass per unit area of the cylinder
cross-section and it results from the orthogonality condition for the given
boundary conditions.

Since the shape of eigenfunciions depends on the boundary conditions,

we can say that both H,(,,k) and M,g,k) depend indirectly also on the boundary
conditions. ‘

We have examined the parameter H,(Ik) /MT(,,k) termed here ”coefficient
amplifying the damping effect” for the examples presented below.

3. 'REE VIBRATIONS OF THE FLUID-SATURATED POROUS CYLINDER

First, we shall analyse the damping coefficient (2.6) for the simplest case,
i.e. for the free vibration of the unloaded cylinder (Fig. 1). The boundary
conditions in this case are as follows:

os(h,t) 0,

oih,ty = 0
3.1) f(h, 1}

us(0,t}) = 0,

’u,_f((],t) = 0,

where o, and o; denote here the axial forces in the cylinder, which are
transmitted by the skeleton and by the fluid, respectively, related to the
total cross-sectional area Ag of the cylinder.
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x4

4. Skeleton
Fluid

; The relationships between stresses and derivatives of the displacements
i for the one-dimensional problem are as follows:

: o5 = (2N + Alu; . + Quysy,
32) { Yoz + Quy,
o = Quap+ Ruy,.

- Two sets of eigenvalues (natural frequencies) are obtained for the given
¢ boundary conditions, [3]:

W = (20— 1)Ile,/2h,
- (3.3)
Ww® = (2n - 1)lc,/2h.

The eigenfunctions for these boundary conditions are, [3],
ey TRE) = Coineaje),  UR@) = Csinefze)
U(i)(m) = Céysin(wWz/ey), U(i)(w) = Céysin(wPz/e,),

- where C is an arbitrary constant (here C' = 1 was assumed). The orthogo-
- nality condition for the above boundary conditions is reduced to

i h
- (35) [ 10808 + 0,0 @U@ do

!

] 0 for k#l or n#m,
T MP for k=1 and n=m,

" where
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h
k
(3.6) M® = [ [p.0R @) + 0,0} @)7) do.
0
Substituting the above eigenfunctions to the formulae (2.8) and (3.6),

one obtains the following coefficients amplifying the damping effect for the
slow vibrations:

(3.7) HM MM = (1 - 6:)*/(ps + p16}),
and for the fast vibrations:
(3.7 HOMPD = (1 - 62)*(ps + ps63)

for the n-th mode shape.
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Figure 2 illustrates the dependence of H,(,k) /M,(Lk) on various values. of
material constants, 2N + A, R, ). Parameter 2N + A represents the elastic
modulus of the porous solid, parameter () expresses the dilatation coupling
between the skeleton and the fluid, and parameter R characterizes the vol-
ume changes of the fluid. A detailed interpretation of these constants is
given by BroT and WitLis [5]. The values of these constants were varied in.
a theoretically possible range in our numerical calculations.
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It can be seen from Fig.2 that a suitable choice of the material constants
changes the value of coefficient H,(lk) /M,Sk) in a wide range. Particularly sen-

sitivite to the changes of the constants is the coeflicient oY /M,(Lz) connected
with the fast vibrations.

4. VIBRATIONS OF THE FLUID-SATURATED POROUS CYLINDER, IN WHICH
THE PORE PRESSURE AND THE FLUID DISPLACEMENT ARE
STIMULATED BY A SPRING

xh

<=~ Spring

. Skelefon

| Fluid

7
FiG. 3.

In order to illustrate how the boundary conditions influence the damp-
ing effect, we have considered a case in which the pressure as well as the
amplitude of the fluid displacement on the boundary surface are stimulated
by a spring characterized by constant k (Fig.3), called spring rate.

The boundary conditions for this case take the form

os(h,t) = 0,
A h,ty = kug(h,t),
(4.1) 00¢(h,1) ug(h,t)
us(0,8) = 0, i
uf((},t) = 0

The eigenvalues are determined from the characteristic equation
(4.2) sCsCww'®) (82 — 61) cos al¥) cos Q)
+k(es cos ol sin ﬁ,(lk) — ¢y c0s B in aﬂ‘)) /Ao = 0.

The eigenfunctions corresponding to the particular mode shapes are ex-
pressed by trigonometric functions
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UP@) = CPsin(wPz/ew) + DV sin(wPa/e.)],

(4.3)

U(’;}(m) = CWI(s; sin(wlFefey) + 8, DF sin(w,(,k)a:/c_,)],
where

DE = —(ps + psbr)ew vos BB [(ps + pyéa)es cos o)),
(4.4)

o® = oPhfe, AP =wPh/ey.

C,Sk) is an arbitrary constant (here it is assumed that C,,(,,k) = 1).
The orthogonality condition for the above eigenfunctions is the same as
that in the previous section, i.e. it has the form Eq. (3.5). :

The explicit form of expressions H,(lk) and M,Ek) is the following:

HF) = (1 = 6,)%(h/2 — sin B8¥) cos BIF))
+(sin a,(f) cos ﬁg‘) [y — sin ﬁ,(,,k) cos Of,(r,,k)/ €s)
x(1 = 1)(1 = 82)e2eE, DM [[wlP)(c], - )]

+(1 - 82)2(h/2 ~ sinal®) cos o piR2)

(4.5)
M) = (p, + py62)(h/2 — sin AP cos A1)

+(sina® cos B9 fe — sin p) cos ol )
. X(P_., + pf(sl62)636121;1)9)/[(")'9}(6?0 - Cg)]
+(pu + prE)(h/2 — sina® cos ad) D2,

The dependence of ihe coefficient amplifying the damping effect ng,,k) Jb=

i /M,(,,k) for the n-th mode shape on the value of the spring rate k for
different combinations of the material constants 2N + A, @, R is presented in
Fig.4. The coeflicients amplifying the damping effect of the slow vibrations
are represented by the solid line 1, and those amplifying the damping effect
of the fast vibrations by the dashed line 2. It is seen from the graphs that all
mode shapes belonging to various sets are damped with the same intensity.
Only the mode shapes related to the fast vibrations are sensitive to the
changes of the spring rate. In general, the modes of the slow vibrations
are damped more strongly. However, certain combinations of the material
constants may lead to a situation when the slow vibrations are damped less
intensively than the fast ones.
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5. VIBRATIONS OF THE POROUS CYLINDER WITH THE RIGID MASS
STIMULATING THE PORE PRESSURE

7

-~

N

FIG. 5.

Let us now present an analysis of the coefficient amplifying the damping
effect for the fluid-saturated porous cylinder, the base of which is kept fixed -
while the top is loaded by two concentrated masses: one mass in placed on
the skeleton, and the second one on the fluid (Fig. 5). We assume that mass
M, is constant and it represents the mass of a technical device resting on the
porous cylinder. The porous cylinder plays here the role of a vibroisolator.
The mass M; is to be changed here and its role is to stimulate the pore
pressure.

The idea of stimulating the pore pressure may be realized also in another,
quite different way. Our idea serves only as an example. The boundary
conditions for the vibro-isolator presented above are the following:

Agos(h,t) = —Mits(h,t),

Aooy(h,t) = —Myiig(h,t),

(5.1) 0o s(h,t) siig(h, )
“3(07t) = 0,
'u,f(O,t) = 0.

For the above boundary conditions the eigenfunctions take the form
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Uk = ps[Cng? sinaff}a:/h-csﬂgi) sin )z /h,

(5.2)

U}ﬁ) = ps[ﬁgcwﬂgﬁ}sinaf)m/h - 61c39g}2 sin 8 /h).
where
(5.3) Qﬂ? ‘= 0§ ﬂ,‘f‘) - msﬁff) sin ,8,(1’“),

Qg’;) = cosal® — m{® ok sin o{F),

The orthogonality condition for these eigenfunctions is expressed as fol-
lows:

h
G [ U@ + U @)U do
0
+h [psm, UE (RUD(R) + p s 0B ()T O ()]

_ 0 for n#£m or k#I,
- M,ﬁ“ for n=m and k=1,

where
h
65 MP = [[nOBE) + U )] de
0
+h [pma (U B + pymy (URI(R))Y
and
(5.6) m, = Ms/pshAo, my = Ms/pshAg.

The natural frequencies w$ results from the characteristic equation of
the form [1}

(5.7) (82 — 61)(cos a cos # + mym s sin a sin )
= (62m; — f1my)asinacos f + (6amy — 6ym,)Bsin f cos o,
where o = wh/c;,8 = whfey.

Two sets of natural frequencies {eigenvalues) follow from this equation,

namely: w,,(ll), which belong to the set of slow frequencies, and wf(?), which
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belong to the set of fast frequencies. These frequencies depend, among
others, on the ratio My/M,, which can be easily controlled. For example,
for My /M, = 0.1, the first six frequencies from each group take the following
values:

{w} = {15.04,229.03,454.67, 681.06,907.63,1134.28},

(W} = {22.93,483.71,966.64,1449.74,1932.89, 2416.06}.

After substituting the eigenfunctions (5.2} to formulae (2.8) and (5.5) de-
termining A and M,(lk), and integrating, we obtain the explicit forms of

these quantities:
(5.8) HY = 0501 - 8)% [(cos B — m, B sin g2
x(1 —sin of®) cos af¥) fal)) — 2(1 - 8,)(1 + ﬁl)cscg
X [cos B} — mB% sin B (cos al¥) — m,al¥) sin o))
x (8% sin al®) cos ) — alF} sin B cos alF))]
+0.5(1 + 8;)%c2[(cos o) — m,a) sin aff)
x(1 — sin A0 cos B /L)),

(5.9) M = (ot prtd)l(cos B = miBP sin B,
' x0.5(1 — sin o) cos of®) 1alF)] + [(cos afF) — m,al¥) sin alfh)
x (B sin o) cos ) — alF) sin B cos o))
x2(cos F) — m, sin BN e ey /(alB? — 8L
X(ps + pg6182) + (pa + ps67)
x[(cos al¥) — m,al¥) sin ol¥))c20.5(1 — sin B cos g /5]
+(cos Bk msﬁff) sin ﬁq(lk))chu(psms + pymyséd) sin? al¥)
—2{cos gl msBE) sin BI)Y(cos aF) — myalf) sin alh
Xesew(psts + ppmpdydy) sin o) cos gi4)
+(cos alF) — myal® sin alY2c2(p,m, + pym;67)sin? ﬂg“).
Figure 6 illustrates the dependence of the coeflicient 2% fb= 7P / mP
of the n-th mode shape on the ratio My /M, for different combinations of the -

material constants. The solid lines are related to the coeflicients H. ,2” /M,g,l},

and the dashed lines to H. T(LQ) / M,(IZ).

As it is seen in the above figure, practically only two first modes are influ-
enced by the changes of parameter My/M,, i.e. by the changes of the pore
pressure. The damping coefficient of the higher order modes is insensitive
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to the changes of My/M,. Its values are different for modes belonging to
the first and the second sets. If we change the combinations of the material
constants, we can influence the value of the coefficient amplifying the damp-
ing effect, similarly to the previous example. The situation when the slow
vibrations are damped less than the fast vibrations is also possible but, in
general, the opposite is true, what can be seen from the figures.

6. REMARKS

The fundamental purpose of this paper was to study the influence of
boundary conditions on the damping effect of fluid-saturated porous mate-
rials which can be used for construction of vibroisclators or dampers. There-
fore we have concentrated our attention on nothing else but the analysis of
the coefficient expressed by formula (2.6) only. We have not analysed the
vibrations alone. The solutions for the damped vibrations were already pre-
sented in Ref. [1], but without such a detailed analysis of the damping
coefficient as that done in this paper.

On the basis of our considerations carried out here, we know now that
we change the damping effect not only trough changes of the constant b,
i.e. trough a suitable choice of the porous material and the fluid filling
the pores, but also through proper realization of the boundary conditions.
The boundary conditions enable us to stimulate the pore pressure and the
amplitude of the relative fluid displacement.

A stronger damping of slow vibrations can be explained by the fact that
the amplitude of the relative fluid displacement for this kind of vibrations
is greater than for the fast vibrations. This becomes obvious when the
eigenfunctions are analysed in particular the simple eigenfunctions (3.4),
which show us that the particles of the skeleton and the fluid performing

slow vibrations move in opposite directions, i.e. U > 0 and U}i) <0, or

inversely. This does not occur for fast vibrations, when 3(,2,) and U}? are
always of the same sign, except maybe for practically unrealistic cases. This
gives, in fact, a large amplitude of both the relative displacement and the
velocity of the fluid for the first sets of eigenfunctions. Let us observe now
that when we multiply the numerator and the denominator of the parameter

Jia% / M,(,,k) by the square velocity of the generalized coordinate (T}E“’)% then
this parameter expresses the square of the relative velocity for the n-th mode
shape integrated along the length of the cylinder and related to the average
kinetic energy of the cylinder.

The parameter H. (k) (T,E’“))ﬁ /M,ﬁ"’(T,S,’“’) =gl® /Mf(ak) can be then consid-
ered as a measure of the dissipation energy for the n-th mode of vibrations,
since the dissipation energy is proportional to the square of the relative
velocity (see e.g. [4]). So, an increase of the amplitude of the relative ve-
locity causes an increase of the dissipated energy, and thus the damping is
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stronger. The effect of such a strong damping does not occur in the case
of fast vibrations, where the particles move always in the same directions,
what was ascertained on the basis of the eigenfunctions. In this case the
velocity amplitudes are smaller, and, of course, the damping is also smaller.

The analysis of vibrations is difficult due to the fact that the sclution of
equation (2.5) in generalized coordinates takes three different forms, depend-

ing on the relation between the damping coefficient b,(f) and the frequency

wﬁk). For bik) > w,(;k) the damping is overcritical, for bﬂ“’ = w,(zk)

for b%) < w,(f‘) subcritical.
It may happen, for example, that the first two modes are damped sub-
critically, when the next ones — overcritically. We have to verify the relation

between b,(nk) and w,(,,k) for each mode. Of course, application of the computer

techniques makes this verification simple. This technique has been already
used in Ref. [1].

This paper has been aimed at presenting only a few examples illustrating
the influence of boundary condition on the damping effect of fluid-saturated
porous materials. It has been shown here that the influence is different
for different material constants and boundary values. It follows that in
real dampers or vibro-isolators one should seek for optimal values of both
the material constants and the boundary values under the given boundary
~ conditions.

critical, and
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STRESZCZENIE

NIEKONWENCJONALNE STEROWANIE WLASNOSCIAMI TEUMIACYMI
MATERIALOW POROWATYCH WYPELNIONYCH CIECZA

Przedmiotem pracy sa wlasnosci tlumiace sprezystego osrodka parowatego wypelnione-
go ciecza lepka, a w szczegdlnosci niekonwencjonalne mozliwosci sterowania tymi wlasnoé-
ciami przez odpowiedni dobor warunkéw brzegowych i stalych oérodka. Zagadnienie to zi-
lustrowano na przykladzie drgari porowatego walca wypelnionego ciecza, przy czym uwage
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skupiono na analizie tylko wspdlczynnika tlumienia i jego zaleznoéci od warunkéw brzego-
wych 1 stalych materialowych bez analizowania samych drgai. Na przykladach pokazano,
#e istnieja duze mogliwodci sterowania tym wspdlczynnikiem zaréwno przez odpowiedni
dobdr stalych materialowych, jak i warunkéw brzegowych.

PE3IOME

HEKOHBEHLUMOHANBHOE YTIPABJEHUE 3ATYXAIOHIMMU CBOVICTBAMHU
TMIOPUCTBIX MATEPHANOB 3AITOJHEHHBIX SKUAKOCTBHHO

IMpenmerom pabornl ABNAIOTEA IBTYXAKWIHNe CBOHETBa ynpyrol mopucToil cpeiH,
3ANOJHEARON BAIKON XEAKOCTHIC, 3 B Y4CTHOCTH HEKOHBEHIHOHAILHEIE BOSMOM HOCTH
ynpaBACHNA PTUMHE CBONCTBAMN NYTEM COOTBETCTRYIOIEr0 HOR00PA FPAHHYHEIX YEI0-
BHH ¥ NOCTOSHHLIX cpemnl. ITOT BONpOC HAIOCTPHpyeTcd HA NpAMepe Konebamumi
TOPHCTOro MKHANHADPA, 3AHONHEHHOT0 XKUAKOCTEIO, HPHYEM BHEMAHHE COCPEAOTOMYEHO
Ha aNHAJIH3Ee TOABKO KosduumeHTa 3ATYXAHHS M ero 3ABACHMOCTH OT PFPAHMYHBIX
yenopui ¥ MATEePHAALHLIX NOCTOAHHEIX, Ge3 aHAAH3A caMuX KoneGanni. Ha npumepax
TNOKA&3aHO, YTO CYULeCTBYIOT GONbIle BOIMONCHOCTH YO PaRNeHHA 5TUM Kosddunuentom
Tax DyTeM COOTBETCTRYWIIEro noAbopa MATEPHANBHEIX HOCTOSHHBIX, KAX W FPaHWY-
HBIX ycaoeui. :
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