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APPROXIMATYE, ANALYTIC SOLUTION FOR THE COMPRESSION
AND TORSION PROCESS IN THE SPLIT HOPKINSON
PRESSURE BAR

JZ. MALINOWSKI (WARSZAWA)

Simplified analysis of the process of dynamical compression and torsion in the system
of the Split Hopkinsen Pressure Bar (SHPB) is presented. Bilinear relation of stress to
strain, o(e), for the specimen material and time-independence of the incident pulse g, ()
= const has been assumed in the solution. In the compression process the effect of friction
between the specimen and the rods has been taken into account. As atesult of the analysis,
the possibility of estimation the time-dependence of the reflected and transmitted pulses
in Hopkinson bars and of the mean stress ¢() and strain (1) in the specimen has been
obtained. The relations were used to perform calculations, the results of which have been
compared with the resulis of experimental investigations. Small differences between the
calculated and the experimental data have been found.

1. INTRODUCTION
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F1G. 1. Scheme of the bars-specimen system of the Split Hopkinson Pressure Bar.
o;, 0, — incident and reflected pulse, o, — transmitted pulse,
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Up till now, the method of the Split Hopkinson Pressure Bar (SHPB) is
the principal experimental method of investigating the plastic properties of
metals at high deformation velocities, about 10% 1/s. In Fig.1 the basic part
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of the SHPB apparatus is presented. It is a system consisting of two elas-
tic bars between which the investigated specimen is placed. The specimen
initially exhibits elastic and then plastic properties. The analysis of longi-
tudinal waves propagation during dynamical compression of the specimen,
based on the Taylor - Kdrman - Rachmatulin theory, leads to the solution of -
the following set of equations:

v B do 7 v _ 1 Qo 2 _
D) e = m e GO =5

where 2 and ¢ are the Lagrange coordinate, and 0,¢,v and e denote stress,
strain, particle and wave velocities.

Accuracy of the method of the SHPB has been studied in numerous
works. A one-dimensional, numerical solution for the bars-specimen sys-
tem was presented in the paper of RAND and JACKsSON [1] and in the pa-
per by JansMaN [2]. BERTHOLF and KARNES [3] obtained an exact two-
dimensional solution of the problem using the numerical finite difference
method. Comparison of the numerical solution of the system (1.1), in which
friction on the contact surfaces between the specimen and the bars being
taken into account, with the results of experiments were presented in the
papers [4] and [5].

2. SOLUTION FOR THE CASE OF COMPRESSION
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FiG. 2. Assumed bilinear relation o{e) for specimen material.

Under the following two assumptions:

a} relation o{c) for the specimen material is bilinear, as shown in Fig.2,

b) the value of the incident pulse is constant in time: o,(¢) = const,
the propagation of longitudinal stress waves in the compressed specimen can
be described analytically. In the bilinear approximation of the relation o(¢)
for the specimen material, as shown in Fig.2, two ranges are distinguished.
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By convention, the one for o < o, is denoted as ”elastic”, and the one for
o > g, — as "plastic”.
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FiG. 3. Schematic diagram of plastic wave propagation for a compressed specimen in the
initial state.

In Fig.3 is presented the form of characteristics in the plane («,t) for the
first three passages of the plastic wave through a specimen. The notations
for stresses and particle velocities used in Fig.3 in various regions of the
{(z,t)-plane will be applied in further analysis. To derive the relations for
stresses and particle velocities, the system of equations consisting of the
equation of forces equilibrium, the equation of particle velocity continuity,
and the relations between velocity and stress along the characteristics were
used.

To simplify the description it can be assumed that incident pulse is pro-
duced at the left-hand side bar with respect to the specimen, as it has been
shown in Fig.1. In that case, the following set of equations can be written
down for the points on the left-hand side surface of the specimen:

Ao, —0,) = A0+ Ady),

(2.1) v, +v, = v° 4+ Auvy,
g A
v, = 4 1 v = ’n ) Avp = Up,
PbCh PsCh pe
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where A, , py and ¢, denote cross-sectional area of the rod, density and
propagation velocity of an elastic wave for the bar material, respectively;
similarly, As, p and ¢ denote the same quantities for the specimen, and Aw,
and Ao, denote velocity and stress increments. The remaining quantities in
the system (2.1) correspond to velocities and stresses in the regions of the
phase plane (2, ), as it has been shown in I'ig.3.

There exists also a possibility of taking into account the friction effect
at the contact surfaces between the specimen and the bars. According to
the method proposed in [6], if friction is included, the first equation of the
system (2.1} can be represented in the form

(22) Ao, - o) = Ado* +Bay), W) =1- £,
where p is the friction coefficient, and s = 1/d is the length-to-diameter
ratio of the specimen.

At the boundary point A in Fig.3 the particular form of the set (2.1) is

(1 - %) Ab(aj - am) = As(UY + Aap)a
(2.3) '
O T

Oy o A%
Cy PoCe pe

’ pcﬂ ?
where ¢’ denotes the wave propagation velocity in the specimen for stresses |
0<o<o,,and - for stresses o > o,

By solving the system (2.3) it is possible to find the unknowns o, and
Aop and then to determine o7 and 7 . By introducing the notations

2 (-5)
F=—{1--— N=1-
A, 3s/)’

) &
=
Q—.‘.
o
s

the following form of equations for ¢}, and v}, can be found:

. _ ,2F . NK
UTI —O'JI(+1 YK+1’
(2.4)
2F N

T TR+ Dpe YK+ Dpe

In a similar way one can find 0%, and v} for the problem with friction, at
the point B at the Ilght hand side of the specimen. Then, by substituting
the relations for o7 ;1,0';,1 and v? found for the points A and B into
the equatlons for t%e point C lying inside the specimen, the relations for
o] and v{ can be derived. By carrying out the same operations for the
consecutive boundary and at the inner points of characterictics intersection,

one can subsequently derive the relations for o3, 0f, 07 ,v;, ,vf, v}, (fori =
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1,2,3...) within the entire phase plane region bounded by dotted line in
Flg 3

It turns out that those relations can be put down in six groups in which
their properties are those of geometrical progressions. Further terms of these
sequences, for i > 3, determine stresses and particle velocities; hence, they
constitute extension of the solution in the phase plane (z,t). Using this
method, the expressions for all the stress and particle velocily components,
introduced in this analysis, can be derived. Putting o; = (i) these expres-
sions can be written down as follows:

R g™t -1 KN . _
JT(m) = GJp q—l +O,YI{+]_q 17
s gt —1 KN .,
JR(n) = JJpq....] +0‘YI(+1q ]
s I i N m—1
vp(m) = U“’pc” g+1 Ty pe(K + 1)q ’
s _ o pl-q N a1
’vR(n) = % pc’ g+ 1 toy pc'(K + l)q ’
n=1_1 K2~ N
or(n) = O’Jpq—l— + Uy%“’l—)qn_ly
(2.5) - L
s qm—l ~1 I((Q - N) m—-1
JR(m) = a,p q—1 Ty KE+1 3
m=1,3,5..., n=246...;
-1
s _ Py -1 2— N ne1l
'UT(n) - O,J;(‘W q+1 FGch”(I{—i—l)q 1
s _ p 1= g1 2-N
Ua(m) = O pc” q+ 1 + Oy PCN(K + l)q ’
-1
2] —
20 -
5 _ P 1 _( Q) I
v (l) - 0‘ PCHF Ty pC” ( q)
1=1,2,3,4,5,....
In the above expressions, p and g denote
_2F K -1
P=rxrv T ERFU

After having derived the relations (2.5), our object will be to obtain the
relations of stress and deformation to time: oft,(k)],¢[t(k)], where k is the
number of passages of an elastic and plastic wave through the specimen.
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FIG. 4. Schematic diagram of elastic and plastic wave propagation in a specimen.

The values of o and ¢ in these relations will correspond to a uniform stress

state, averaged along the specimen.

From Figs.3 and 4 it results that in the deformation process cycles appear,
the duration times of which equal the time of two passages of a plastic wave
through the specimen: ¢ = 2//¢. Duration time of each cycle can be split
into two parts ¢y and t,, marked in Fig.4. At these times stresses and
particle velocities at the front surfaces assume values described by Eq.(2.5).

According to Fig.4, times ¢; and {5 can be expressed as

i+-£-_ l(cl_i_ch')

tl = - 3
of ol P

2.6
( ) . ,.l_...._l..—l(c’."c”)

C T ot
Hence,

3] N to

2.7 =1-— = .
(27) 41y 2’ i+t 2

In every subsequent time cycle ¢ = ¢; + t; the averaged stress values oy and
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oF can be found from the formula

5 . — 5 tl 3 t2
. ol(m,pn=m+1) = aT(m)t1+t2 +aT(n)t1+t2,
- 3 2] 3 121
of (m,n=m+ 1) = o;(m)tl . + carR('n)t1 L

From the kinematics of wave propagation in the specimen it results that the
power exponents m and n in Egs. (2.5) can be expressed by the parameters
k, and & which denote respectively, the number of elastic wave passages
and the total number of wave passages through the specimen, from the
beginning of the deformation process. As it can be seen in Fig.4, m and n
can be expressed as functions of k and k, in the following way:

(2.9) m=k~ky+%, n=k—ky+%.

For such defined m and = the relations (2.5) are accurate in the middle
points of time intervals ¢; and ¢; . Between the time increment At and
parameter increment Ak there is the relation At = Akl/e. Making use of
relations (2.8) and (2.5), (2.7), (2.9), one can express the stress values o
and o} at the contact surfaces between the specimen and the bars, averageﬁ
in the given cycle, as follows:

i@ =op[(1-F) =)

N k—ky+ Nj2-1 KN@2—N) p_p,4N/2-1
g (L= ) o, S T,

2
o (ky=o,F [(1 - %) (1 _ qk—ky'-’r-N/z)

N k—ky+Nf2-1 KN@2-N) i p4n72-1
+E(1"q ’ )]+ay—}?ﬂ~——q ’ '

(2.10)

At a given time t(k), stress distribution in the specimen is assumed to be
uniform, equal to the mean values of o2 (k) and o3 (k)

o(k) = loa(k)+ ok,
(2.11) .

_ _ k—ky+N/2 ‘
olk) = U“F[l v (1+K—1)1

, ENCQ=N) 4 iyinn
Y K-1 '
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For the elastic range it holds: ¢” = ¢/, N = 0 and %k, = 0; therefore, relation
(2.11) yields

(2.12) o(k) = o, F(1 - ¢~).

From the condition o(k,) = ¢, we obtain

. ln(l—-&%‘i—v)‘

2.13 =
(2.13) Y Ing

With the transition from the elastic to plastic range, at point o(ky), the
values of ¢, N, o, and k, change in a stepwise manner. This yields that
the values or(k ky) calculated from Eqs.(2.11) and (2.12) differ from each
other. There is, however, a possibility of reducing this difference to zero
and to obtain contimlity in the limiting point. To this end it is sufficient to
substitute &y for ky in the relation (2.11) and to find &, from the condition
that the values of o(k = k,) obtained from (2.11) and (2.12) in the limiting
point should be equal. From this condition it follows that

Co, F - Do
N ln( o, F—oc, )

(2.14) b=k + 5+

?

Ing

where

N _KN(@2-N)
K-1 “TEK-1

Between the mean stress o(k) in the specimen and the plastic strain ¢,
a relation exists

C=1+——

(2.15) o(k) = o, + pc'ey.

Using this relation and the relations (2.11) and (2.14), one can find the value
of plastic strain ¢, as

o, F N
01 _ k—k14N/2 ( ———-)]
(2.16) E” pc"2 [ i TE
o, (I(N(Q - N)qkmln-}-N/? - 1) .
an? K -1

On the basis of Eqs. (2.15) and (2.16) it is possible to estimate the stress
o(k) and the strain £(k) in the specimen for the given value of parameter k
which denotes the number of wave passages through the specimen.

To obtain a proper description of the problem studied, the relation be-
tween time ¢ and parameter k should be derived. ¥or time increment df and
increment dk, the following relation holds:
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(2.17) di = %dk.

Taking the logarithmic strain measure ¢ = In{lg/!), where lp and ! denote
‘the initial and the current specimen length, for the strain range £ > ¢, one
obtains

lo

clie®y efp

(2.18) dt = dk.

Therefore, after integrating, for the plastic deformation range is follows.

(2.19) = Lo f e~*rdk + Rs,

T oellefy

where £, is described by the relation (2.16). Introducing the notations

<
y

A1= N B1=1+E'jir—1

3

C”

o KN(2-N N oL
Azz;)*cﬁr,_ Bz=ﬁ§_—1—), a= 3 - ki;

on the basis of (2.16) and (2.19) one obtains

)

(2.20)

l
(2.21) L= Detmaey / S dk + By,
where

G= qa(AlBl — A2B2).

After integrating and finding the constant R, from the condition that t(k =
ky) = ty, the formula for time (k) is found in the form

lo a—ey k—k joni TR — 1
(2.22) t =1, + Ing’ Ing* %+ > (Gg™)——r7—
i=1,2,3...

i

where
A=A4A— A = (o, ~ O’JF)/pc”z.

In the relation (2.22), the time of duration of the elastic deformation process
of the specimen ¢, is still the last unknown. To find %, it is necessary fo
derive the equation for #(k) for the elastic range, i.e. for 0 < ¢ < i,. The
relation (2.19) has in this case the following form:

ly
of

(2.23) t==2 [ dk+ Ry
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Finding € from (2.12) and substituting in (2.23) one gets

o,F
pC”

(2.24) t= ?—ge—a f B dk + Ry, where B =
c

After integration and determination of the constant R; from the condition
that t(k = 0) = 0, the expression for time (k) in the elastic range will be

(2.25) t= 0 B (Inq + > '(qh—l))

! !
clnq =128, 't

The same equation can be obtained by substituting in Eq. (2.22) the values
(2.26) ty =10, =, ky =0, oy =0,

and, in connection with this, N =0, &, = 0, A = —B, G = B. These
values are suitable for the elastic range of deformation, and by taking them
into account Eq. (2.22) assumes the same form as Eq. (2.25).

The relations (2.15), (2.16) and (2.22), (2.25) derived above allow for
finding o(k), (k) and (k) and this concludes the solution of the considered
problem.

3. SOLUTION FOR THE CASE OF TORSION

The system of the torsional SHPB consist of two elastic rods between
which a specimen in the form of a thin-wall tube is located. For the descrip-
tion of the dynamically twisted specimen, similarly to the case of compres-
sion, according to the Taylor - Karman - Rachmatulin theory of elastic-plastic
waves propagation in rods, the bilinear relations between the torsional stress
and deformation 7(y) and the rectangular shape of the impulse 7,(t) have
been assumed. As it was done above, in order to derive the relations for
stresses and particle velocities, the system of equations is used, consisting
of the torsional moments equilibrium equation, particle velocity continuity
equation and relations between velocity and stress along characteristics. The
difference consists in replacing the force equilibrium equation with the tor-
sional moment equilibrium equation. The method of solution is then nearly
identical to that for compression; for example, to adopt the sets of Eqgs.
(2.1) and (2.3) to the description of torsion, the quantities o, Ay, A, should
be replaced by 7,J, /7y, Asr, Tespectively, where Jy, 7, denote the polar mo-
ment of inertia and the outer radius of the bar cross-section, and A, and r
denote the area and the mean radius of the specimen cross-section.

Furthermore, in the torsion case ¢, and ¢ denote the propagation velo-
cities of the transverse wave in the rod and in the specimen; since the friction
effect does not appear, g = 0, f(u} = 1 is assumed. The general form of
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F1a. 5. Schematic diagram of plastic wave propagation for a twisted spec{men in the
initial state.

characteristics in the plane (z,t) displayed in Fig.5, is the same as that for
compression. For point A the set of equations, analogous to the set (2.3), is

Jy
D, 1) = Ay + ),
(3.1 T, T Ty | Anp
——t+ ===+ —
pscy  pocy  pc’ - pe _
By introducing the similar notations as those for the case of compression,

Jy c”’ Juprey
, N=1-—, K=——7—,
rpAst c ryAsTpc
one can represent the expressions for 72 and v}, in an identical form as
expressions (2.4) for 67 and v, in the case of compression,

F=

PR | £
| o T YEITYRE YD
(3.2) oF .
vy, =
T

K+ Dpe" YK + Dpe"
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Further relations have also the same form as the relations derived for com-
pression. Final equations for stress (k) and plastic deformation v,(k) have
the form

(3.3) r(k)=T1, + pc"z'yp,
T F - ‘ N
(34) Te = ;;“,,‘2' {1 ~ gFR N2 (1 + }(—:‘I)JJ
Ty (KNQ-N) ¢ pina 1
pc”2 K-1 ¢ )

In paper [7] it has been found experimentally that the length changes
during the process of torsion are very small and can be neglected. Assuming
constant specimen length ly, the relation for time ¢(k) can be expressed in
the form

I !
(3.5) (k) = <hy + c—?,(k — k).

4. COMPARISON OF THE RESULTS OF SOLUTION WITH THE EXPERIMENT

To check the correctness of the solution, the compression process in the
system of the SHPB was analyzed on the basis of the derived relations
(2.10), (2.15), (2.16), (2.22) and (2.25). Calculations were made for alu-
minium specimens with initial length-to-diameter ratios sq = 0.1, 0.2, 0.33,
0.5, 0.67 and 1.0. Such specimens have been tested in earlier experiment,
which has been described in [5]. In the calculations the data corresponding
exactly to the conditions of experiments were assumed, what made it possi-
ble to compare the calculation results to those obtained experimentally. For
friction the previously estimated values of the dynamic friction coefficient u
were assumed. In Fig.6 the exeperimentally found dynamic hardening curve
o(e) for aluminium and the bilinear characteristics assumed in its basis are
presented. Depending on the value of total specimen deformation, which
was approximately 0.08, 0.11 or 0.14, three different bilinear characteristics
were taken, each of them being optimized for the particular deformation
range. Calculations were made on a computer by means of a simple pro-
gram taking into account the changes of cross-sectional area of the specimen
A, and increase of the deformation. .

In Fig. 7the incident pulse g, the transmiited pulse o, and the reflecied
pulse o, are shown. These pulses were recorded in experiment and calcu-
lated from the relations (2.10), (2.15), (2.16) and (2.22) for an aluminium
specimen with dimensions ratio sp = 0.1. As it is shown in Fig.7, in;thg;
calculations it has been ‘assumed that the‘incident pulse has constant value



&) P <]
MPa | KL
120 -7
1
%%f
80— 8 =
40 — 4’ . . —— e -
Range of &
11— G+01
2— 0+011
I—g+008
0= —e-
g _ 004 aog g1z [t}
=f{n -2
&=In 7
FiG. 6. Bilinear characteristics o(e) assumed in calculations and the real hardening
CUurve.
& 4 6 &
mea | ko i
mm* Lo
160 15 min
g 7—":—‘;{:::-- ."'.
20 gz [ ST .
-"‘ B 4 ﬁ‘ .
sgol- 8l - L J ")
’ v L _
W 4 t
P r e, O 40 aol | 0] 200
- g . o, i
ol | esl - 0] 60 : fﬁ—ﬂ‘ iad
—d0— -4 s -
- fr §,=01
-801- -8 I | { R=R(e}
4 l ! e R=cONST
Rl ! [ experiment
ol _qe L1 : | I |

FI1G. 7. Pulses o, 0,0, recorded in the experiment and calculated for a short
g S specimen.

:[253]



284 J.Z. MALINOWSKI

in the whole time range. The pulses o, and o, have been calculated for a
constant value of R = A;/A, and for R changing according to the change of
the cross-sectional area of the specimen A,. Difference of results for these
two cases is not large. Tt is easy to notice that the pulses o, and o5 obtained
experimentally and calculated in the manner described above exhibit quite
good agreement, except for the initial time period. The difference within
this period results from the fact that real pulse o, of trapezoidal shape
with a finite time of growth is replaced in the calculations by an averaged
rectangular impulse with zero growth time.
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T1G. 8. Pulses 0,55, ¢, recorded in the experinient and calculated for a long specimen.

Comparison of results of calculatons with those of an experiment for a
specimen of dimensions ratio so = 1 is displayed in Fig.8. Also in this case
we observe a good agreement of graph shapes for the reflected pulse o, and
the transmitted one o.

In Fig. 9 is shown the comparison of maximum deformations ¢,,, calcu-
lated from Eq. (2.16) and found on the basis of a numerical solution by the
method of characteristics, with the maximum deformation &,,q estimated ex-
perimentally using SHPB technigue for specimens with various dimensions
ratio s,.

In order to verify the accuracy of the obtained solution, comparison of
the relation o(¢) calculated from Eqs. (2.15) and (2.16) with the bilinear
approximation of the hardening curve of the specimen material has been
made. Such comparison is shown in Fig.10, where it is easy to see that the
relation o(¢) calculated with the assumption of variability of the parameter
R[A,(¢)] nearly ideally conform with the bilinear material characteristics
assumed for calculations. However, under the condition of constant R, the
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calculated relation o(¢) differs slightly for strain ¢ > 0.1 from the previously
assumed bilinear approximation of the hardening curve. This indicates that
more accurate results are obtained if variability of the parameter F together
with deformation is taken into consideration.

5., CONCLUSIONS

Comparison of the results of calculations with the experimental data in-
dicates that the solution presented in this paper with a good approximation
describes the compression process of a specimen in the system of the SHPB.
No experimental tests for torsion were made here, but it seems that the pro-
posed approximate method of the solution should not be less accurate for
the case of torsion than it is for compression. The simplifying assumptions
yield the largest error in the description of the initial and the final stage of
specimen deformation.

The simplified analysis presented in this paper can be useful in designing
test stands with the SHPB as well as in adequate experiment preparation
and proper interpretation of the obtained experimental results.
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STRESZCZENIE

PRZYBLIZONE, ANALITYCZNE ROZWIAZANIE DLA PROCESU SCISKANTA 1
SKRECANIA W UKLADZIE ZMODYFIKOWANEGO PRETA HOPKINSONA

W pracy przedstawiono uproszczona analize procesu dynamicznego $ciskania i skreca-
nia w ukladzie zmodyfikowanego preta Hopkinsoana. W rozwiazaniu przyjeto biliniowa
zaleznoéé napreienia od odksztalcenia of¢) dla materialu prébki oraz stala wartosé w
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czasie impulsu inicjujacego o(¢) = const. W procesie iciskania uwzgledniono efekt tarcia
pomiedzy prébka i pretami. W wyniku analizy uzyskano mozliwoéé okredlenia zaleznosci
od czasu impulséw odbitego i przenoszonego w pretach Hopkinsona oraz éredniego napre-
zenia ¢(t) i odksztalcenia £(t) w prébce. Korzystajac z tych zaleinosci przeprowadzono
obliczenia, ktérych wyniki poréwnano z wynikami badan doswiadczalnych. Stwicrdzono
niewielkie réznice miedzy wynikami obliczesi i uzyskanymi dodwiadczalnie.

PE3IOME

TIPMBJIVMXXEHHOE, AHAJJUTHYECKOE PEINEHUE JJIA TTPOLIECCA CKATHA U
CKPYYVBAHUA B CUCTEME MOIWSUMLIMPOBAHHOI'O CTEPXKHA
TONMKMHCOHA

B pafoTe npepcTABNEH YOPOIEHHEIN aHAJNH3 NPOLECCA RHHAMAYECKOTO CHKATHA H
CKPYMUBAHHA B ¢HCTEMe MOAMGUUNPOBAHHOMO cTepskud [onknncona. B pemennn npu-
HATH GHnuHelNaf 3ABHCHMOCTH, HampsixceHud ot Aedopmauuu o(c) oA MaTepHaia
o6pa3na M NOCTOAKHOE 3HAYEHHE BO BpeMeHH HHHOUHPYIOINEr0 HMUyanca o(t) =
const, B npouecce coxatus yuren sddext rpenus Mesxay o6pasmoM u cTepxusMu. B
pESYALRTATE AHAIH3A NONYYEHA BOIMOMCHOCTH ONpecieHHA SABHCAMOCTH OT BpeMext
OTPAKEHHOT'G H HPOXOAINIEro HMIYILC0B B CTePXKEAX ['ONXHECOHA, 3 TAKIKE CPE[IHErO
wHanpmxensa o(t) u gnedopManun «(f) 3 o6pasne. Menonsays STH 3aBHCHMOCTH, NPOBe-
OeHBI pACYETE], PE3YALTATE KOTOPEIX CPABHCHB C Pe3yILTATAMHE PKCHEPHMEHTANBHBIX
nccnegopannii. KoHCTATHpORARO HeGOALIIME PASHMILI MEXIY Pe3yALTATAMH pacte-
TOR M HONYYeHHBIMM SKCIEPHMEHTANLHO,
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