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GENERALIZED STRAIN AND STRESS MEASURES:
CRITICAL SURVEY AND NEW RESULTS

A. CURNIER and . RAKOTOMANANA {LAUSANNE)

Four basic principles: objectivity, isotropy, consistency and regularity are proposed to
restrict the concepts of generalized strain and (more originally) of generalized stress. These
principles are used to derive two general representations of the corresponding strain and
stress functions. Based or a material definition of conjugacy, each candidate strain is then
placed in one-to-one correspondence with a certain conjugate stress and vice versa. Besides
the classical strain-stress pairs already current in the literature, an interesting family of
- new strains and conjugate stresses is disclosed in the process. -The main contributions
of this paper, however, are to demonstrate the superiority of a particular class of strain
and stress measures, herein called "congruent”, and to reveal the coexistence of different

definitions of conjugacy, which is a source of confusion.

1. INTRODUCTION

In nonlinear mechanics, the form assumed by the stress-strain law adopted
to model the intrinsic response of a material depends on the stress-strain
pair selected to formulate this constitutive law, Indeed, if the stress measure
conjugate to a given strain mesasure is unique once a specific definition of
conjugacy is adopted, the choice of such a stress-strain pair is by no means
unique, even if certain pairs are generally considered as favorites.

The usual tendency is to use the simplest stress-strain pair (namely the
Green strain — second Piola-Kirchhoff stress) and to transfer all the com-
plexity of the material response to the stress-strain law, which is a sound
approach. A legitimate question however is whether a more elaborate choice
of stress-strain pair could perhaps simplify the form of certain stress-strain
laws, preferably of the most common ones. Of course, any attempt to sim-
plify the modeling of materials by complicating the descripiion of deforma-
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tions and stresses may rightly appear vacuous to many people. Nevertheless
the prospect of extending the range of application of the classical constit
tive theories (such as linear elasticity or classical plasticity to quote t
typical examples) from infinitesimal deformations to moderate ones, with.
out any modification of their parts, may represent a sufficient incentive
others. i

Several pairs of conjugate stress-strain measures have long been identified
in nonlinear mechanics [1, 2]. A brief history of strain and stress, providing
the key to the names by which they are referred to in this paper, is given
Appendix A. Among them, the strains which are here attributed to Gre
EY and Karni EX, together with their conjugate stresses denoted S anc
S¥ to show the correspondence, play a fundamental role. This is mair
because they are simple (especially the Green-second-Piola-Kirchhoff pai
EY — SG), but also because they may be viewed as an upper and low
bound for other candidate stress-strain pairs E — S. Somewhere in betwe
these bounds, the logarithm or natural strain G (often attributed to Henck
together with its almost conjugate stress, the rotated true stress T (a,pphf;
ently due to Noll) represent an attractive compromise, a sort of pivot, for
all other candidate measures. Several penetrating studies have already been
published on the subject, e.g. [3, 4, 5, 6, 7, 8, 9, 10, 11}, with a specia
mention for the erudite accounts found in [1, 2, 12] and the masterful sy i
thesis [13]. Dominant among the findings is the fundamental definition of :
generalized strain measure with its conjugate stress [13]. Slightly less essen
tial is the underlying consequence that all admissible stress-strain pairs
equivalent, a fact already recognized in [1], but mainly from a kinematical
standpoint. If the fundamental definition provides a clear framework for
the study of specific measures, its direct consequence shows the theoreticél
emptiness of such inquiries. Only initial ignorance of these results combined
with the fascinating appeal of the natural strain and rotated stress measure
can explain persistence with further studies in this field, beginning with th
present one and including {14, 8, 10, 58, 60, 62, 64] among the most recent
ones.
~ In the present article, the concept of generalized strain is developed and
more originally, the concept of generalized stress is defined. Both concept:
are governed by the same set of four basic principles, namely objectivity
isotropy, consistency and regularity. Two general tensorial representation:
of the generalized strain and stress functions based on these principles are
rived separately. Relying on the material definition of conjugacy mtroduced
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[13], each candidate strain is then placed in one-to-one-correspondence
with a conjugate stress and vice versa. Incidentally, the coexistence of alter-
tive definitions of conjugacy is detected and the differences are pointed out
avoid apparent contradictions. The class of generalized stresses congru-
ent to the second Piola—Kirchhoff stress %, together with their conjugate
s:rains, are shown to present definite advantages over all other candidate
pairs.
Of course, all the classical stress-strain pairs already mentioned in the lit-
erature are included in this general framework, which opens up several other
directions of investigation. In particular, an interesting family of generalized
strain and conjugate stress measures, which seems to have gone unnoticed
ﬁntil now, (except for a few hints in the rubber elasticity literature of the
fﬁrties [15, 16, 17, 18]) is disclosed in the process. In essence, the strain
family consists of a convez combination of the material forms of (any) two
basic strains such as the classical Green and Karni strains, For instance
their arithmetical mean, herein called the Mooney strain EM, is the most
promising member

M_log log 1 -1
E “EE +§E —Z(C—C ),
where C is the Green deformation tensor defined in terms of the deforma-
ion gradient ¥ by C = FTF. The corresponding strain rate is shown to
be related to the rotated strain rate D = RTJR (material counterpart of
the usual spatial rate of deformation d), taken as reference, by the direct

lypu + ly-1pu-1 = (D).

EM =
2 2

p:_é,rticular case, the conjugate stress SM is found to be related to the rotated
stress T = RT(Jt)R (material counterpart of the true stress of Cauchy t

T = %USMU + %U"ISMU”I = f(8M). -

The Mooney strain EM and its conjugate stress S prove to be good ap-
proximations of the logarithm strain G and corresponding rotated stress T.
However, because they do not result from a congruent transformation of the
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Green strain ES and second Piola-Kirchhoff stress SC respectively, they
suffer from a number of shortcomings which compromise their utilization;

This article is divided into two parts. The first part deals with the con
cept of strain or kinematics. The second part focusses on the concept of
stress or dynamics. (An estimate of the incidence of the choice of a sp
cific stress-strain pair on the eventual form of a stress-strain law closes par
two). In each part, both the "tensorial forms” and the "spectral forms”
discussed to give additional insight. However, this presentation is limited t
the "material forms” of the different measures (referred to the undeformed:
configuration), their "spatial forms” (referred to the deformed configuration).
merely being alluded to, so certain difficulties and an excessive proliferatio
of symbols and names can be avoided. The adjectives "material” and ”sp
tial” are extensively used in this paper to distinguish entities referred t
the undeformed configuration from their analogues referred to the deforme
configuration. This terminology conforms to a meaningless but deep-rooted
tradition (since both descriptions are in fact material in a strict sense), A
popular alternative is the ”Lagrangean”—"Eulerian” pair but it is historicall
inaccurate. Our preference would go to "initial”—”actual”. For simplicity.
also, both deformed and undeformed configurations are implicitly referre
to the same rectangular coordinate system. Finally a rather descriptive sty
in line with our engineering backgrounds characterizes the article, which IS_:
meant to be tutorial at the cost of some repetition. E

2. GENERALIZED STRAIN
2.1. Elementary introduction

Consider a bar of initial length L to be deformed along its axis into
a final length !, as shown in Fig. 1. A basic quantity for studying the
deformation of this bar is the ratio of its deformed length over its original
length, A = I/L, called the stretch ratio. It is a positive nondimension
number which represents a relative (tather than absolute) elongation whe
greater than unity, and a contraction if smaller. As such it is a legitimate
scale of deformation but it is not a measure in the strict sense, since:
does not vanish with the deformation. The most natural alternative which:
vanishes for A = 1 is the Cauchy strain defined as the change in length over
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the original length:

- This linear measure in A has acquired a reference status since the entire
 theory of small deformations has been developed using it as a basis.

L
-, P -’|
‘ i | L MQ(L)
<
A
/I U
| 1 p——
{
Fiag. 1

_ in this section, several other measures have been introduced over the years,
' the most classical of which are listed below (e.g. [3]):

12-12 1 g’
G _ _ - ()2 = i
E 5[z 2()\ 1} et (Green),
- L '
EB - I—L— =Ai-1 =& (BlOt),
2
: (22) G x Log% = LogA = £ — % + ... (natural),
BH zl-;L:]_——-% =e—e24 .. (Hill),
112—-L% 1 1 3
K _ - = 1= =) =g 2g? . i).
E% = 5P 3 (1 /\2) Bl GRS (Karni)

~ The Biot strain is distinguished from the Cauchy strain because the fact
hat they appear to be identical is a mere coincidence in the particular case
© of pure elongation under consideration. All the above measures have been
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cleverly integrated by DoyLE and ERICKSEN [19] and also by SETH [4] int
a one-parameter family in the form '

2

The Green, Biot, Hill and Karni strains are clearly recovered for the intege
values of the parameter m = +2, +1, —1 and —2, respectively, whereas thf
natural strain is found to correspond to the pivot value m = 0 by a limitin
process to overcome the indeterminacy.
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i ) /
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(23)  BM=_—pron=et T2 (Semh).
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The resemblances and differences between these five measures are best
appreciated by looking at their graphs in Fig. 2.



GENERALIZED STRAIN AND STRESS MEASURES 467

First, it is checked that all measures vanish in the reference configuration,

e. at A = 1. It is also observed that all curves are tangent to each other
at this Teference point. This conformity indicates that all measures coincide
with the small strain ¢ of Cauchy for infinitesimal deformations around
_the reference configuration (as confirmed by the expansions in terms of ¢
included in Eqgs. (2.2)). Finally, it is noted that all measures are monotone
increasing functions of the positive stretch ratio.
Besides these convergences around unity, the different measures signif-
icantly diverge away from it. Their erratic asymptotic behaviour, as the
deformation ratio shrinks to zero or extends to infinity, is the most intrigu-
ing discrepancy at first glance. It takes some time to convince oneself that
all these measures are in fact equivalent and that any invertible function
E(}) is a perfectly legitimate strain measure provided it complies with the
requirements

(24) E=E(\), EQ1)=0, E()=1, E(\)>0, or 3E™.

The idea of the proof lies in the fact that any such generalized strain £ =
E()) may be related to any other invertible strain, say G = LogA thus
) = Exp G, by the composition E = E{Exp G) and vice versa.

In spite of this equivalence, one strain measure may present definite prac-
tical advantages over another one, beginning with its simplicity, but also in-
cluding such a feature as a certain progressiveness in its behaviour at Jarge
strains. In this latter respect, the Green and Karni strains appear in Fig.
2 as an upper and a lower bound that one "would not like” to exceed. On
the contrary, the graph of the natural strain is ”pleasing” which reflects the
progressiveness inherent in its definition and two other attractive properties:

A
Logh = f df, ?progressivity”;
1
Log Ap = Log A + Logp, Tadditivity”;
1
Log Y = —Log A, "symmetry”.

However, the logarithm is not a very easy function to compute and it seems
worthwhile to look for a good approximation.

A comparative examination of the classical measures (2.2) soon reveals
several intermediate alternates, named here after the rubber elasticians [15,
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16, 20, 18], later found to give definite hints of these expressions:

12-1 1 1 £?
p_ L L I = - — ...
EC = 5L 3 (A A) €= + (Pelzer),
14— 1 1 g?
M = Z—l-z--jl-ﬁ-— = Z (Az —_ 1—2‘) = £ — -2— "'I‘ ane (MOOIley),
(2.5)
w  18-1* 1 1 2
E =3 @[ =3 )\_ﬁ =c—g4 .. (Wall),
3_ 73 1
R _ -;:JIT;E’_ - % (,\2 - X) =e404.. (Rivlin).

REMARK. Consult Appendix A for additional details concerning the.
historical origin of these strains. :
A second look at Fig. 2 confirms some of the expectations placed in:
these four measures, especially with regard to their capacity to approximate:
the natural scale. In fact, application of the trapezoidal rule to the integral
definition of the logarithm gives an analytical justification for the former: .

A
_ _ o 1 ( 1)_1( l)__ P
G—LogA__lf#_Q(;\ D(t+5)=5(r-5)=8"

A closer comparison of the new measures (2.5) with the classical ones (2.2)
suggests yet another interpretation. The Pelzer and Mooney strains are iden::
tified with the arithmetical mean of the Biot-Hill and Green-Karni pairs, re-

spectively. Similarly, the Wall and Rivlin strains are recognized as weighted -
averages of the Biot-Karni and Green-Hill pairs: '

Ef = %EB+%EH,
EM — lEG-{-}"EK,
(2.6) 2. 2
3 37
2 1
ER = -3»EG+§EH,

REMARK. Some of these relationships were known by [21]. The Pelzer -
strain may also be interpreted as the geometric mean of the Green and Karni
strains -

B = VEOER = 2 /(v — 1)1 - x7) = SV o %(A — Y,
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From a classical inequality between the arithmetic mean and the geometric
- mean, it follows that EM > EF for A > 1, and wvice versa for A < 1.
Starting from the Seth family (2.3), the eight strain measures involved
in Egs. (2.6) are conveniently collected in a two-parameter family, referred
“to herein as the ”rubber” family, in the form

{27y FE = quE(p)—i—ﬁE(q) (rubber),

_ P _ ptg~1,
= oo q()\ AM)y=¢e+ 5

-2<¢<0<pL+2,

-where E®) and E(9) are any two basic members of the Seth family (2.3) (i.c.
~corresponding to integer values of opposite signs of the parameters p and ¢).
. Because any member of the rubber family (2.7) is a convez combination
of two basic strains, it automatically satisfies the admissibility requirements
Eq. (2.4):

E(l) = p—qE(”)(l) + Eiq)u)
E'(1) = _E(P)'(l) + q_j;E('I)'(l) p—g =1,
E"(1), E@ (1) + E(q) (D=p+qg—1.

p- ‘1

For further reference, a general expression for the strain rate E is derived in
‘terms of the basic stretch rate A, by differentiating the definition (2.4) with
-Tespect to time

(28) E=E'(M)A

:Appiying this chain rule to the generic formulas of the Seth family (2.3) and
‘the rubber family (2.7) leads to

E(m) = ym-1 A’

A1 gaa-t
P TAE 5

(2.9)
@) 4 9 ) -
r—q qa—-p P—q

The eight members of the rubber family are summarized in Table 1 together
‘with their rates. The only "symmetric” members of the family (excluding
the peculiar rigid body case E°) are the Pelzer and Mooney strains located
on the diagonal (p = —g) of Table 1. As such they are favorite elements of
the family with a computational preference for the Mooney strain to appear

E=

in three dimensions.
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Table 1. The eight members of the "rubber” strain family (Eqs.(2.7)) &nd .
their rates (Eq.(2.9)).

q
r 0 -1 -2
o _ g_, 1 K__l(__}_)
. E__e EY =1 3 E =3 1 3z
E°=0 B =14 B =L
- =3 ==
B p_1 _l) W_l( __1_)
1 EP=a-1 Br=2(x-3 B =z (A -3
BB =1} EP=1(1+-1—)A Ezl(l_{_l);
2 A2 9 by
e _ L2 R }_(2_1) M_l(2___1_)
i ES= (¢ -1) | BR=3 (¥ -5 B =L (¥ -5
v 4 n_ 1 i) R_l( _1_)
B9 =k BR =z (2 )3 | B0 =5 (A4 55) A

2.2. Basic geometry of deformation

Let the deformed configuration of a continuous body be defined in term:
of its reference configuration by the placement

(2.10) x = x(X).

The point X locates the original position of a typical material particle i
space and the image x its new position after deformation as shown in Fig. 3
Both sets of points are implicitly referred to the same rectangular coordinat:

1
U
< R
ax r
dx
X X
XX
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ystem fixed in space. Their components X; and z;, I,7 = 1,2,3, on the
ommon basis vectors Ef = e;, are called the "material” and "spatial”
oordinates of the particle, respectively.

- An infinitesimal oriented fiber dx in this body is deformed according to
he differential relation

] ox
2.11) dx = FdX, F= X
he derivative F is called the deformation gradient. By definition, this mixed
patial-material tensor constitutes the fandamental quantity for the analysis
f local deformations, with respect io which all other candidate measures
All ultimately have to be referred to. The regularity of F (J =detF > 0)
xpresses the cohesion of matter during a deformation.

. An infinitesimal oriented surface dS in the shape of a parallelogram de-
mited by two distinct fibers dY and dZ, is deformed according to the less
bvious relation, e.g. [22)],

2.12) ds = JF~14s,

there dS = dY x dZ is a vector normal to the undeformed parallelogram
ith magnitude equal to its area and ds = dy x dz is its counterpart in the
eformed configuration.

* The change in volume of a parallelepiped delimited by three fibers follows
t once from Eqgs. (2.11) and (2.12),

2.13) dv=JdV.

 REMARK. Briefly, FTds = F¥(dyxdz) = FT(FdY xFdZ) = JdY xdZ =
dS, and dv = dx-ds = JdX .FIF1dS = JdX.dS = JdV. For a uniform
ar of initial volume V = AL homogenously stretched to a final volume
= al, the differential formulas (2.11) to (2.13) degenerate into trivial
nite identities I = ({/L)L = AL, a = v/l = (v/V)(V/) = JA"'A and
= (v/V)V = JV, respectively. ‘

The squared length of a deformed fiber can be computed in terms of its
ndeformed counterpart using the scalar product

2.14) dx -dx = dXT - FTFdX, C=FIF.

he symmetric positive definite material tensor C naturally produced in the
rocess is called the Green on material deformation tensor.
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The squared area of an infinitesimal parallelogram is evaluated in _th
saime way

(2.15) ds-ds = J*dS - F'FTds, Cl=fF"1F7T.

The inverse of the material strain tensor C, which is itself material, is calle
the Piola deformation tensor.
REMARK. For simplicity, we confine ourselves to the material or L;
grangean description of deformations, referring all tensors to the undeforme
configuration. A parallel (but not equivalent) spatial or Eulerian present:
tion, referred to the deformed configuration, would depart from here by i
troducmg the Cauchy or spatial deformation tensor ¢ = FF7T and its inver:
~1 due to Finger.
Paraphrasing [23], formula (2.15) shows that the temsor J2C™! me
sures changes of infinitesimal areas in precisely the same way as C measur
changes of infinitesimal lengths.
The square root of the deformation tensor is called the stretch tensor"'_

(2.16) | U = +C.

By applying the representation theorem of isotropic functions of the ne;
section to the square root, a tensorial expression of the stretch tensor U i
terms of the deformation tensor C of the form U = 2C + yI + 2C™? m:
theoretically be obtained [24]. However, the expressions of the coefficies
z,y,z in terms of the principal invariants I, II,, III, of C (or equivalently
of the principal stretches A,) are so complicated {25, 59] that they are di
ficult to use in practice. Consequently, the stretch tensor is best defined
and interpreted in spectral form as follows (e.g. [13]). Because the deform
tion tensor C is symmetric and positive definite, it has three real positi
principal values A? along three orthogonal (or at least * orthogonahza.ble”):
principal directions N; (normalized to unity) concomitantly defined by

CN, =)\aNa, a=1,2,3,
N, Ny =6, b=1,2,3.

The three dyadic self-products N, ® N, of the principal vectors form a
principal basis for the material tensor derived from C. In particular the
deformation tensor itself and its inverse can be alternately written in spectral
form

(2.17)

C = MN,®N,,

2.18
(2.18) Cc' = AN, ®N,.
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REMARKS

1. Just like the nine dyadic products of the rectangular base vectors
e; @ e; form a fixed global basis for general second order tensors, the nine
'ayadjc products of the principal vectors N, ® Ny form a variable local basis
attached to each particle. Since the material tensors derived from C reduce
fo a diagonal form on this latter basis, only the three main unit dyads
N, ® N, are necessary for a complete representation of these tensors. The
_épa.ce spanned by the self-dyads N, ® N, is called the commutator of C
because it is also characterized by {X, CX = XC}.
2. The summation convention for repeated indices appearing in a single

expressmn applies throughout, i.e. AN, @ N, E AIN, ® N,.
Accordingly, the stretch tensor is properly deﬁned as

(219) U= Aa.N-c: @ Na

= (AN, ® Na)( ANy ® Np) = Az A 026N ® Ny = )\ﬁNa ® N, =C.

The square roots A, of the principal deformations A2 are called the princi-
pal stretches. They are the direct generalization of the homogeneous one-
dimensional stretch ratio A = {/L = dx/dX introduced in the previous
section to inhomogeneous three-dimensional deformations.

Now, using the polar decomposition theorem, the {nonsingular) deforma-
tion gradient F can be decomposed into the product of a pure rotation and

a pure stretch
(2.20} F=RU,

where R is orthogonal (RTR, = I, RRY = i) and U is the symmetric
right stretch tensor just introduced (U = U7T). Indeed it can easily be
checked that RTR = U-TFTFU-! = U-I1CU! = I. It must be kept in
mind that the polar decomposition is a local operation (defined pointwise),
devoid of any global meaning in general. The image of a global stretched
configuration, such as the one sketched forth in Fig. 3 does not exist in a
strict continuum sense. (At most, it could be pictured as an "aggregate” of
incompatible pieces). As already implied and sketched in Fig. 4, U stretches
each unit principal fiber N, by an amount A, along A,N, = UN, (no
sum over a). Separately, R rotates the unit orthogonal triad N, embedded
into the undeformed configuration into the corresponding unit orthogonal
triad n, embedded into the deformed configuration n, = RN,. In the
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?

spatial description, the unit vectors n, would be recognized as the principal
directions of the spatial stretch and deformation tensors

u=+/c=VFFl = \,;n, ® n,.

The composition of U and R indicates that the deformation gradient ﬁrst
stretches the unit cube delimited by the principal edges N, intoa rectangﬁi_a_
parallelepiped with edges A,IN,, and next rotates it in the spatial princip
directions n, _
(2.21) Aony = FN, (no sum).

Accordingly, the spectral forms of these three tensors and their inverses are

= )\aNa®Na.9 R =n,®N,; F = Aaﬂa®Na"

2.22 :
(222) Ul =37'N,@N,, RT =N,®n,, F! =X IN,®@n,.

Tensorial forms of these tensors are also available but, as a rule, they are even
more complicated to obtain than the spectral forms (2.22). For instance.
once U is extricated, as indicated earlier, it may be inverted to derive thi
rotation from R = FU™!. The rotation R has one real eigenvalue equal to
+1 along the principal axis of rotation j defined by Rj = j and two complé};{
conjugate eigenvalues cosw + ¢ sin w, involving the angle of rotation w, along
two principal radii j; L j and j, = j X ji1. Consequently the rotation tensor
may be equivalently represented by the rotation vector r = wj whenever
favorable. The rotation tensor R can then be recovered from

R=cosw(i1 ®j1+Jj2®J2) —sinw(i @ —j2®J1) +i®J.
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The polar decomposition {2.20) applied to the transpose of the inverse de-
formation gradient, F~T = RU™!, reveals the close (but otherwise hidden)
similarity between the line and surface transformations (2.11) and (2.12)
(see Fig. 5 for an illustration},

Yy

U
-
N4 & Fodr
Xx
i 2 0 0
‘é dd F=lo o0 -1
a g 1 0
FiG. 5
dx = RUdJX,

ds = R(JU)dS.

The above similarity confirms the analogy already mentioned between the
length and area relations (2.15) and (2.16).

In the hypothesis of small deformations, the decomposition of the de-
formation gradient into the product of a symmetric stretch tensor and
an orthogonal rotation tensor may be replaced by the (exact) decompo-
sition into the sum of a symmetric, but approximate, stretch tensor U=
T ~w (= UT) and an antisymmetric, also approximate, rotation tensor
R =-RT ~ R (= RT) defined by

(2.24) F=0+R= (F+F7)+5(F-FT).

Note that the tensors U and R are neither spatial nor material, nor even
mixed like F, which makes their very existence questionnable, not to grap-
ple with their components (unless the actual rotations are so small that the
deformed and undeformed principal directions n, and N, cannot be distin-
guished, i.e. when F = U = U, R =1, R = 0). In the event of large
deformations, the additive decomposition (2.24) becomes mathematically
and physically meaningless, i.e. the addition is undefined and the factors
lose their interpretation of stretch or rotation.
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To close this section, note that the mixed deformation gradient F is no
ob Jectlve whereas the material stretch tensor U and its by-products C a,n
C- 1

2.3. Generalized strain

The fact that neither the deformation gradient F nor its byproducts U
C or even U vanish in the reference configuration (x = X, F=U = C:
U =1 #£ 0) disqualifies them as pure deformation measures.
The most classical substitute is the small strain formula introduced b
Cauchy, based on the approximate stretch U:

{2.25) EC = -;—(F +Fy -1, (Cauchy).

Unfortunately, this small strain approximation, besides its peculiar tensori
nature already mentioned, does not remain invariant in a finite rotation ¢
the body (x = RX, F = R, EY = J(R + RT) — I #£ 0). This deficienc
rules it out as an objective measure of large deformation.

The generalization of the classical strain measures introduced in Sec
2.1. is not subject to this criticism because they are based on the objectiv
byproducts U and C (rather than U). They take the material forms

E¢ = %(C -1), (Green),
EE =U-1, (Biot),
(2.26) G =LogU= %Logc, {natural},
E¥ =1-U"!, (Hill),
EX = %(1 ~Cc™h, (Karni).

REMARK. It must be emphasized that the Hill and Karni strains ar
simply the material forms of the spatial strains of Swainger and Almans
respectively, defined by €° = i — u™! and e = }(i — ¢™!), where ¢!

u~? = F~TF-! and i is the spatial identity. In particular, the mterpreta,tlon?
of the Karni strain may be facilitated by the series of identities

—(dx dx — dX - dX) = dX - E9dX = dX - UEKU4X

— dx - REXRTdx = dx - eddx
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which show its connection with the Green and Almansi strains.
With a provision for the natural strain, all the classical measures (2.26)
are included in the one-parameter family [19, 4]

(2.27) EM™ = %(Um -0), m=42,41,-1,-2,  (Seth).

The Biot strain (m = 1) is the closest objective substitute for Cauchy’s small
strain approximation. However, the extraction of the square root U = /C
makes it difficult to use in practice.

REMARK. Conversely, an approximation to the objective Hill strain
(2.26) could be defined by analogy with Eq. (2.25) as B¥ =1 — ;@14
F~T). In fact, it seems that the spatial strain advocated by Swainger was
this kind of approximation rather than its objective counterpart.

The logarithm or natural strain measure (m — 0) is properly defined in
spectral form as [26]

(2.28) G = %LogC = LogU = LogA,N, ® N,.

It follows from this definition of the logarithm of a symmetric tensor that
the property of "additivity” is preserved under the exclusive condition of
"paralle]” (or "irrotational” or "pure”) defomations along fixed principal
directions (to guarantee the product commutativity):

LogAB = LogA 4 LogB if and only if

A=aN,®N, and B=aN,@N,

along the same N, (because if that is true, not only A = AT and BT = B
but also AB = BA). In other words, B must belong to the commutator of
A.

The natural scale is even more cumbersome to evaluate than the Biot
strain, and so a good approximation is sought. Instead of proceeding by
mere extrapolation from the one-dimensional forms (replacing A by U in Egs.
(2.5), (2.7) and (2.8)), a constructive approach which will give additional
insight is preferred. i

The preceding remarks and examples together with [3, 13} suggest that
a generalized material strain measure can be defined as an isotropic tensor
function of the objective material stretch tensor U, which vanishes in the
reference configuration, coincides with the small strain around it and remains
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regular away from it. More specifically, a generalized strain is characterized
by '

E = E(U) (objectivity}),
(2.29) AE(U)AT = E(AUAT) (isotropy),
ED=0 E(I)=I (consistency),
) (regularity),

where A denotes an arbitrary rotation ATA = I. The definition of the
tensor function E(U) and, more particularly, of its derivative E/ and inverse
£ are specified later.

The selective dependence of the strain function on the symmetric stretch
tensor U (rather than ¥ itself) reflects the basic requirement of obtainin
an objective or frame-indifferent measure. Briefly, a material strain func
tion is objective (i.e. frame-indifferent) if E(F) = E(AF) for any rotation A
which implies Eq. (2.29); by choosing A = RT. A material strain functio
is rotationally symmetric (i.e. body-indifferent) if AE(F)AT = B(FAT)
Objectivity plus symmetry implies isotropy as defined by (2.29);. Th
isotropy requirement corresponds to the additional deliberate uncouplin,
of the kinematics of deformations from the response of materials, i.e. to
construct a material-indifferent measure. Compulsory for the treatment 8
isotropic materials, this requirement seems merely normative for the ana
lysis of anisotropic media [7]. Note that the computationally inaccessibl
stretch tensor U = /€ is preferred to its readily available originator C
purely for convenience of notation {provided by integer exponents).

The consistency conditions are difficult to use at this stage of generalit
due to their local nature. On the contrary, the global isotropy conditio
provides a definite restriction on the general form of a candidate deformatio
measure specified by the fundamental representation theorem of isotropi
tensor functions, e.g. [27, 57]. :

Essential to the proof of this theorem are the findings that the principal
directions of strain must coincide with the principal directions of stret__fi_:
N,, and that the principal strains £, must be symmetric functions of th

principal stretches A,

(2.30) E = co(M)N, ® N,

More technical is the fact that three symmetric scalar functions in thr
scalar variables can always be reduced to a three-term expansion in t

form
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(2:31) €a(M) = ()AL + y(As} + 2(X) AL,

here x(Ap), ¥(Ap), 2(Ap) are symmetric functions of Ay, Ay, A3 and p, ¢ are
any two different integer exponents (which are better taken to be of opposite
sign in the interval -2 < ¢ < 0 < p < 42 for the present purposes).

. Merging the two results (2.30) and (2.31) produces the desired tensorial

(2.32) E=2UP 4 yI+4:U0? (=E%).

Within the range recommended for the integer exponents -2 < ¢ < 0 < p <

this representation formula is standard for the even combinations (p =
¢ = —1) and (p = 2,¢ = —2), but more original for the odd combinations
=1, = -2) and (p = 2,¢ = —1). Tt is emphasized that the isotropy of
e strain function implies the symmetry of the resulting generalized strain.
An important class of isotropic strain functions is formed by those whose
ch principal strain depends (in precisely the same way as the other two)
only one corresponding principal stretch i.e. e,(M) = E(A,), [7], leading
{o the generic formula

.33) E =E(A)N, ® N,.

o instance, the natural strain (2.28) is a typical example of such a function
th €,(M) = E(A;) = LogA,. More generally, most tensor functions ex-
apolated from a scalar prototype fall into this category of simple isotropic
nsor functions [28]. The derivative and the inverse of such functions are
é,dily obtained from their scalar analogues as

1
EOw) e

ven within this simple class of strain functions, the coefficients z,%, z in
e expansion (2.32) remain complicated rational functions of the principal
lues A,. Explicit expressions for these coeflicients are given in Appendix B.
‘comparison with the classical measures displayed in Eqs. (2.26) suggests
at one’s attention should be restricted to constant coefficient or trinomial
pansions. It is also expedient to replace the global regularity condition
9)a by a local convexity control at the origin, which by analogy with
8. (2.7) is expressed in the form

E'"VN)=p+q-1.

E'(U) = E'(A\)N, @ N, E~YU) = ® N,.
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Within this drastically simplified context, the local consistency and cone
ity conditions become deterministic.
Indeed, z,¥, 2 being constant

E()) = 2N +y-+zAY,
E'N = pe P 4 gz
E'()) = plp— Dz +q(g—1)zX%

Enforcing the local conditions

E(l) = z+y+z=0, z =
E'(1l) = prtez=1, => 3 ¥
E'1) = plp-Dr+ag-Dz=p+e-1, z =

The result is the tensorial generalization of the scalar rubber family (:2
which is confirmed to correspond to a convex combination of any two ba
members E®) and E@ of the Seth family (2.27): .

(234) E= E._]'__q(UP UQ) — o E(P) + - E(q) (I‘thel‘),

q
—2<qg<0<p<L+2 (p;é() or ¢#0).

Schematically, the generalized strain E may be regarded as decomposed
the basis formed by (UP, I, U?) provided p and ¢ are properly select
Now, if the alternative forms obtained with different integer values of th
exponents p and ¢ in formula (2.32) with variable coefficients z(As), y(
z(Ap) are strictly equivalent (by virtue of the Cayley-Hamilton theores
the corresponding forms obtained by the same procedure applied to form
(2.34) with constant coefficients are definitely different. In particular p an
should preferably be chosen with opposite signs to avoid erratic asympti
behaviour as U shrinks to zero or expands to infinity. The new memb
included in the rubber family are listed below to complete the class
strains included in the Seth family: E

Ef = %EB + —12-EH = %(U U™y (Pelzer, p=-gq=1),
235 EM = -%—EG + %EK = %(C -C™Y)  (Mooney, p= ‘——q = 2:)“,
EW = 2EP+ B =5(U-UT) (Wall, p= —% = 1)
ER = %EG + —13~EH :_%(U2 ~U™Y) (Rivlin, g =—g= 1)_
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he Mooney strain offers definite computational advantages over the other
three, just as the Green and Karni strains are more practical than the Biot
and Hill members in the classical family. Moreover, the Mooney strain rep-
resents a fairly good approximation of the natural strain and therefore may
"_be expected to remain almost "additive” up to moderate "parallel” strains.
In particular the exact characterization of large isochoric deformations by
the vanishing trace of the natural strain trG = 1log(detC) = LogJ = 0
quivalent to the unicity of the Jacobian J = 1) carries over to the Mooney
rain within a high order of approximation tr EM = tr G +o(e%) = O+o(&?).

A generalized strain of the rubber family may be interpreted by a consti-
tutive law specialist as a stable isotropic elastic gauge material characterized
by the prescribed "moduli” p and ¢.

REMARK. An approximation to the Pelzer strain is:
1 T -1 _@-T -1 1 RY
E”:—Q—(F-i—F -F )._—(U U™ HY+(U-1U" )--——
_This approximate strain offers the advantage of remaining invariant in a
ure rotation (since U = U~! = I) which elects it as a valuable candidate
r the study of small strain-large rotation problems.
The derivation of the rates of the various strains introduced above is con-
sidered in the next two sections prior to an investigation of their conjugate
resses. Incidentally, this kinematic analysis will reveal the existence of a
idden rate of deformation, called the rotated rate, which will prove to play
crucial role in the investigation of conjugate stresses.

2.4. Basic kinematics

Introducing the time parameter, the discrete placement (2.10) must be

v = v(X, t):Q)—[(X 1) = x.

he material gradient of this velocity ﬁeld is found to coincide with the rate
f the deformation gradient F = dx/8X
v 9*x _OF

2. =¥ — =9
38) dv=FdX, F= o=z ="p
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REMARK. A spatial description would begin from here by referring t
velocity to the spatial variable v = v(x,t) and deriving the correspondin
spatial velocity gradient 1 = 9v/8x through dv = ldx = IF dX which sho
the link between the mixed and spatial forms ¥ =IF.

The mixed (spatial-material) velocity gradient F is taken as the bas
variable and all other deformation rates of interest will eventually (or
least tentatively) be expressed in terms of it. :

The polar decomposition of the deformation gradient provides addition
insight into the structure of the mixed velocity gradient F=RU+RU. T
rotation being orthogonal (RTR = I), the rotation rate may be referred
the rotation itself by means of a skew-symmetric tensor § = —@” called
material relative spin, i.e. R = R#. (For a justification, see the constructl
of Eq. (2.48) below). As a result, the mixed velocity gradient appears ast
sum of a stretching and a spinning rate, both rotated to a material status
F = R(U + 8U). The lack of symmetry of this deformation gradient ra
inherent in its mixed nature, reveals its lack of objectivity in a rota,t_l_on
and constitutes a strong incentive to look for alternative material rates:
deformation. _

The rates of the material deformation tensor C and its inverse C
(obtained by straightforward differentiation of their definitions, C = FI
and CC™! = I, with respect to time) fulfill part of this need,

C FTF + FTF,

1l

(2.39) ﬂ o '
—C™Y = PYWWCT 4+ CIFTRT,

Additional insight into the inner structure of these deformation rates may
be obtained by substituting the polar decomposition ¥ = RU and triv

()Whereas the spatial symmetric part d = 1(14+17) due to EULER (1770) constltute

well-defined spatial rate of deformation tensor, the hybrid counterpart U = L (F + FT)
ill-defined, which motivates the search for a fully material velocity gradient. By analogy
with (2.14), a possible procedure would be to calculate the squared magnitude of &
velocity increment via the self-scalar product dv - dv = dX . FTRIX. Un{oxtuna.tely
the material tensor FTF produced by this process is not the rate of any known strair
tensor. Thus the alternative product dx - dv = dX . FTFdX generating the mater
counterpart of the spatial velocity gradient L = FTF = FTIF. Twice its symmetric P

= (FTF 4+ ¥TF), due to DUHEM {1904}, is one material transcription of the spatl 1
rate of deformation 2C = FYdF and is recognized as the material deformation rate m
simply defined by Eqgs. (2.39).
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identities such as UU™! = I in their expressions (2.39) to obtain

¢ = URTFUT'U + UU-STRU = URTFU ™ + U-TFTR)U,
&' = UtRTRUT U + UCUIRTRU Y

= UYRTFUT + UTFTR)UL

‘The above formulas suggested the existence of an intermediate material rate
called the rotated rate of deformation

;(2.40) oD = RTFU™' + U-FTR (rotated).

- This rate is so-called because it corresponds to the classical spatial rate of
deformation d, rotated to a material status i.e. D = RTdR.
The proof of this assertion is straightforward:

oD = R7FUT'RIR + RTRU'FTR = RT(FF ™ + FTEN)R
= RT(1+ 1R = 2RTdR.

In terms of the rotated rate (2.40), the material rates (2.39) take the
form of a convected and a "contravected” rate of deformation, respectively,

& = 2UDU ”convected”,

(241 :
(2.41) -1 = qUu-lpy-! "contravected”.

This terminology is justified in the formulas ¢ = 2FTdF and C1 =
—2F-1dF~T disclosing a convection of the spatial rate of deformation by
“the deformation gradient and its inverse.

Although the rotated rate of deformation D is not the time derivative of
“any known strain (except for the fictitious "rotated strain” formally defined

t,
by D dt or its closest substitute, the natural strain G = LogU), it will be

: fou?ui to play a pivotal role in comparing the various candidate strain rates
- under study, as already apparent in Egs. (2.41).

- The derivation of an explicit formula for the stretch rate U = Ve (in
“terms of F and F only) is rather difficult due to presence of the square root
:[29, 30, 61, 62, 63]. Consequently the following implicit definitions must be
~accepted as the best tensorial substitutes

C = vo+0U,

(2.42) e
oD = U-lO+U0U.
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REMARK. The solution U of Eq. (2. 42);, where U and C are considered
as given, can be shown to exist and to be unique [31, 29, 30]. Idem for Eq
(2.42),.

Just as it helped constructing the notion of stretch itself, the spectral
approach provides valuable insight into the inner structure of the stretch rate
Starting from the spectral definition (2.19) of the stretch tensor U = v/C,
the stretch rate may be derived without difficulty, provided the principél
directions of stretch are recognized as varying during the deformation

(2.43) U=AN,®N, + AN, ® N, + A\,N, ® N,.

In fact, since the principal stretch directions are unit vectors attached
to a fixed material point X, they can rotate only around their pivot origilr
according to No(X, 1) = Q(X, t)N,(X, 0), where Q is an orthogonal rotation
(QQT = 1) called the material stretch rotation (cf. Fig. 4).

More concisely and conversely,

(2.44) N,=QN? N =Q"nN,.

The uniqueness of the initial principal stretch basis N2 = N, (X,0) also
called the background triad [13, 11] is questionable since the undeformed
configuration is by definition exempt from any strain. It is easiest to see it
as the incipient basis obtained as the limit orientation of the current basis
as time approaches zero going backwards.

The "tangential” velocity of each "radial” stretch vector may be referred
to itself as follows

(2.45) N, = ON° = Q"' N, = ON,.

The instantaneous rotation rate of the principal stretch triad in relation to
itself is called the material stretch spin, e.g. [13],

(2.46) =949 =-07, G=009.

The spin tensor is skewsymmetric: this is easily checked by differentia.ting.
the identity QQT = I. In particular its decomposition on the principal triad
may be written

N=0.N, N, with e = 2.,
It follows that

N, = ﬂNa = (chNb ® Nc)Na = (N Nybge = 2. Ny.
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‘herefore to summarize:

7) Na = 'QbaNb, Qba = —Qab.
é_nally, the stretch rate (2.43) takes the spectral form
2.48) U = Badap + (4 = Aa)20]No @ Ny

his formula is fundamental in showing the inner structure of the stretch
nsor, namely its decomposition into the sum of a "radial” stretch rate and
"hoop” rate, However, its practical interest is limited by the fact that the
aterial stretch spin tensor remains out of reach. Consult Appendix C for
similar spectral form of the deformation gradient rate.

- Repeating the same process for the spectral forms (2.18) of the deforma-
on tensor C and its inverse €1 leads to

49) C = [2AAabas + (A = A2)2,]N, ® Ny,

. 2,
——C_l = [—Xg—éab + (A;z - {\b—z)ﬂab] Nu ® Nb-

1nally, a similar procedure applied to the rotated rate expression (2 41)

—=Cha = 2D, = -XNC3

aa ?

——Ca = 2Dgp = =M MCG (a#b).

. 2.5. Strain rates

Following [7, 33] the rate E of the generalized strain (2.29) can be for-
ally expressed in terms of the stretch rate fJ, or the deformation gradient
te F by means of the chain rule, or even in terms of the rotated rate D
mply by inspection: )

. dBE. dE,
51) E= U= —F=ED,
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dE dE

where ——, —— and E are fourth order linear operators. For instance, th

derivative of the Green strain with respect to the stretch can be shown ¢

be
dE§, 1
== = —(6rx ULy + Utk 6y + UrLdky + 61nUk g )
dUrxr 4
See Appendix D for the proof of this derivative and others.
Of course these fourth order tensors inherit the minor symmetries of the

respective inputs and outputs (just like an elasticity tensor)
dEr; _ dEry _ dE;r
dUxr,  dULx  dUkL

Moreover, as noted by [7], for the class of simple isotropic strain function

(2.33) with the property -éx—()\b) = 8E (A ) even for @ # b, the tange
Q@

and the like for Ersxr, —_— =

dE .
operator TG possesses the additional major symmetry (just like a hype'r:

lasticity tensor)
dEry  dEgp

dUpr ~ dUrs’ B
For dE/dF, the existence of a strain potential results in a more comple:
symmetry not shown here. This kind of symmetry is questionable fori_t
Furthermore these derivatives are inveriible by definition of the strain fun,
tion, meaning that :

. dE -1._ . (dE —1.. el

(2.52) U= (ET.—I) E; F= (E) E; D=-E"TE.
However, the general formulas (2.51) and their formal inverses (2.52) a
misleading because, except in a few particular cases, they cannot be expl

citly written down.

For instance the only strain rates of the classical famzly (2. 26) which ca
be easily related to (at least one of) the reference rates U, ForD (elth
in direct or in inverse form} are

EF = %(UI'J‘ +UU) = %(FT]?‘ +FTF) = UDU,
. BB - T, 2D = UEB + EF U,
(2.53) E¥ = u-tguT, 9D = UE"” + BAU,
EX = —;»U"l(U‘lfI-+ ou !

= %C"I(FTI}‘ +FTF)C-t = U-'DUL,
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Therefore the Green and Karni strains are the only ones with fully explicit
tensorial expressions for their rates. Their expressions in terms of the rotated
rate D are even invertible. It follows that all the classical strain rates (2.53)
may be incorporated into a one-parameter family, called the Seth strain rate
family, characterized by the implicit formulas

D = UTERMUT it m=+42,-2,
(2.54) 1 . :
D = §[U-’"E(m) +EMU™ i m= 41,1

Similarly, the expicit strain rates of the rubber family (2.35) are limited to

(2.55)

£ = gy lpd - Lo,
2 2 2
EM = %ﬁG + %EK = i[UfJ +0U + U-Y (U0 + DU YUY

= i[FTF—}- FIP+CYFTP+¥TF)CY) = %(UDU+U“‘1DU“1),

BV = %EB + :;;EK - %[il +U-U-0 4+ OuThuy,
-5 2. a 1. H 1 . . 11
Et = §E + §E = §(UU +UU+UUU ).

Here also, the Mooney strain is the only one with explicit tensorial rate
expressions. For the others, spectral forms remain the most feasible.

The spectral derivation developed in the previous section to elucidate
the stretch rate is also applicable to the generalized strain expression (2.33)

(2.56) E = [E'(Aa)Aabas + (E(Xp) — B(2a))2:5]N, ® Ny,

For instance, a strain rate of the Seth family (2.27) can now be expressed in
direct form as

. . AT _ W
(2.57) EM = [A?-’Aaaab + ”—miﬂab] N. ® N,

with an exception for the natural strain corresponding to m = (:

(2.58) G = [—;—aﬁub + (log Ay — log Aa).Qab] N, ® N,.
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An approximation to the above rate may be found by applying the tré'p
zoidal rule to the integral definition of the logarithm as before:

dx 1 11 1/h% A\
log A — Log A -f T (5 x) =3 (%)

Aa

to obtain

Ao M A
(2.59) G~ [A bab + 5 (A: )‘—b) -Qab] N, ®@N;, (=D)

This approximation of the natural strain rate G is readily recognized as the
spectral form of the rotated rate (2.50) and not as the Pelzer strain rate,
a similarity in the approximation procedure utilized could mislead: in other
words, the rate of the approximation differs from the approximation of t
rate. '

It follows that the natural strain may be regarded as an approzimate
primitive for the unintegrable rotated rate of deformation

t
(2.60) szD&

Finally, a strain rate of the rubber family (2.34) takes the form

pAr~1—qu~1Hb+A§-A BSYIRY.

(2.61) E=
pP—q P—q

0250 | Ny ® N
Most important of all, fully explicit and invertible relationships between
different strain rates such as Eq. (2.51) or their inverses (2.52) are readily
obtained in spectral component form, e. g (no summation over the repeated
indices)

Eao = E'(A)Use = A B (M) Dag,

(2.62) . E(AY — E(ND -
= B=F ), Bk (B - BO) Dy
(a#0).
Note that the first relationship between the diagonal components and
Usa is a strict duplicate of the uniaxial elementary formula (2.8). The ad:

dition of the second relationship between the offdiagonal components Fg
and U,y (@ # b) is the correct generalization to arbitrary deformations. The
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ffdiagonal relationship is consistent with the diagonal one through the nice
- properties of symmetry (E,lb = Ey,), regularity (Ea;, — Eaq a8 Xy — Ag)
nd consistency (E(1,1) = 1). .

For instance, all the strain rates (2.61) of the rubber family can be ex-
ressed in terms of the rotated rate as follows (no summation over the
epeated indices):

B, = =2 = Daa,
2.63) P-4
' . 2 M XN - )\P-l-)\
Ep = % De b).
’ p'—qAa."I'Ab Ab a b (a# )

To close this section note that a tensorial form for the stretch rate U may
- be formally constructed in the light of its spectral decomposition (2.48) by
- defining

/‘\aNa ®N, = j\aQNg @ NSQT = QI.JDQT =
. and observing that
o024 No @ Ny = 25N, @ Ny Ny @ N = QU,

" therefore

(2.64) U =U +0U - UL.

- Accordingly, a similar procedure applied to the generalized strain (2.55)
leads to

- (2.65) E=E +QE - EQ,
where
B= QE"QT = E'0.)AQN° @ N°QT = E'(A,)A.N, ® N,.

The above formula (2.65) confirms the symmetry of the generalized strain
rate taken for granted in Eq. {2.51). A similar relationship between the
rotated rate D and the natural rate G has been established by [34] along
this line.

The most significant expressions of the eight members of the rubber fam-
ily are summarized in Table 2 together with those of their rates.
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Table 2. The *rubber” strain family and its rates.

p ! D -1 -2
E° =0 E¥ =1-y! BX = 2(I-C™)
0
E° =0 g¥ =y gy EX = %c*lcc'1
B.vu_1 |E° =-§(U U B = (U~ U™
1
B2 =10 = 3(U+UTOUT) | 7 = HU+cTiec™)
g_1 r_ 1,02 -1 M_ 1 -1y
= (C-1) | ER= 20 -U™Y) EM = L(c—c)
\ 2 3 i
ES = %c’: BR = :}(c‘: +UgUTh | BM = %(c‘: rcéc™

2.6. Simple extension and shear

* Changes in lengths and angles are the two basic modes of deformatio
which affect the shape of a body. Their study is at the origin of the classical
experiments of simple extension and simple shear, The analysis of thes
two homogeneous deformations (characterized by a constant deformation
gradient) represents a necessary test for a strain measure. :

A simple extension along the X axis is characterized by (cf. Fig. 1),

z = AX, A0 0 A0 o0 ]
y =A7YY, F=}(0 A% 0 , C=]0 x% 0 , .
z =X"YZ, 0 0 XV 0 0 AW

where v is a generalized transverse contraction factor (reminiscent of Pois
son’s ratio). In a pure extension particularized by y = Y and z = Z (cf.
Sect. 2.1) this contraction factor vanishes ¥ = 0. In an isochoric extension
characterized by J = |[F| = A1-2%) = 1, it equals one half, v = 1/2.

The principal strain directions coincide with the rectangular axes. The
generalized strain (2.34) becomes

AP — A7 0 0
(2.66) E=z —- 0 ATHP — \Tve 0
P—1q 0 _ 0 A~VP — Ave
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is pointed out that the generalized contraction factor v corresponds to
he usual contraction ratio at infinitesimal strains only

Eoo 2 2\E

— =v—(r+1 - -+ ...

. v+ D" -a)5+

or the Pelzer and the Mooney strains the convergence is quadratic.

A simple shear in the X — Y plane is defined by (cf. Fig. 6),

z =X+ 2vY, 1 29 0 1 2y 0
y =Y, F=[0 1 0|, C=|2y 1+49% 0
z = Z 0 0 1 0 0 1

'he slope 27 is called the amount of shear and the arc § = Arctan 27 is
nown as the angle of shear.

Yy b

REMARK. Note that the composition of two shear deformations speci-
ied by F(7) and F(B) is a shear deformation characterized by F(y + 8) =
(B)F(7). In particular, the inverse of a shear deformation F(7) is given
y F(—7v). The reflexion of a shear deformation F(7y) with respect to the
isector corresponds to the transpose F('y)T.

Simple shear is an isochoric deformation since J = |F| = /[C] = 1.
he principal stretches and their directions are complicated functions of the
mount of shear. The principal squared stretches and corresponding unit

zfectorsare
" a . 1 3
A% 21+2,Y2+27 /1+72’ Nl — 1+J(7+V +7) ,
V2472 + 29/ 72

A e
N =142t a/TET, Ny = O VI
2+ 2012

)\3 :1, N3 =k.
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The rotation and stretch tensors are

YV1+9? v/Vi+92 0

R=| —7/VI+9® 1/V1+792 0|,
0 0 1
/14492 4//1+4% 0

v= | yviTe LA
Ve
0 0

1

14+ k.

As stated, the Green, Karni and Mooney strains, regrouped in E = 5=

1-k

+ EX (with & = 1, —1 and 0), are the only ones which are eajsy_;
compute '
k—1y? ¥ 0
(2.67) E® = 5 (k+142 0|,
0 0 0
where

E°=E(k=1), Ef=E(=-1) and EM =E(k =0).

Therefore the Mooney strain is distinguished by a simultaneous contr
tion of the X fibers and elongation of the Y fibers. Finally, note that trE
2k~? vanishes for the Mooney strain, confirming its capacity to charactet
an isochoric deformation by the simple constraint trEM = 0 for all practi
purposes.

3. GENERALIZED STRESS
3.1. FElementary definition

The stress enforced in a deformed bar by an external load applied a.t
extremity (as already shown in Fig. 1) is defined in rudimentary terms.a
the ratio of the load magnitude(®) g to the original area A of the cross-section
of the bar

q .
(3.1) P= I (nominal).

{(2)The load ¢ must not be mistaken for the parameter g introduced in the previ
section at Eq. (2.7) or Eq. (2.31), in spite of the notation overlap.
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In fact, this elementary definition presumes the existence of an internal force,
“equal to the external load, acting along the whole axis of the bar. By further
: assuming this force to be evenly distributed over each cross-section(®), the
_relative notion of stress ratio or force density per unit of (undeformed) area
_naturally occurs as a basic quantity for assessing the strength of the bar, for
-instance.

_ This stress is called "nominal” in contrast to the "true” stress defined
per unit of deformed area. The nominal stress is also called the first Piola-
Kirchhoff stress. A brief history of stress, providing the key to most stress
‘names used in this paper, is given in Appendix A. The obvious true stress
formula t = g/a is deliberately put aside here, in spite of its classicism,
_becaunse it corresponds to the spatial form of this measure: the standard
‘Cauchy stress. The derivation of the material form of the true stress usually
‘called the rotated stress is postponed until the necessary notions become
available. Nevertheless the accepted true stress and the presumed rotated
‘stress provide clear evidence that stresses are not unique in nonlinear me-
‘chanics.

As a matter of fact, alternate measures of stress may be constructed at

will by scaling both the force ¢ and the area A by means of two appropriate
“adimensional factors, say H and K, according to the generic formula
_He H
= ﬂ‘ -_ E .
These factors may even be taken to vary with the deformation, provided this
variation starts from unity and remains monotone elsewhere. The inverse
stretch ratio A1, for instance, is a legitimate scaling factor for either the
force (second Piola-Kirchhoff contravected stress) or the area (Noll rotated
stress) variation, since it remains positive.

(3.2)

Paradoxically, the initial guess and subsequent interpretation of the fac-
tors H and K are less natural in the present simplistic one-dimensional
context than in a fully three-dimensional setting (due to the neglected cou-
pling which exists between longitudinal and transversal deformations, even
in a bar). Consequently their systematic study is deferred to later sections.
Meanwhile, it is taken for granted that a generalized stress § may be defined
as a linear function of the nominal stress ratio P with a variable coefficient
V(X), function of the stretch ratio A, satisfying pertinent consistency condi-
tions

(3.3) S=V(NP, V()=1, V()>o.

- ()This assumption is difficult to satisfy if the bar is of an anisotropic material [35].
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The monotonicity condition guarantees the existence of an inverse coefficient
1/V()), and thereby the equivalence between 5 and P.

The main drawback of a static formulation such as Eq. (3.1) is that
it fails to reveal the one-to-one correspondence presumed to exist between
the stress produced (here the nominal stress ratio) and a certain strain (by
anticipation, the stretch ratio) and vice versa. To this end, a less intuitive
but more systematic way to introduce the concept of stress is to invoke
the principle of virtual power or, equivalently, the balance of kinetic energy
In essence, these principles postulate the equality of the external powe
supplied by the applied load ¢ along a (virtual or real) displacement (I-L
of its point of application with the internal power developed by internal
pointwise resistances §, called stresses, along the corresponding pointwise
deformations E, called strains, throughout the volume of the bar, which'i
naturally taken as the reference volume V = AL in a material description

(3.4) SEV = gl.

In the above formula, a dot denotes either a variation or a rate.
REMARK. A spatial description would begin from here by using th
stress power developed throughout the deformed volume v = al, namel;

sev= q E where all variables are referred to the stretched abscissa z bu

g(1) = ¢(L) and & denotes a correct objective rate. '
This joint approach provides an infallible guide for the consistent deﬁm

tion of conjugate stress-strain pairs (§ — E) while leaving an infinite numbe

of possibilities (in nonlinear mechanics).
For instance, dividing both sides of Eq. (3.4} by V = AL gives th

material stress power per unit of reference volume '

(3.5) si=21_p;

AL

By direct identification of the terms, based on the most natural part;t:on
the nominal stress ratio is found again (§ = g/A = P) and shown to b
conjugate to the stretch ratio (£ = I/L=X).

REMARK. Note that the adjective "natural” usurps the one of ”arb;t
rary” since nothing except tradition prevents us from reversing the order o
the factors A and L and defining a generalized strain as a change of lengt
per unit area (I — L)/A, which would lead us to an associated stress p_e
unit Jength ¢/L. A dual theory of continuum mechanics based on thes
original ideas would perhaps shed additional light on the structure of th
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- primal theory blindly accepted by us. Note also the use of the areal strain
(A—a)/A (in wire drawing) as reported by Tabor in the Hardness of Metals.
The unique association (3.5) of P with the basic stretch variable X, added
o its natural occurrence in the formulation of the material equation of equi-
ibrium (dP/dX = 0) elect the nominal stress to the status of a fundamental
tress measure to be used as a reference for other candidate stresses,

More generally, recalling the rate expression of the generalized strain in
erms of the stretch rate (2.8), the stress power equivalence relationship (3.5)
rovides a reciprocal definition of the conjugate generalized stress in terms
f the nominal stress

E = E(MA, Eq. (2.8)

(3.6
) P = E'()\)S, generalized.

REMARK. A more intrinsic definition of a generalized stress could be the
ostulation of a relationship of the type § = S(#). Invoking the principle
f virtual forces or of complementary energy SEV = ¢(I — L) would then
ead to a conjugate strain implied by §'(P)E = X — 1.

In addition to its parallelism with the strain rate relation (2.8), the fact
hat the nominal stress P is well adapted for stating the static equilibrium
quation and that it is difficult to invert the derivative E'()) in three di-
ensions are the main reasons for keeping the definition of the generalized
tress 5 in the implicit form (3.6). Another advantage of the stress power
pproach is to provide a rigorous link between material and spatial measures
y equating the corresponding powers

S(X)E(X)W = g(L)I(L) = ¢(Di(l) = s(z) ¢ (av — SE= %’,-s e,

here ¢ denotes an ob jective spatial rate of e.

In particular, since the material and spatial forms of the natural strain
Tate happen to coincide, E =é=| /1, the material and spatial forms of the
true stress, namely the rotated stress 7' and the Cauchy stress t, are related
by T = (v/V)t, in the absence of rotation.

A comparison of the static and dynamic stress definitions (3.3) and (3.6)
eveals that, in order for the generalized stress § = V(A)P to be conjugate
0 the generalized strain E()), the inverse stress coefficient ¥ ~=1(\) must be
actly equal to the strain derivative E'())

1) !

TR
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Because the natural logarithm strain G = Log A plays a pivotal role amor

candidate strains, it is worthwhile finding its conjugate stress T before {]

others. Substitution of its derivative G' = 1/ in Eq. (3.6) gives
T

(3.8) P= T or T =P, rotated.

This so-called rotated stress is recognized as the material form of the "tr
stress earlier looked for in vain, since
l g al ¢ v

T=X == AL~ VH

where t is the classical spatial true siress of Cauchy. In the absenc
rotation, the rotated stress T' coincides with the so-called Kirchhoff stre
[13, 7] defined as the Cauchy stress ¢t multiplied by the Jacobian J = v
A more fundamental difference will appear in the presence of rotation:
T = JRT{R.

In terms of the rotated stress T, the generalized stress § conjugate
the generalized strain E takes the implicit form:

E = AE'(MNG, Eq. (2.9),
- T AE'(N)S, generalized.
Note that by the consistency condition £’(1) = 1, all generalized streSse__s
will coincide with both the nominal stress P and the rotated stress T'
sufficiently small deformations
S~P~T for A~

Applying the general stress definitions (3.6) and (3.9) to the classical st
family (2.2) gives conjugate stresses. See Appendix A for a justification
the following stress names.

P=E'(\NS T = AE'(X)S (§ name — £ name)

(3.9)

It

P = \S%, T = A2§€,
P =158, T = A§5, (Biot — Biot),
(3.10) = —;T, T=T, (rotated — natural),
1 om 1w . X
= :\_ES , T = XlS , (Hill — Hill),
P= %SK , T = -X—Q—SK ) (E.Green — Karni .
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Here also, the Biot stress is distinguished from the nominal stress because
their appearing to be identical is a mere coincidence in the absence of ro-
tation in the deformation. The pivotal role played by the rotated stress is
guite clear and justifies the special treatment previously given to this mea-
sﬁre However, its conjugacy to the natural strain will be shown to be only
a,pprox:ma,te in the presence of rotations.

- Similarly the stress conjugate to the generic member of the Seth family
(2.3) takes the form

(3.11) p=amlgm) = pAmgm) (Seth).

P = 1 (1 + i) sF. T = 1 (A+ %) sF (Pelzer),

2 A2 2
P :3(1+i) sM.T =1 A2+l)S.M (Mooney),
- 2 A3 2 Az)
P=g(teg)sm =g (i g)s v,
Sl L) 7 <L (ove ) i
P _3(2A+A2)S, T _3(2A +A S*  (Rivlin).

o ! 0 -1 —2
_ _ 1 om _ 1 ok
P=V P= S = 55
0 1 1
— _ 1 oH - oK
T—v T=318 T =8
P=15% | P= 1(1+_,)5P Lot 2ysw
) 2 3
5B _1 P 1 w
T=27 | T=3(+ ’\)s 70+ 578
P=2s® P:-;-(z)w )P A+ =)™
2
T = A259 1(2,\’+ D8R | T =207 + 555




498 A CURNIER and L. RAKOTOMANANA

] 20 30 40
- Streich (lambda) .

Stresses
-
[

B & Green(ond P-K.)
gl > Biot (Biot) 7
3 & Moonay (Moon.) -
- N Pelzer (Peiz) B
L O Hill {Hiit) |
~20H @ Korni (EG.-R.)

o % naturagl (rof)
| 1 1 I ! 1 | 1 | ! | { 1 | 1

i

intrinsic function of the stretch ratio and then as a weighted average of tw
basic strains}), follows a double definition of the conjugate stress family (fro
the definition of the derivative (2.9} and from its linearity respectively):

p = B0 (Lopry L )5,
p—~q r—9q P—9q

(3.13)

oo PMoaMo ( pA E(p)',*_i}g(q)’) s.
rP—q r—q rP-q

The "symmetry” of the Pelzer and Mooney strains carries over to thei
conjugate stresses since for ¢ = —p, Eq. (3.13) for instance reduces to:

T= %()\p + A7P)S. The expressions of the nominal stress P and the rotated.

stress T' in terms of the conjugate stresses of the rubber family are collecte
in Table 3 for completeness.
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3.2. Basic statics of stress

.Consider a body in static equilibrium under the single action of ex-
ternal distributed contact loads dq(x) applied to its deformed surface a,
but translated back abstractly onto its undeformed surface A according to
dq(X) = dq[x(X)], for the sake of the material description. By the defi-
nition of the static equilibrium, both the resultant of all these elementary
forces and their moment about (say} the origin must vanish

/%
A
/xxdq = 0.

A

0,

(3.14)

Through the action of these external loads, internal forces develop through-
out the deformed volume v of the body and they may again be transferred
back into the undeformed volume V by an abstract translation and still be
denoted by the same symbol dq(X). It is further postulated that the in-
ternal forces acting over any imagined surface enclosing an arbitrary part
of the body satisfy the same principles of equilibrium (3.14) as the external
loads.

The (external or internal) force per unit of undeformed area (of the ex-
ternal or any internal surface of the body) is called the nominal stress vector
or traction and is implicitly defined by the differential relationship

(3.15) dq = Py dA.

REMARK. A spatial formulation would begin from here by posing dq =
t,da, where t, is called the true stress vector.

As suggested by the subscript IN, the stress vector P is traditionally pos- -
tulated as depending not only on the location X, but also on the orientation
N of the surface element on which it is assumed to act Py = Px[X, N(X)].
This selective dependence of the internal stress vector on the surface orien-
tation {but not on its curvature for instance) constitutes the fundamental
hypothesis of stress analysis. It was first advanced by Cauchy in its spatial
form and may be compared with the restriction of the kinematic description
to local deformations described by the single deformation gradient (2.11).

REMARK. In a remarkable attempt to axiomize continuum mechanics,
Noll (1959) has succeeded in deriving this already basic postulate from
even more elementary facts. Using a more standard technique, Germain
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(1973) derives this basic postulate from the principle of virtual power, which
amounts to postulating the existence of the stress tensor itself, so that ths
gain is arguable.

Application of the principle of action and reaction {which is simply
corollary of the balance of forces (3.14)) to the stress vectors acting on the
opposite faces of any imagined diaphragm stretched across the reference
volume, further requires this dependence to be an odd function Py(—N)
—Pyn(N). Finally Cauchy’s famous theorem, based on the balance of the
elementary forces acting on the facets of a shrinking tetrahedron and adapted
to the material description, asserts that a linear dependence is sufficient te
express local equilibrium. By definition, the linear operator mapping the
material surface element unit normal N into the actual stress vector PN
applied to it is a (second order) tensor called the nominal stress and denoted
by P
(3.16) Py=PN, (nominal).

This mixed (spatial-material) tensor is the fundamental measure of stress
adopted in this study to construct alternate options. The nominal stress
is also called the first Piola-Kirchhoff stress and sometimes defined as its
transpose. A typical coefficient Py of this tensor decomposed on the mixe
rectangular basis e; ® Ej, represents the i-th component of the force Py
presently acting on a surface element NdA, initially normal to the I-th
coordinate axis direction.

Using the stress principle (3.16) folowed by the divergence theorem, the
statements of static equilibrium (3.14) take the alternative forms

fPNdA = /DideV:O,

(3.17)
/xx PNdA = fDiv(xxP)dV:O,
A

where x X P is the mixed tensor given by (x X P)ir = €;;52;Per with E‘,Jk
denoting the usual permutation symbol {24].
Using the identity

. 9 .
[Div(x x P)]; = B—JQ(egjka:ijI) = (x X DivP); + ey, Fj1 Per,
the local forms of these principles reduce to

DivP = 0,

3,18
(3.18) FPT = PFT,
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he balance of moments confirms that the nominal stress tensor is not sym-
etric, a fact inherent in its nature as a mixed tensor.

3.8. Generalized stress

The lack of symmetry of the nominal stress P related to its mixed nature
a sufficient incentive to look for alternative stress measures.

The most common (and perhaps the most fundamental) stress measure
due to Cauchy and herein denoted by t. It is also called the true stress
ecause, by definition, it transforms a spatial element of deformed surface

nto the current elementary force acting on it, in accordance with dq = t, da.
t may therefore be related to the nominal stress (3.16) by means of the
urface transformation (2.12) by the formula

3.19) t= .—}—PFT (= 1), {Cauchy).

spite of its symmetry (which results from the balance of moments (3.18),
this classical stress measure is deliberately avoided in this study (except
s a standard of reference) because of its spatial nature. Its best material
ubstitute is the rotfated stress T apparently due to Noll, defined by

3200 T=RTJIR=RTPU (= 1T7), (rotated).

t is thus the true Cauchy stress scaled by the Jacobian and rotated to a
naterial status, hence its name. It transforms the contra-rotated deformed
urface element into the contra-rotated actual force. It may also be inter-
reted as the "stretched” stress, meaning the stress naturally associated with
he "stretched (but unrotated) reference configuration”, implicitly disclosed
y the polar decomposition of the line and surface transformations (2.23).

‘he product of the true Cauchy stress t by the Jacobian J is sometimes
alled the Kirchhoff stress [13].

Besides the rotated stress, several other material stresses have been pro-
osed in the literature, e.g. [36, 6, 34, 13, 58], among which the most
lassical ones are (See Appendix A for additional comments concerning the
erminology adopted here):
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(3.21)

S¢ = F-'P=U"ITU, (8¢ = 86T (20d P.-K.);
s = RTP=TU-Y, (sfU = wUsBT) (Biot), -
T = RTPU, (T = T17) (rota,ted);'
s = FTPU = UT, (U-1sff = sHTy-Y) (Hil),
s¥ = FTPC = UTU, (s¥ = gKT) (E.G.-R.)-’,
(dq = PNdA), (PFT = FPT). :

The unnatural superscript and subscript identification will reveal its si
cance later. The equation of balance of moments is given in parentiheses
enhance the symmetry of certain stresses and the lack of symmetry o
others. The interpretation of these stresses in terms of surface and fo
elements is postponed until a general treatment becomes available.

The above classical stresses may be conveniently collected into a o
parameter family analogous to the Seth strain family, called the classzc
family:

s = y-FRTPUU-T =U-TTU-% if m=2,0 -2
(3.22) n1
stm — - rTpuu-% =yu-"FTU" if m=1,-1

where the factor 2 is introduced simply for later consistency. Exphc1t
verses are available for all m.

The pivotal role played by the rotated stress, already acknowledged:
the special symbol T, is ratified by the central value m = 0. The cases m =
and m = —2 are recognized as the classical second Piola-Kirchhoff stress §
and the E. Green-Rivlin stress SX, respectively. The Green-Rivlin str
is often called the convected stress upon inspection of its relationship to the
spatial true stress, $¥ = FT(J t)F, disclosing a transport operated by t
deformation gradient. Conversely, the second Piola-Kirchhoff stress may
interpreted as the "contravected” stress since S¢ = F-1(J4)FT. It is th
the true stress pulled back to the reference configuration. The cases m =
and m = —1 are identified with the less known Biot stress S& and Hill str
ST, respectively, (the latter appelation is coined herein). These last t
stresses are not symmetric as acknowledged by the subscript 1. This lack of
symmetry represents a serious impediment to their practical use. However
by analogy with the stretch formula U = RTF, the Biot stress § = RTP
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i:s expected to play a similar role in statics to that of stretch in geometry,
hence its importance. It is the closest objective substitute to the nominal

\ O K NdA
N Hyg =8 K NdA

must depend on the deformation (say on the deformation gradient ¥) for
the above definition not to be trivial (since it would otherwise reduce to
a sterile fixed change of bases). The force and surface transformations H
and K are illustrated in Fig. 8. In fact, the stress enforced in a body may

.'(Q)By analogy with Eq. (2.12), the surface transformation could be written as an
adjoint |K|K™7T in order to prevent an awkward definition of the corresponding line
ransformation.
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be interpreted as a linear transformation from the vector space of oriente
surfaces into the vector space of forces. From this standpoint, the nomin:
stress P and the generalized stress S are just two different representatibh
of that same linear stress operator corresponding to two different choices ¢
pairs of bases for these spaces. The equivalence transformation (3.24) S
HPK™1, provides the missing link between the two representations P an
S, given the matrices of change of bases H and K, whether they are ﬁxe
or variable.

Relation between the resulting generalized stress S and the referen_c
nominal stress P is easily established, by identification, to be o

(3.24) P = [H(F)]'SK(F) or S =H(F)PK(F)}™"
It is clear that both the force and surface transformations H and K mus
be regular and adimensional in order for the above definition to make sens
from a mathematical and a physical standpoint, respectively. In terms:
linear algebra, a linear transformation such as Eq. (3.24), where both th
factors H and K possess an inverse, is called an equivelence transformation
Accordingly, the generalized stress S is said to be equivalent to the nomin:
stress P, The term "equivalence” implies the invariance of a certain intrinsi
"valence” during the transformation. Indeed it can be shown [37] that th
two related stresses are equivalent if and only if they have the same ran
that is, if and only if they both possess three independent principal stres
directions (which seems a sensible requirement). The adimensionality of th
factors H and K is dictated by the imperative necessity to generate a tenso
S with the correct dimension of stress (M L~172) in view of the lineari
of the transformation in terms of P.
Even with these stipulations, the generalized stress definition (3.24) Te
mains too vague to be fruitful, a fact which calls for additional l‘eStI‘]CtIOIl
A basic aim is to arrive at a material measure of stress, S(P, F) whlc}l..
is objective, i.e. one which will produce a (frame-indifferent) material for__c
when acting on a (frame-indifferent) material surface, in order to keep ot
marked preference for the material description. A quick look at definitio
(3.23) or (3.24) indicates that the force transformation H must be a mixe
material-spatial tensor, whereas the surface transformation K must be:
pure material tensor to achieve this aim. :
This conjecture may be proved as follows. Given the mixed spatial
material nature of the deformation gradient and the nominal stress, and th
material nature of the generalized stress, the principle of objectivity impd_s'_'
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he specific restriction:

S(P,F) = S(AP,AF), VA, AAT=1  ATA=i,

~ for any mixed material-spatial rotation A.

In particular, the above identity must be true for the transpose rota-
ion RY occurring in the polar decomposition of the deformation gradient.
Therefore, the generalized stress necessarily takes the form:

3.25) S = S(RTP,U) = V(U)RTP [K(U)]™ (objectivity).

1 other words, it is shown that the force transformation is a mixed material-
spatial tensor, which allows a transposed polar decomposition, whereas the
surface transformation is a pure material stretch function:

H(F) V(U)RT,

(3.26) K(F) = K(U).

The material stress RTP naturally disclosed in the process is recognized as
the (asymmetric) Biot stress SP.

Another important aim is to obtain an objective measure of stress which
s tsotropic i.e. one which will use the same force and surface scaling factors
n all material directions. It is emphasized that isotropy of the stress measure
does not mean isotropy of the material of course! It simply guarantees
that in case of an isotropic material the generalized stress will not show an
anisotropic response. Added to the objective formula (3.25), this hypothesis
- of isotropy imposes the cumulated restriction:

ASRTP, U)AT = S(ARTPAT, AUAT), vA, AAT=ATA =],

for any material rotation A. Material isotropy alone requires AS(P, F)AT =
S(PAT,FAT), VA. When added to spatial objectivity, it produces the indi-
cated restriction. Given the linearity of the objective stress function (3.25)
in terms of the Biot stress (which guarantees isotropy with respect to that
variable) the material force and surface transformations taken separately
must he isotropic:

AV(U)AT = v(auAT),

(3.27) AK(U)AT = K(AUAT) (isotropy).
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The isotropy of V(U) and K(U) implies their symmetry V = V7 and K
KT as well as their ability to commute VK = KV. _

A final aim is to ensure that all stress measures will coincide for evan
cent deformations, which means the following consistency conditions
required:

(3.28) VI =K@ =1 (consistency).

To complete this series of restrictions, it is useful to state the balance o
moments equation SPU = USPT in terms of the generalized stress §: =

(3.29) VTISKU = UKSTv? (balance).

Because the stretch tensor U is contiguous to the surface transformati
K(U), they should be merged into a single operator [W(U)]~! (best written
as an inverse for convenience) in order to simplify the above equation:

(3.30) [W(U)! = K(U)U.

Of course the modified inverse surface transformation W(U) inherits the
properties of isotropy, symmetry, commutativity {with V(U)), and cons_;s_
tency of its originator K(U). '

Substitution of the above modification into the generalized stress formula
(3.25) produces the alternative form:

(3.31) S = VURTPUW(U) = V(U)TW(U),

aiming at a standard definition of the corresponding line transformation.

The pivot stress obtained for V(U) = W(U) = I is recognized as the
rotated stress T defined by Eq. (3.20). In other words the Biot stress Sf
is traded for the rotated stress T in the process. Accordingly, the reference
surface transformation K(U) is replaced by the stretched surface transfor:
mation [W(U)]~%. As predicted, the balance of moments simplifies to

(3.32) Volswt = wolsTy-! (balance).

To recapitulate, a generalized stress (not necessarily symmetric) may be de-
fined as an equivalence transformation of the (objective, symmetric) rotated
stress T, resulting from its premultiplication by a (regular) force trans-
formation V(U) and its postmultiplication by a (regular) inverse surface
transformation W(U). In addition, both transformations are assumed to
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be isotropic functions of the (objective, symmetric, positive-definite) stretch
tensor U (which implies that V and W are also symmetric and that they
commuie). Finally these two transformations are taken to reduce to the
identity in the reference configuration. More specifically, a generalized stress
_fna,y be defined as

(3.33)

8 = V(U)TW(U) (objectivity);
AV(U)AT = V(AUAT), (=V7),

: (VW = WV) (isotropy);
AW(U)AT = W(AUAT), (= WT),

' V(I) W(I) =1, (consistency);
= [v(u)Iisw(u)t, (= T7), (regularity),

where A is an arbitrary material rotation AAT = ATA = T and relevant
minetries are indicated in parentheses.

The connection between the above definition (3. 33) and the original defi-
nition (3.25), in terms of the nominal stress P and the deformation gradient
T, is repeated here for completeness:

S = H(F)P[K(F)],
H(F) = V(INRT,
[K(F)]™' = UW(U).

Interesting categories of generalized stresses may be obtained by imposing
‘additional optional constraints between the force and the surface transfor-
mations, in correlation with special classes of equivalence transformations
und in linear algebra (see Fig. 9)

V(U) = W(U) (congruence),
(335 V(U) = W(U)™! (similarity),
V(U) = I or W(U)=1I (left or right identity).

ongruences are the most important because they preserve symmetry, mean-
g that they produce symmetric stresses S = ST, Hereby they guarantee
ot only the automatic satisfaction of the balance of moments (3.32) but also
e reality of the principal stresses and the orthogonality of the principal
‘directions, which greatly simplify the formulation and solution of problems.
REMARK. Note that the true stress Jt (Kirchhoff} and the rotated stress
= RTJtR have the same principal stresses, whereas their principal di-
ctions differ by R in orientation. It follows by transitivity of equivalence
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relations that stresses congruent to the rotated stress are also congruent

the Cauchy stress.

Moreover, it can be shown [37] that two symmetric stresses are congr
ent if and only if they have the same rank and the same signature, whi
seems a sensible requirement. The signature of a symmetric stress tensor
is the number of positive principal stresses minus the number of nega.tl
ones. Similarities preserve the principal stresses (whlch adds nothing), but
destroy the orthogonality of the principal directions (which is a severe lbs:
Therefore their interest is limited. Half identities, also called right and le
equivalences, are awkward because they preserve nothing. In different terms
two stresses are congruent if forces are transformed as lines (within a J:
cobian). On the contrary, two stresses are similar if forces are treated:
surfaces. The former association is more attractive than the latter, both
principle and in practice.

Incidentally, note that the regularity of V and W may be favorably
replaced by their positive-definiteness to preserve the sign and order of t
principal stresses and directions.

Among the classical stresses introduced in Eq. (3.21), it is clear that
the second Piola-Kirchhoff stress S¢ = U~1TU-! and the E.Green-Riv
stress S5 = UTU are congruent to the rotated stress T. On the contrar
the Biot stress 7 = I'TU~! and the Hill stress Sff = UTI, obtained.
left and right identities, are barely equivalent to the rotated stress. _

(Note however that the Hill stress is congruent to the Biot stress, sH
Usfu).
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Although, in general, non-congruent stresses are not symmetric, two
stresses Sy and S, obtained by exchanging the force and the surface trans-
formations V and W are observed to be transposed into each other (due to
the symmetry of V and W),

S1=WTV = (VIW)T = 57,

REMARK. An important exception occurs in bodies made of isotropic
‘materials. In such media, the stretch and stress tensor U and T have the
same principal directions and therefore they commute. Since V and W are
isotropic functions of U they also commute with T. It follows that S =
VIW = VWT = WVT = WTV = 87 is symmetric even for V # W.
Moreover, two such stresses are found to be similar to each other (since
V and W commute),

$1 = WTV = (WV ) (VIW)WIV) = (VW 1) 15 (VW™1),

‘Combining these two observations shows that a generalized stress is similar
toits transpose and the similarity transformation which links them is simply
another expression of the balance of moments (3.32):

;'(3.36) sT = (vw - lg(vw-1)

Of course, this similarity reduces to an identity in the case of congruent
stresses. ,

The above similarity between one generalized stress and its transpose
suggests a symmetrization should be performed in order to restore symmetry
and unicity:

(3.37) S= %(S +8T) = %(VTW + WTV) (symmetrized).

or instance, following [6, 38, 39, 40], the Biot stress and the Hill stress may
be symmetrized into

1 1
= 5(8119 +88) = é-(TU_1 +U™'T) (Jaumann),

1 1
= 5(s{ﬁrs?) = 5(UT + TU).

However, this operation of adding one asymmetric stress tensor (better con-
:'S"idered as a linear operator transforming a surface vector into a force vector
for the present purpose) to its transpose (relating covectors) does not seem
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legitima,te(s) (in the same way as the addition of the deformation gradient
to its transpose in order to form the Cauchy strain Eq. (2.25) was limited
to infinitesimal deformations). As a matter of fact, symmetrized stress
such as Eq. (3.37) lose the quality of their asymmetric originators of bei
invertible. They thus lose their interpretation in terms of a surface a,liii_[
force transformation. In other words, they lose their equivalence with t
rotated stress, which is the essential condition for their existence(®). Final
their artificial symmetry is, of course, not equivalent to the balance of m
ments, which must in any case be enforced separately. For all these reas
such symmetrizations must be performed with extreme caution.

REMARK. A more acceptable procedure for arriving at symmetric
stresses similar to their asymmetric originators may be § = vVUWTVWU,
For instance a stress similar to the Biot stress is 8F = vU-1TvVU-1
VUF~1P+/U. These symmetric stresses would antomatically satisfy the b
ance of moments. However, their utilization would remain complicated due
to the presence of square roots. Note by the way that PTP = S8SE No
also that the symmetrized Hill stress remains congruent to the symmetnzed
Biot stress SH = USPU.

Now, by analogy with the generalized strain isotropic function expahsm_n
(2.32), the force and the surface isotropic functions may be represented b

V(U) v U 4 oI + v U,
W(U) = w_ U+ wl+w,U,

(3.39)

where the coefficients » and w are (symmetric) functions of the princip
stretches A as before, and powers are restricted to (p = 1,q = —1} by refe
ence to the classical stress measures (3.21). Pursuing both comparisons sug-
gests that investigations should be restricted to constant coefficient expal
sions, satisfying the inequaliﬁes 0 < v_ < 1, etc. for positive-definitene:
Finally, the consistency conditions further restrict the choices to conv
combinations characterized by

(340) v- + vo + vy = 11 0 S Ve V0, Yy S 17

w_+1U0+’£U+ = y OS’I‘.U_, wo, ’lU+S1

(5) The problem consists in adding two tensors with different principal directions, bette
illustrated by the formula § = [S + (VW ~)7I8(VW))/2. o
2

(®) Symmetrization destroys eigenvalues and rank as illustrated by .S = {1) 1
1 1

A=1, Ap =1, T‘k=2;g_=[1 1

],,\1=2, Az =0, rk=1.
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- To summarize, a generalized stress measure admits the representation

i. 3.41) S = (v_U + vl + v, U)T(w_U"! + wol + w, U)
=v_w_ UTITU 4 o_wo U T + vow_TU™ L 4 voweT
+’U._‘UJ+U-1TU + vyw_ UTU_l + v+w+UTU + ’!)..|.’-‘.UOUT + vow+TU,

_where the constant coefficients v and w are constrained by Egs. (3.40).
_Consult Appendix E for an alternative derivation of this representation. An
verse formula exists, although in general it cannot be expanded,

T = (v-U" + 0l + v, UY1S(w_U™! + wol + w, UYL,

S = v2UT'TU™ 4 v_v(U™'T 4+ TU™ ) + 02T
+o_v . (UT'TU + UTU™Y) + 02 UTU 4 v, 0(UT + TU).

j__Symmetrized stresses have the similar representation
S =v.w.UTITU ! 4 %(v..wo + 2w }(UTIT + TU )
+ogwgT + —;—(v..w_;_ + vpw- )(U—ITU + UTU_I)
+v+w+UTU + é—(v+wo + vowy XUT + TU).

Therefore the fundamental difference between congruent and symmetrized
stresses depends entirely on subtle couplings between the coefficients of their
:__ Xpansions.

. The stress representation (3.41) reveals the existence of nine basic stresses
‘which may be conveniently collected into the two-parameter family

(3.44) S=U2RTPUU 3 = U"3TU %  (basic),

where both m = 2, 0, —2 and n = 2, 0, —2. The nine members of this
"basic” family are given in Table 4 for clarity. Five of these are recognized
as the classic stresses introduced in Eq. (3.21). Two more are found to be
the transpose of the Biot and Hill stresses. The last two are identified with
the Atluri stresses introduced in [10]. .

. The names indicated in parentheses have been attributed to the best
of our knowledge. According to a more anonymous terminology, all these
stresses may be referred to the spatial true stress as the left/right-contravec-
ted/ contrarotated/rotated/convected stresses. For instance, the first Atluri
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Table 4. The family of basic stresses.

1 2 0 -2
w U I U
m v H K 1 U C
s8¢ =F'P sf =pTR S = PTF
+2 U F? =U-lTyU~!? =U-'T =U-'1TU
(2nd Piola-Kirch.) | (2nd Biot) {(2nd Atluri)
SF = RTP T=RTPU |S¥=UP'F
o 1 RT =TU™? = TU
(1st Biot) {totated-Noll} | {2nd Hill)
St =FTP S =FTPU | 8K =FTPC
-2 U ¥FT =UTU™? =UT =UTU
{ist Athuri) (1st Hill) (Green-Rivlin)
stress S{t = FT(Jt)F~! becomes the left convected — right contravecte

stress, whereas the second Hill stress S5 = RH{Jt)FT may be called the left
rotated — right convected true stress. Anticipating stress-strain conjugac
the superscripts used to identify these stresses correspond to the ones on
their conjugate strains, in order to avoid a profusion of symbols.

Of course, the diagonal members in Table 4, obtained for m = n, a
symmetric as congruent products of the rotated stress T = T7, whereas th
off-diagonal members, obtained by permuting m and n, are checked to be
transposed into each other S(m,n) = S(n, m)T. Finally, the Atluri stresses,
characterized by m = —n, are observed to be similar to the rotated stres
which relegates them to the status of curiosities.

The fact that, with the addition of the Atluri stresses, all the classical
stresses and their transpose form a basis for the representation of the gene
alized stress (3.41) is reassuring. (It is sufficient to take one » and one w
equal to one and the others equal to zero in sequence to scan the basis)
On the contrary, the finding tha,t', in general, the arithmetic mean of two
classical stresses is not a generalized stress-in_ the sense of Eq. (3.33) is very
disappointing. (This is due to the unavoidable coupling between the v and
w coefficients in Eq. (3.41)). In particular, it is confirmed that the sym-.
metrized stresses of Biot, Hill and Atluri are not admissible stresses in the
sense of Eq. (3.33). The same criticism applies to the inverse representatio
(3.42) (even though it cannot be expanded). For instance, the arithmet
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- mean of the second Piola-Kirchhoff and the E.Green- Rivlin inverse stress
functions (T = USYU and T = U~'SKU~1) is not an acceptable general-

ized inverse: )

2
This is unfortunate since the above stress SM will shortly be shown to be
~ conjugate to the Mooney strain (2.35).

These criticisms indicate one should give up the idea of a force and a sur-
face transformation as a basis for a generalized stress definition and accept
instead of Eq. (3.41) arbitrary convex combinations of the form

T=_-USMU+ %U"SMU‘l )

9
(3.45) S=5.8:, Y. %=1 02s8Z]1,
a=]1
where s, are now nine independent (instead of coupled) coefficients, and
S, are the nine basic stresses (3.43), sometimes also called generators (see
Appendix E for another justification).
A similar expansion may be written for the inverse relationship

T=tTs Y ta=1 0<t<]

where T, are the nine inverse stress functions defined by
T = UM2sU™/? |

This approach has not been pursued further.

3.4. Slress power

The main weakness of static definitions of stress, such as Eq. (3.24) or
Eq. (3.33), is their failure to reveal the definite correspondence between any
given stress measure and a certain strain (and vice versa). Only a dynamic
picture relying on the concepts of virtual power or real energy can remedy
this shortcoming.

A statement equivalent to the balance laws (3.18) is the principle of
virtual power [41] (or, [42], the principle of objectivity of the balance of
energy [43, 44]). In essence, this principle states that the virtual (or real)
power of deformation of a body must vanish in any virtual (or superposed)
rigid body motion. More specifically, in the absence of body forces,
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(3.46) / v-PNdA = f Div(v -P)dV = 0,
A v

whenever the virtual (or superposed) velocity v is in the form v{X) = ¢
+ Q(X)x, where ¢ and © = —Q7 are two arbitrary velocities of transla
and rotation, respectively. (The proof of equivalence relies upon the iden
2xP = wxx-P = wxxP, where w(X) is the rotation vector associated ;
the skew rotation matrix (X)). ;

REMARK. According to {45] the origins of the principle of virtual po
may be traced back to Leibniz (1686), d’Alembert (1743), Lagrange (1788
Coriolis (1829} in connection with rigid body dynamics. According to [
its first formulation in continuum mechanics is due to Piola (1833). =

REMARK. The skew rotation tensor 2 has nothing to do with t
material stretch spin ) introduced in Eq. (2.46).

By distributivity of the divergence with respect to the scalar produ
and enforcement of the local statement of equilibrium, the integrand in E,
(3.46) may be reduced as follows

Div(v-P) = g—x P + v - DivP = tr(FTP),

where the trace operator is defined as
t(FTP)=F:P=FyP; (= u(PTF)).
The familiar form (Weyxe = Win) of the principle of virtual power fo]low_%
(3.47) /A v PydA = J[ (FTP) aV,

which is true for any velocity field v and corresponding deformation gradlent;
rate F' and vanishes if and only if v =c + {Ix.

REMARK. Our notation does not distinguish between applied traction
Pp on the outside of the body surface and reaction stress vectors Py
PN on the inside of the same surface because of our a priori acceptance of
the action-reaction and stress principles. Conversely, one can postulate th
existence of an internal power in the form (3.39), and thereby of a stress
tensor in the form P and derive the stress and the action-reaction pr1nc1pl
[46]. |
The main advantage of this principle is not so much to constitute:
concise statement of the equilibrium equations but rather to provide a fun
tional link between the deformation gradient F and the nominal stress P in:
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articular, and between kinematics and dynamics in general, as advocated
iy Lagrange (1788) and more recently by [46]. For this reason, the prin-
iple of virtual power may legitimately be regarded as an integral part of
onstitutive theory.

. As a matter of fact, the right-hand side of statement (3.47) constitutes a
Jefinition of the internal power developed in the body during its deformation.
By further postulating that this internal power must remain invariant under
o replacement of strain measure, a rigorous (though implicit) definition of
he conjugate stress is obtained

3.48) f t(ETS) dV = j (ETP) dV.
14 : v

t is emphasized that the above definition of conjugacy apparently due to
13] is biased and limiting. A more general {and in many respects more
atisfactory) statement of conjugacy would read

j tr(UTs°)dﬂ=ftr(PTF)dV,
Ve v

where £° would denote an objective strain rate associated with the volume of
ntegration v° or, more exactly, with its mode of deformation, and would be
the corresponding stress. For instance, the spatial deformed volume v could
be retained together with the convected rate of Rivlin. The stress power
per unit of deformed spatial volume is related to Eq. (3.41) by tr(se?) do°
= tr(td)dv = tr(PTF) dV. This equality provides a rigorous definition for
alternative spatial stresses provided objective strain rates are used. It is most
mportant to realize that different definitions of conjugacy may apparently
associate different stresses to the same strains. For instance, anticipating a
< little, the rotated stress (divided by the Jacobian J), instead of the Green-
~ Rivlin stress, would be found to be conjugate to the Karni strain if the
. "stretched configuration”, instead of the reference configuration, were used
in the definition of conjugacy. Accordingly, the Cauchy stress would be
shown to be conjugate to the Almansi strain [47] rather than to the logarithm
strain [8] in a spatial description, if the deformed configuration together with
* the Rivlin-Ericksen rate were used instead of the reference configuration and
the material rate, .

The material bias of definition (3.48) being well understood, a local defi-
nition of conjugacy follows by assuming sufficient regularity

(3.49) tr(STE) = tr(PTF) = W.
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Put into words, the stress S conjugate to any given generalized strain
implicitly defined by the requirement that the stress power per unit of m
terial volume developed by this (still hypothetical) stress at the genera,hzed
strain rate E must be equal to the reference power developed by the nom _
stress P at the deformation gradient rate F. S

It is pointed out that the symmetry of the generalized strain rate E .E
implies neither the symmetry nor the uniqueness of the conjugate stress :
a priori, as illustrated by(")

tr(SE) = tr(ST}:]) =1{r [-2—(3 +sTE + %(S - ST)E] , §#£87, E= E

In other words, statement (3.49) completed by the symmetry (E E!
defines a class of conjugate stresses (differing by a skewsymmetric pa,ri;)-
rather than a single item. This absence of both symmetry and uniquene,

is precluded in [6, 33, 13] by selecting the symmetric part §= -(S + ST)

the stress emanating from Eq. (3.49) as the canonical representanve of th
class. Th1s choice is based on the realization that the skewsymmetric stress

S = —~(S ST) will not develop any power when acting at a symmetr
deformation rate, and is motivated by the wish to obtain a reflexive definitio
of conjugacy. In other words, a skewsymmetric stress is orthogonal to a
symmetric rate in the sense of the stress power scalar product. With thls'-
convention, the conjugate stress definition becomes

(3.50) tr(3E)=tr(PTF) =W, &= %(s +8T),  E-ET.

However, because certain symmetrized stresses § show a number of failihg_s__"
denounced in the previous section, it is advisable to check, in each particul
case, whether the produced stress is genuinely or only artificially symmetric’
(by checking whether it is congruent to the rotated stress or not, for exam:
ple}. Another danger of untimely symmetrization has been recently pomted':
out by [48] in a different context. _

Now, unlike the static notion of generalized stress (3.33), which is free
of any strain connotation, the dynamic concept of conjugate stress (3.50)_ié;_::

(DThe trace of a matrix product is unaltered by a cyclic permutation of the factors;:
e.g. t1(ABC) = tz(BCA), and is equal to the trace of the transpose of the product, e’
r(ABC) = tr(CTBTAY) = tr(CBA) for symmetric matrices. Moreover, the trace is a:
linear operator, i.e. tr{eA + FB) = atrA + ftrB.
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related to a definite strain. This link may be further specified by substituting
the rate dependence (2.51) in the trace statement (3.50)
. e = [ dE . LdEY .
Ty _ as - ax
tr(P*F) = tr(SE) = tr [S (dFF)] tr [(S dF) F] .
An explicit definition of the conjugate stress follows by identification.

T -T
(3.51) P= (%) S o 8= (%) P,

where the transposition means Pir, = g%fs 14

Hence the formulation of the equation of equilibrium (DivP = 0) in-
volves the expression of the generalized strain derivative with respect to the
deformation gradient. Conversely, the conjugate stress definition is tied to
the inverse strain derivative. However compact and neat this definition may
appear, it remains obscure and sometimes deceptive because, as already
pointed out, the strain derivative dE/dF is often difficult (if not impossible)
to express and even more to invert. A more reliable procedure for obtaining
a specific conjugate stress is the substitution of the relevant strain rate in the
stress power equivalence (3.50) and the identification of the terms explicitly
after a few trace manipulations. As a preliminary and crucial illustration,
consider the rotated rate explicitly given by Eq. (2.40). The conjugate stress
is defined by

t(PTF) = tx(8D) = tr [s-;- (RTFU 4 U“]?‘TR)]

1 — . . - - .
= -Q-tr(U__lsRTF) + %tr(FTRSU 1) = tr[(U'ISRT)F].
It follows by identification that

P =R3U™ or S=RTPU=T.
Therefore the rotated stress T is conjugate to the rotated rate D
= (3.52) W = te(PTF) = tr(TD).

Readers are reminded (to eliminate any ambiguity) that the symmetry of
- the rotated stress results from the balance of moments.

To illustrate another type of derivation, consider next the stretch rate
mplicitly defined by Eq. {2.42). The conjugate stress satisfies

tr(SU) = tr(TD) = tr [T%(U'II'I + I'JU“)]

= tr [%(TU“ + U-IT)L'I] = 2(8°0).
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It follows by identification that Biot’s symmetrized stress is conjugate to th
stretch rate and therefore to the Biol strain :

(3.53) W = (TD) = tr(§%U) = tr(SPEP).

It is again emphasized that the asymmetric Biot stress SB (or its transpose
SP) are also conjugate to the stretch rate U, as stated in {10]. More gen
erally, if a stress S is found to be conjugate to a symmetric rate E via Eq

(3.50), and if this stress is decomposed into a sum of the form S= -—(S +s7

with 8§ # ST (which is always possible), t hen S and 87 are also conJugate t
the strain E. A definite choice must rely on an additional relationship such
as t1(SB) = tr(TA) = 0, where 2A = UU™' - U-1U s the rotated spin
tensor and B the generalized spin tensor corresponding to E. :

At this point it is instructive to look at the inverse problem of findin .
a strain conjugate to a given stress. Substitution of the symmetrized stress
expression (3.37) in the symmetrized stress power (3.50) produces by ide
tification the rate relationships

D = %(WEV+VEW),
(3.54)
- %(K—1EH+HEK*‘).

It is emphasized that the substitution of the unsymmetrized stress expression
(3.33)-(3.34) in the unsymmetrized stress power (3.49) would produce incor-
rect rates even after their symmetrization (except for congruent stresses). =

The difficulties presented by the inversion and the time integration of
the rate formulas (3.54) make the inverse problem much harder to solve
than the direct one. For congruent rates (conjugate to congruent stresses
characterized by V = W) the inversion is trivial, but the integration remains:
exceptional :

(3.55) £=v-ipv-l = v-Y(U-lU + TuTHhvl,

No such simplifications emerge from similarity or half-identity transforma-
tions, which demonstrates once again the superiority of congruences.

Of course, the representations (3.39) of the force and the surface transfor-
mations V and W may be used to derive corresponding representations of
the generalized strain rates (3. 54) or (3.55). Such developments are omitted
Lere. :
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3.5. Conjugate stresses

In terms of the reference pairs of stress-strain rate measures (§2 — U),
(PT —¥) or (T — D), the definition of the generalized stress S conjugate
to a generalized strain E takes the alternative forms

W = tr(SE) = t=(§B0) = tr(PTF) = t(TD),
: dE - _dE. _ e
s _ (9ENT"=p _ (@)_ T _ ge1 _ &T
§ = (dU) 8% =(25) PT =E'T (=87

Using the above definition and the usual properties of the trace operator,
it is simple to show that the classical stresses (3.21), properly symmetrized
according to Eq. (3.38), are conjugate to the classical strains (2.26) via the
strain rates (2.53) (with one exception for the rotated stress (3.20) which is
strictly conjugate to the rotated rate (2.40), but only approximately conju-
gate to the natural strain (2.28)). More concisely,

(3.57) W = tr(SE®) = tr(5PEP) = tr(TD) = t(S7EH)

= tr(SKEK) = t2(TG).
Relationships between the classical stresses such as Eq. (3.21) follow at once
from Eq. (3.57) and are not repeated here.
Accordingly the symmetrized stress of the Seth family (3.22) is conjugate
to the corresponding strain (2.27) via its rate (2.54) (with the same provision
as above for the case m = 0)

(3.58) W = t(8MEM)Y, m=121,-1,-2.

Now, it follows from the linearity of both the time and the directional deriva-
tive on the one hand and the linearity of the trace operator on the other
hand that

if E = E® 4 __q__E(q),
pP—9q q—p
and E® = E@D; E() = E@D,.
3.59 .
(3:59) then E= [LE@) + E("*‘)] D
P9 g-p |
and T = [.._p_E(?) + 9 E(q)]g
P—q —P
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The proof of this proposition is straightforward simply by substitution, p
mutation and identification in Eq. (3.56). Several corollaries can be de
rived by taking different rate-stress pairs for reference. For instance, usi
(8P — V), produces the final result '

§B— . dE(p)_l_ g dEW® S
~|p—g dU q—p dU

Alternately, using the pair (P — F), yields

p dE® g dE @ 5
“|p-qdF T g¢-pdF

These important results (too long to be put into words) provide the ke
to the determination of the stresses conjugate to the strains of the rub
family, whenever the relevant strain derivatives are available. '

For instance, since all the rubber strain rates have explicit expressions
terms of the stretch rate given in Eq. (2.55), the conjugate rubber stresse'
are implicitly defined in terms of the Biot stress by

= %(SP + U tsfU) (Pelzer), .

5P = % [US™ 4 sMU + UT1(U~18M + SMU)U™?| (Mooney

(3.60)
§F = % [s% + UL (U1sY + SWUTHU Y (Wall),
5B = %(USR + SRYU + U-IsRUY) (Rivlin

equtions of equilibrium are different to state in terms of Biot’s symmetrize:
stress. The situation is better for the Mooney strain since its conjugat
stress is also given by

T = %(USMU-!-U“SMU“),
(3.61) X
P = -2-(FSM +F-TsMch).

Therefore the Mooney strain is the only one with a workable conjugate stres
among the rubber family members. However, the fact that the Mooney stres
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is not congruent to the rotated stress (in spite of its genuine symmetry which
implies the balance of moments) still condemns it to oblivion.

Finally, to complete this presentation of conjugacy, the spectral form of
conjugate stresses must be derived. To this end the definitions in terms of
the rotated rate I and the stretch rate U in Eq. (3.57) are of course the
most adapted. In spectral form these statements become

(3.62) W =tr(SE) = SuE. = SBU = T D, a,b=1,3.

- Substitution of the spectral relationships (2.62) between the generalized
' strain rate components ]:Bab and the references rate components I..Tab and
- D, produces the desired formulas simply by identification of the compo-
'~ nents (no summation over the repeated indices),

- _ 1 =z _ 1
- (3.69) S oW R W W R
S'ab — )\b - )\a gﬁ — ()\a + /\b)('\b — Aa) Tab )

E'(As)— E(Xa) 22X X[ E(Xs) — E(Aq)]
- Here again the first relationship reproduces the uniaxial formula (3.9) where-
as the second relationship generalizes it to three-dimensional deformations.
.~ The spectral form (3.63) offers the valuable advantage of being explicit and
' invertible for any generalized strain function E()). For instance, the stress
* exactly conjugate to the natural strain (2.28) is easily found via the natural
rate (2.58) to be (no summation over the repeated indices)

gcm, = Aagi = Toa »
Ap — Ag GB _ (/\a, + Ab)(f\b — Ag)
Loghs — Logha ® ~ 92X, Xp(Logh, — Logha) **°
The offdiagonal relationship shows the difference which separates the natural
. stress S from the rotated stress T. Similarly, the stresses conjugate to the

. rubber strains (2.34) are readily derived by inversion of Eq. (2.63) to be (no
. summation over the repeated indices)

o pP—q
Sos = mTaa:

s _ P—q At Ay — Aq
T T2 NN NN+ A

- Using the formal notation (2.64) the stress power may be expanded into

Ty .

tr(3E) = t:[S(E + QE — EQ)] = tz(SE) + tr[(ES — SE)Q).
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The above decompositon shows that the antisymmetric tensor ES — SE is
measure invariant as pointed out by [13]. In isotropic media, this stress
"couple” vanishes since S and E commute and the stress power reduces to

the diagonal contribution tr(S f})

3.6. Stress-strain pair-law interaction

It is worthwhile at this point to give an idea of the incident of a change of
stress-strain pair on the eventual form of a stress-strain law for a fixed force-
deformation response of a body. Academically speaking, it is easier to ad-
dress the converse question of estimating the change in the force-deformation
response of a body produced by a change in the stress-strain pair definition
for a given stress-strain law. For this purpose, the simplest case is to con:
sider a linear elastic law and to look at the pure traction-elongation response
of a bar. In this instance, the elastic stress-strain law reduces to a scala,r
relationship characterized by the single elasticity modulus :

(3.66) | S = EE.

In (3.66) the modulus of elasticity E must not be mistaken for the linear
operator E involved in Eq. (2.51) in spite of the notation overlap. It is
simple to show (by means of Egs. (3.1}, (3.6), (3.66), and (2.1) in that
order® that the corresponding global force-displacement response of the
bar is the nonlinear function

- ' ¥ ¥
3.67) ¢ = EAE (1+ L)E(1+L),

where u = [ — L denotes the end displacement of the bar produced by the
applied load ¢, and A is the original cross-section. Therefore, the force-
displacement response of the bar is in general nonlinear in spite of the hy-
pothesis of a linear stress strain law. It is checked however (thanks to the
consistency conditions (2.4)) that all stress-strain pairs give rise to the same
usual stiffness of the bar for sufficiently small deformations: '

EA

(3.68) 1=+

1+E”(1) + .. }

Instead of the force-displacement response (3.67), it is preferable to express
the nominal stress P in terms of either the small strain ¢ or the stretch ratio

g = AP = AE'(A)S =EAE'(ME(X) =EAE'(1 + u/L)E(1 + u/L).)
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A for comparison with standard experimental tests or analytical models,
respectively,

(369) P =EE(1+e)E(+¢) = EE(NE().

Tor the "rubber” stress-strain family, the latter response function takes the
form(®)
pAp_'l — qAQ"l )‘P — Aq

3.70) P=E , -2<¢<0<p<2
(3.70) P-q P—q P

The eight response functions implied in Eq. (3.70) are shown in Table 5
and plotted in Fig. 10 with E = 1 for simplicity. (The corresponding stress-
strain laws are added as a reminder). Similar expressions are given by [48]
for the classical stress-strain pairs.

Table 5. Stress-strain ratio response functions.

q
p 0 -1 -2
SH = pH S¥ =F¥
0
1 1 171 1
P=%-% P=3(3-%)
$% = p¥ st =F? SV = gW
1
1 1 1 1 2
P=x-1 P=;(0-%) =5 (0 +w-%)
$% = EC SR =R §M — pM
9 _
1,4 1( s 1) 1(3 1)
=— (A=A P=- -1 — == ——
P 2( ) s -1-gm) 1 P=g (¥ - 53

Therefore the Biot stress-strain pair is the only one to produce a force-
displacement response which coincides with the assumed stress-strain law at
finite strains in a simple tension experiment. The Green strain — conjugate
stress pair "buckles” under compression whereas the Hill and Karni pairs
?fail” in tension. The rubber pairs are better behaved in that respect.

(®)The exponent ¢ must not be mistaken for the applied load ¢ in spite of the notation

¢ overlap.
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For completeness, note that a linear law between the rotated stress and
the natural strain results in the almost acceptable response [49]:

Log A
A _

This elementary analysis is sufficient to demonstrate that the simplest co

stitutive theoris such as linear elasticity or classical plasticity cannot be

(3.71) T =G, P=

applied naively to finite strain problems unless the stress-strain pair used in
the formulation is judiciously selected. A similar warning applies a fortior:
to the spatial description where, as was shown by [50], a linear isotropic law
between the Cauchy stress and the Almansi strain does not even define a
elastic material.
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APPENDIX A. A BRIEF HISTORY OF STRAIN AND STRESS

- According to [2], the strain introduced by G.GREEN (1841) was indepen-
_dently formulated by ST. VENANT (1844) and later generalized by BRIL-
oUIN (1925). The herein KARNI strain, which is the material form of the
ell-known spatial strain introduced by ALMaNsI (1911) and HAMEL (1912)
nd generalized by MURNAGHAN (1937), was jointly published by Karn1
nd REINER (1968}, who also gave the spatial form of the GREEN strain
(which it would be fair to call the REINER strain). An allusion to it may be
found in DOYLE and ERICKSEN (1956).

The strain proposed by Bror (1939) constitutes the proper objective
eneralization of the small strain formulated by Cavcry (1822). The strain
erein referred to by the name of HiLL (1968} is the material form of the
- more familiar strain vaguely described by SwAINGER (1947} and rigorously
“defined by HersHEY (1952) in spatial form. Finally the natural logarithm
strain attributed to HENCKY (1928) was previously introduced by LupwIck
(1909) and even by IMBERT (1880).

_ All these classical strains were integrated into a one-parameter family by
DovLE and ERICKSEN (1956) and later studied by SETH (1964).

Hints leading to the PELZER (1938) and WALL (1942) strains may be
und in the traction-elongation relationships established by these authors
their attempts to explain the behaviour of rubber through its microstruc-
ure. However, in none of these studies are they presented as candidate de-
formation measures. On the contrary, the similarity of the PELZER strain to
‘a measure of strain magnitude suggested by TRUESDELL (1960) [2.Eq.30.9]
is striking,
~ Hints leading to the MOONEY (1940) and the RIVLIN (1947) strains are
vailable in their stress-stretch relationships derived from strain energy func-
ons constructed by invoking macroscopic arguments to model the response
f rubber also.

According to [2], the notion of stress vector can be traced to GALILEO
638) and was gradually extended by, among others, PAscAL (1648), the
BERNOULLIS (1691 and 1743),Covroma (1776), EVLER (1749) and CAUCHY
823) who cleverly extricated the concept of stress tenser, The nominal
ress associated with the deformation gradient and the stress conjugate to
he GREEN strain are both due to Piora (1833) and also to KIRCHHOFF
852), thus their alternate designation of first and second Piola-Kirchhoff
resses, respectively. Other sources attribute the nominal stress to Bovssi-
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NESQ (1872) and TREFFTZ (1928). :

According to [12], the convected stress was introduced by E.GREEN and
RivLIN (1956) (within a factor equal to the Jacobian J) and it was later
found by Hivr (1968) to be conjugate to the KARNI (-REINER) strain (which
is the material form of the ALMANSI strain). The material true stress was
introduced by NoLL (1957) as the rotated CAucCHY's spatial true stress
(1823), later modified by HILL (1968) as the rotated KIRCHHOFF’S spatial
stress (1852), equal to CAUCHY’S stress scaled by the Jacobian, and alsc
found by him to be nearly conjugate to the natural logarithm strain,

The stress introduced by B1oT (1965) was clarified by ZIEGLER (1967)
LURE (1968) and HiLL (1968). Sometimes its symmetric part is attributed
to JAUMANN (1918). The stress conjugate to the HiLy strain (which is the
material form of the SWAINGER strain) is also attributed to HiLL (1968) al
though he did not give any special attention to it in his generalized deﬁnitidi_i‘
TRUESDELL and WANG (1973) mention it explicitly. Finally, the stresses in:
troduced by ATLURI (1984) are alluded to by ASTARITA and MARUCCI a
upper/lower — left/right convected stresses (1975).

APPENDIX B. COEFFICIENTS OF THE REPRESENTATION OF AN
ISOTROPIC STRAIN FUNCTION o

More specifically, assuming for the moment that the three princip_
stretches ), are distinct and equal to a, 8, 7, respectively, the solutior
of the system (3.31) for any admissible p and ¢, takes the form

ﬂrq_aq

(afy)? 3¢ — ~*

T @= )~ ) — )ATD [ (B Plo)+ WE(m |
+ a( ;){qu(v)]}
ECE: (—ai?()v ~ a)AB) _sz;),im e %ﬁim)
asta ol

gl (67 = 9)B(a) + (37 - ") E(H)

+Ha? — 87)E()]

TRy CR NG
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where
Al =1, A" = af + By + 7a,
A =at+f+y, AP = (a+B)(B+7)(7+a)

Of course, these functions are symmetric in o, 3,7 and x(p,q) = 2(g,p). I
two principal stretches happen to coincide, the indeterminacy is eliminated
by reducing the expansion to E = 2U? + yI and the system accordingly.
Finally, if all three values are equal, the solution is obtained from the more
degenerated case B = yI. The case E(A) = Log) provides an exact tensorial
representation of the natural strain measure once the principal stretches and
directions are extracted, as remarked by [8] for the spatial variant Logu =
zi 4 yu + zu?,

ApPPENDIX C. SPECTRAL FORM OF THE DEFORMATION GRADIENT RATE

A similar procedure applied to the spectral forms (2.22) of the mixed
tensors R and F would briefly be carried out as follows, [51].
For the rotation:
R = n® N,, R
Il]a. = Whep, R

1, ® N, + n, @ Ny,
(wab - -Qub)na @ Nb

where w is the spatial spin defined by w = g’ = —w? and q is defined
below. The spatial triad n, rotates around its moving origin x according to

= qng or n® =N° =q'n, thus n, = 4q7 n, = wn,.
For the deformation gradient:
F=Xana®No,  F=J3in, @ N, + Atie @ Ny + Aon, © N,
}-.'-‘ = (iaﬁab + Apwap + Au.("-‘-’l:ta - 9btx)“c: ® Ny
= [j‘aéab + (Ab - )‘a.)wab 4 Ac:er::!:o]na ® Nba

where # is the (spatial) relative spin of the spatial triad with respect to
the material triad defined by 8 = RR” = —67. The spatial rotation q is
recognized as the product of the material rotation Q by the relative rotation
R. while the rotated spatial spin RTwR. equals the sum of the material spin
and the rotated relative spin

q= RQ, RT(U _ Q)R = ﬂ.
Tncidentally, note that at incipient deformation (R = I) the spins are simply
related by w = Q + 6.
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APPENDIX D. DERIVATION OF STRAIN-STRETCH RATE OPERATORS:

In this Appendlx, the fourth order linear operators dE/dU producmg
the strain rates EE when applied to the stretch rate U are detived for t

classical strains and the rubber strains. The main trick is to expand .U

UT U—l + U—T

into (and of course U1 into ——————) in order to exhibit

symmetry which would remain hidden otherwise [48].

Green strain:

/(U + Upar) (Upg + Uame
Eﬁ:i(( 2 ¢ 2 )"‘5”)

1 1,
= ‘“(UIMUMJ + UimUsar + UnetUnsss + UnitUgag) — 551{_'

E = —(UIMUMJ + UnaUnsts + UneUsns + UnnaUsng
+UnmtUnts + UnarUnts + UnerUsns + UMIUJM)
= —(§IK5ML Upg + Urpebmrbsr + 81k Usm + UIM5JK5M_

b1 Uns + Untrbnr 1 + Smr S Usne + Untr65x601) Ukt
dES,

1
= (615 Upy + Urk by + UrLérs + 61Uk g).
AUkt 4

Biot strain:
1
Ef = "2"(UIJ + Usr) — 810,
i 1 . ) 1 )
Ef = “2*(UIJ +Usr) = 5(51K5JL + 85x6rL)UkL,

1
= 5(5IK5JL + 51 b1L)-

Il strain:
... _
Efy =615 — “‘(UIJ1 + U5,

Efr = (UI UKLULJ + UJKUKLULI )2

dEH,
AUk,

(UH}ULJ + UsxUz)-
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Karni strain:

1 Ul +UA -1 4L 77)
E.{.(I 5[61J“(IM2MI)(MJ2JM) ,

. 1 .. _ — g . _ 1
EBf; = —g(UH&JUMJ + Ui Uiy + Unni U + UiiUin

AU + Uiti Uity + UsttUsae + UptUsig)

1 - et o I et e

= g(U;IéUITJ}«IUMJ + Ui Uit Uy + Uik UnagUag + Unng Uz Uy

U Unt Uity + UsftUifc Uit + Uity Uit Usng + Usin U Ui Uk,

dEK

dUkL

1, . _ _ _ _ " 1 _ I
= Z(U AU Ut Ut Usdc Und A Ui Uit Unda + Ui Us Ung)-

? Rubber” strains

dEf; 1 (dE}?J dﬂg) -

dUrr, 2 \dUxkr  dUgg
ey 1 (dEﬁ* _‘?.P_fi)
dUxr 2 \dUkr dUkr/’
dEf; 1 (dE}S’J szfg)
dUrgr 3 \dUgg dUkr 1’
i5h 1 (8t
dUkr 3\ dUxr dUkg

APPENDIX E. GENERALIZED STRESS REPRESENTATION: AN ALTERNATE
APPROACH

The analysis of Sect. 2.3 (with its limitations) leads to the definition of
a generalized material stress measure as an isofropic symmetric tensor func-
tion S of three objective symmetric arguments arranged in order: a stretch
tensor on the left to perform the force transformation, generically denoted
by U, the rotated stress T in the center, as preferred stress representative;
another stretch tensor to the right to carry out the surface transformation,
distinguished by V to avoid any confusion with the force transformation,
although finally V = U. In addition, the stress function must be linear
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in T, coincide with T in the reference configuration where U = I and
main in one to one correspondence with T away from it, i.e for all U. Mor
specifically, a generalized stress may be characterized by

S =8(U,V,T) (objecitvity), -

S=8T (symmetry), :

RS(U,T,V)RT = S(RURT,RTRT,RVRT)  (isotropy),
(A1) S(U,aT + Ty, V) =4aS(U,T,V)+ S(U,Ty,V) (T-linearity), -

S(U,T,V = U, ordered) (U-order),
SIL,T,I)=T {consistency), .
AT = 5$-1(U,8,V) = T(U,S8,V) (regularity), -

where R denotes an arbitrary rotation RTR. = I and a an arbitrary scalar

The selective dependence on objective variables U, T guarantees th
construction of a frame-indifferent measure. Symmetry is a desirable bu
not indispensable feature. The isotropy requirement corresponds to the nee
to arrive at a body-indifferent measure. The choice of T (rather than SB)is.
suggested by its pivotal role. Both the force and the surface tra.nsformautioﬁs;_;
U and V = U are retained in the argument list of 8 because, in spite
of their materialization into the same stretch tensor U when applied to
the objective rotated stress T, distinguishing them through their order of
application remains essential; symbolically, 8(U,T,U; in order) # S(U,T; in"
disorder). The linearity in T is dictated by the imperative need to generate:
a tensor with the correct dimension of a stress (keeping in mind that the:
stretch tensor is adimensional). The last two conditions aim at insuring a.

consistent definition of stress for infinitesimal deformations and its unicity:’
during large deformations.

Theorems of representation of symmetric isotropic tensor functions in
several symmetric arguments [53, 54, 55, 35] are valuable guides for estab-
lishing general forms of such stress functions which automatically satisfy the‘f
above isotropy requirement (the most stringent of all). __

In essence, they provide complete and irreducible lists of elementary com-
binations of the arguments (usually basic products such as T, UT, UTV:
etc.), called generators and denoted S*, which form a basis for the construc:
tion of the stress function

(A.2) S = s,S,, a = 1, A finite,
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_ where the coefficients s, are scalar functions of specific invariants of the
.~ arguments (usually product traces such as trU, trUV, etc.).

Of course, such representations are not unique. They depend on the
class of functions (polynomials, rational, general functions) admitted for
the coeficients as well as on the type of tensor combinations (products,
" quotients”, i.e. products including inverses) retained for the generators.

: For polynomial coefficients and product generators, the results are well
_ established [53] and widely used. By resorting to general coefficients (instead
 of polynomials) the number of product generators needed to form a basis can
. be significantly reduced [56, 53]. However, no explicit result could be found
- for "quotient” generators (such as U-1T, UTV™!, etc.) with, say, rational

- coefficients. This is unfortunate because such generators seem particularly
adapted to the representation of the generalized stress function with regard
. to the forms assumed by the classical stresses already obtained by ordinary
. means. A rigorous establishment of a proper rational representation for the

stress function is beyond the scope of this paper, especially if we consider the
~ length and difficulty which characterize the proofs of such theorems, even
in the polynomial case.

Consequently, only the outline of a possible approach is sketched below,
 because it will prove instructive for comparison purposes.

': A promising method for obtaining the desired representation of the stress
. Tunction S(U T, V) begins with the construction of a fictitious potential of
_ the form W = tr[S(U,T,V)D] W(U,T,V,D), where D is an arbitrary
symmetric tensor and tr denotes the trace operator(w) defined by tr(SD)
. = S:D = Sy7Djys. At this point, the arbitrary tensor D bears no relation

to the rotated rate of deformation (2.40). The symmetric stress tensor can
obviously be derived from this potential, linear in D, according to

AW W -
(A3) S=5 = snm W = tr(SD).

On the hypothesis that the stress function S is isotropic, the scalar poten-

tial W is easily shown to remain invariant under an arbitrary rotation R,
meaning that

W(U,T,V,D) = WRURY, RTRT, RVR?, RDRT),

(19)14 is recalled that the trace of a matrix product is unaltered by a cyclic permutation

of the factors of the product, e.g. tr(UTV) = tr(TVU), and is equal to the trace of
the transpose of the product e.g. tr(UTV) = tr(VITTUT) (= tr(VTU) for symmetric
matrices).
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since

W = tr(RSRT RDRT) = t2(SD) = W

Therefore, the original problem is replaced by the search for a representatio
of an invariant scalar function in four arguments W(U, T,V ,D), linear i
T and D).

At this point it is inferred {without proof) that a complete and irreducible
(?) list of basic "quotients” which are bilinear in TD, respect the ord
UTVD, involve the three consecutive powers U, I, U~? (instead of I, U
U?) for U and V, and the traces of which form a rational basis valid for
rational representation of W is

TD, UTD, TUD, U~'TD, TU™'D

UTUD, U'TUD, UTU'D, U-'TUD.

A proof of this conjecture could follow the procedure used by [53]f01'
polynomials by rewriting the Cayley-IHamilton theorem and its generaliz:
tion due to Rivlin at one degree lower, and tracing the consequences th
modification has on all the reducibility relationships of product traces whlc
occur in the process. _

A list of asymmetric "quotient” generators for S is readily derived from
the above merely by deleting the last factor D in each product, as the visu: '
result of differentiation. It is emphasized that (unlike the strain) even if the:
stress function (of several symmetric arguments) is isotropic, the resulting
generalized stress is not necessarily symmetric, this must be brought about’
separately. Symmetrization of the resulting elements leads to the final stre:
representation:

(Ad) S=5U"TTU ! +5(U'T 4+ TU™Y
+383T + s(UTU™ + U™ITU) + 55(UT + TU) + 5 UTU

where the coefficients s, are expected to be rational functions of the basic:
invariants trU and trU~!. A definition of stress based on two arguments:
only 8(U, T) would lead to the incomplete representation: S = so(UT +
TU) + 53T + ss(U~I1T + TUY). j
The representation (A.4) has the reassuring characteristic of being based.
on the symmetrized classical stresses (3.21} established separately on a ﬁrm;[
basis:
S = 8;S + 25,S% + 83T + 23,84 4 25587 + 568X,
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The hypothesis of regularity (A.1)7 assumes the existence of an inverse rep-
resentation in the same form

(AB) T =4tUSU+ 1p(US + 8U) + 135 + 1,(USU~! + U™1SU)
+15(U18 + SU™ Y 4+ 4, UISUL,

This inverse representation is expected to be better suited to the eventual
formulation of the equation of equilibrium Div(RTU™1) = 0,

The generalized stress coefficients (A.4) and its inverse (A.5) may he
assumed constant for simplicity. An immediate and regrettable consequence
~ of this shortcut is that {A.5)s ceases to be the exact inverse of (A.4) except
- in few particular cases already encountered. By way of compensation, the
consistency condition {A.1)g, and its obvious corollary for the inverse become
easier to use,

81+ 2s2+83+284+285+385 = 1,
(A.6)
b+ 2 +ta 4+ 24+ 2+ 8 = L.

These relations convey that the linear combinations (A.4) and (A.5) arein
fact convex combinations (provided 0 < s,, ¢, < 1). However, the resulting
representations remain indeterminate.

The resemblance between the fictitious potential W = tr(SD) intro-
duced above and the stress power W = tr(5E) postulated in Section 2.4
is striking, both being defined as the trace of an invariant bilinear prod-
uct. An obvious difference, however, is the replacement of the arbitrary
(symmetric) anonymous tensor D by the specific (symmetric) strain rate E.
Consequently, the conjugate stress is expected to have a much shorter rep-
resentation than (A.4) and, in fact, be directly connected to the generalized
strain rate expression by “trace reflexion”.

4. CONCLUSION

In this paper, the concepts of generalized strain and generalized stress
have been examined in detail. General representations of the corresponding
strain and stress functions have been established. An interesting pair of
. conjugate measures, referred to by the name of Mooney, has been put for-
- ward by this approach. But more important, the analysis has demonstrated
.~ the superiority of congruent strains and stresses and revealed the coexis-
tence of different definitions of conjugacy. However, this study has failed to
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disclose a satisfactory substitute for the natural strain-rotated stress misfit,
The classical pair formed by the Green strain and second Piola — Kirchhoff
stress remains the best choice.
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STRESZCZENIE

UOGOLNIONE MIARY ODKSZTALCENIA I NAPREZENIA
KRYTYCZNY PRZEGLAD I NOWE REZULTATY

Zaproponowano cztery podstawowe zasady: obiektywnosci, izotropii, zgodnodei i re-
gularnosci na ograniczenie pojeé nogdlnionych odksztalceii i — bardziej pierwotnie - uogél-

nionych naprezen. Zasady te zastosowano do wyprowadzenia dwdch ogdlnych reprezentacji

odpowiednich funkcji odksztalcenia i naprezenia. Opierajac si¢ na materialnej definicji sko-

niugowania, kazde odksztalcenie zwigzano w sposéb wzajemnie jednoznaczny z pewnym
skoniugowanym naprezeniem i vice versa. Oprécz klasycznych, znanych z literatury, par
?adksztalcenie-naprezenie”, otrzymano interesujaca rodzine nowych odksztalceni i skoniu-

gowanych napreier. Jednakize dwa gléwne rezultaty pracy dotycra wykazania wyiszoscl

pewnej szczegdinej klasy miar odksztalcenia i naprezenia, zwanej "kongruening” oraz una-

ocznienie wspolistnienia réznych definicji skoniugowania, co jest przyczyna nieporozumien.
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PESIOME

OBOBUIEHHBIE MEPE!I JE®OPMALMHA U HANPAXKEHUSA
KPUTHYECKOE OBO3PEHME W HOBBIE PE3YJIb TATEI

Tipennose Ll YeThipe OCHOBHEIE NPMHLMNE; OB6BEKTHRHOCTH, HIOTPONMH, COI,
COBAHHOCTY W PETYASDPHOCTH HA OFPAHWYEHHSA MOHATHI oB0B1eH LK AedopManaui |
Gonee nepeukuno, 0GOGUIEHHMX HANPAXKEHHH. DTH NPHHIHOL! TPEMeHeHE AT BLIBOIA
n6yx ofIIUX NpelcTaBAeNHR COOTBETCTRYIOIMX GYHRKUHH HedopMauuu M Hanp'.ﬁ:xe-
rasg. Basupys Ha MaTepuMANLHOM ONpefe/ieHMH CONPAMKEHHA, KAMNCAA ne@opuaﬁ;ja
CBA3AHA B3aHMHO OAHO3HAYMHBLIM OGPAIOM ¢ HEKOTOPLIM CONDAKEHHEIM Haupaﬁcehﬁé ]
n Haobopor. KpoMe KIacCHUeCKHX, MIBECTHRIX M3 AMTEPATyDPHl, Nap AedOpPMAIliA
HANpsKEHHE, NOJIYYEeHO NHTEPECYIOIee ceMeHCTBO HOBRIX NedopMaril M conpaxe
HBLIX HampAcenni. OmHaKo ABA FISBHBIX PE3YALTATA paboTHl KacaKTCH HOKA3ATEN
¢TBA HPEBOCXOACTRA HEKOTOPOTO 0COBOI0 KAACCSE MeD AedODMALAN M HAN DAKEHHA, H
3bIBAEMOTO "KOHIDYSTHEIM" M HATJIALHOTO NOKA3AHMN CYIECTBOBAHHA DASHEIX Onp
AenedH ¥ cONMpAXKEHHS, YTO AaeT NOROM KA HeROpa3yMeRuH. '
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