ROZPRAWY INZYNIERSKIE o ENGINEERING TRANSACTIONS e 37, 1, 65-87, 1989
Polska Akademia Nauk e Instytut Podstawowych Problemow Techniki

FREE VIBRATIONS OF THIN, ELASTIC, ORTHOGONALLY
STIFFENED SHELLS OF REVOLUTION WITH STIFFENERS
TREATED AS DISCRETE ELEMENTS

B. BL O CK A (GDANSK)

This paper presents the method and numerical examples of the calculation of free-vibration
frequencies and modes of thin, elastic, orthogonally stiffened shells of revolution. The variational
formulation has been employed. The integro-differential Hamilton functional is brought to the
algebraic form by separation of the variables, then expanded into trigonometric series in the
circumferential direction and discretized by the finite difference scheme in the meridional direction.
The three calculation models are compared: a shell with stringers modelled by a smooth
orthotropic shell, a shell with stringers treated as discrete elements without couplings between
harmonics and with the couplings. It is shown that taking couplings into account may influence the
frequencies and modes calculated. The results obtained are compared with experimental ones
published in the literature. '

1. INTRODUCTION

Shells of revolution occur in many recent engineering structures. Due to the
strength functional and technological conditions, axially symmetric shell
structures and elements of the shell are often stiffened with a discrete system of
meridional and/or circumferential ribs. _

A number of papers and specialistic computer programs have been devoted
to the dynamical analysis of a smooth shell or of a shell with circular rings
discussed in [5]. In the majority of papers concerning the dynamical analysis of
meridionally stiffened shells, the stiffeners are taken into account indirectly, via
smearing out and via replacing the meridionally stiffened structure with an
appropriate smooth orthotropic shell. In these programs, the problem is
transformed to the problem of the estimation of the stiffness and inertia
parameters of the smooth, equivalent shell [2, 3, 8]. These approximations are
sufficient if the meridional stiffeners are dense and equally spaced along the
shell circumference. However, in the case of a small number of meridional
stringers, a substitute smooth orthotropic continuum cannot represent the
dynamic behaviour of the real stiffened structure with sufficient accuracy. The
frequencies calculated are most often inaccurate and the corresponding modes
may significantly differ from the eigen-modes of the real stiffened structure. One
cannot find basing on those results, even in the reasonable approximation, the
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state of dynamic stresses of a vibrating structure, which may be necessary for
the examination of dynamic response of the shell structure to the external
excitation. =

Most of the works which present the analysis of meridionally stiffened shells
of revolution with stringers treated as discrete elements refer to shells with zero
Gaussian curvature, mainly to cylindrical shells. A wide review of the literature
concerning the problem is presented in [1, 4, 14].

In this paper the free-vibration analysis of orthogonally-stiffened shells of
revolution with arbitrary geometry of the shell meridian is presented. The
paper is based on the method brought out in [5] where the free-vibration
analysis of the segmented shells of revolution reinforced with circular rings are
described. Thus in this paper the effect of meridional stiffeners is mainly
considered. As in [5], the problem is formulated in the general form as
a minimization of a functional arising from Hamilton’s principle. The strain
and kinetic energy of elements (shell and stiffeners) are calculated with the use
of the linear theory of shells [13] and the theory of weakly curved rods [12].
The problem formulated in this way is solved numerically by bringing it to the
generalized eigenproblem. The numerical examples presented here show the
influence of the way in which the meridional stiffeners are taken into account
on the eigen frequencies and the modes. It is shown that the meridional
stringers generate couplings between the circumferential numbers of waves.
The coupling effect, when taken into account, may change significantly the
numerically calculated values of frequencies and modes of free vibration,
and then the results agree with the experimental ones described in the literature
[6, 111].

2. FORMULATION OF THE PROBLEM

Similarly as in [5], the problem considered here has been formulated as
a variational one [2], ie.,

3"
(2.1) 0H =6 [(T—E)dt =0,
to
where E denotes the elastic energy of all the elements of the system and
T denotes their kinetic energy. The components of the energies may be
presented in the form

1 B ziap :
@2  E,=3|nfsde, T,= oM ds,  g=s.cl

The subscript ¢ stands for the letters: s — for shell segments, ¢ — for circular
rings, | — for meridional stringers. Moreover,
— the areas of the middle shell surface for g =s,
a, = {—— the length of the ring axis for ¢ =c,
— the length of the stringer axis for g = [.
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The magnitudes n, are the generalized force vectors and g, are the correspond-
ing strain vectors. The quantities u, are generalized displacement vectors and
M, are the corresponding matrices of inertia coefficients of the particular
elements of the system.

The constitutive and kinematical relations can be written in the form

(2.3) n=Cege, g=Am, g=s,c1,

where C, are the elasticity matrices, A, are the differential operators. The form
of the relations (2.3) results from the hypothesis assumed for the model of the
shell segments and stiffeners. The hypotheses assumed here are the Sander’s
variant of the linear theory of shells [13] and the theory of weakly curved
beams [12] for stiffeners, as in [5]. For the shell segments (q = s) and the
circular rings (¢ = c), the vector appearing in the relations (2.3) are given in [5]
Chapter 3, and for meridional stringers the vectors m,, g, u, have the
components: :

n={N, M, M, M;}" generalized force vector (Fig. 1),

& = {& %, %, %,}7 strain vector,
u = {u, v, w,0,} generalized displacement vector (Fig. 1).
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FIG. 1. Location of a meridional stringer on the shell.

Employing geometrical relations, which result from the hypothesis assumed for
the model of the system, and the compatibility conditions for the strains of the
stiffeners and the shell, all displacement parameters may be expressed through
the three components of the displacement of the shell middle surface. These



68 B. BLOCKA

relations may be written in the form

{61 62"
{gxc ‘gzc}T =3 Bq“a q=s,¢,1,
{'gyl ‘921}

(2.4) {u,0,w, 93" =Fu, g=c,l

u={uvw}’.

The differential operators B (g = s, ¢, ]) contain relations between the
inter-dependent components of the vectors u, and the vector u due to the
Kirchhoff-Love hypothesis. The operators F, (g = c, ) represent the transfor-
mation of the independent displacement components of the cross-section
centroids of the stiffeners to the middle shell surface displacements u, v, w. The
operator F, for the circular rings is given in [5] Chapter 6, and for the
meridional stringers F, is calculated at 0 = 0,, i.e, where the stringers are
fastened to the shell, and has the following form:

pl. b y
e gy
+R1- 0 >

e 0
0 1+=- —e—

F = R a0

0 0 1
X" 120
NN

It is assumed here that the stiffeners are fastened to the shell along the
parallels and meridians, and the joint of the middle surface with the centroids
of their cross-sections can be modelled by stiff elements. Besides, it is assumed
that the distance of the cross-section centroids of the stringer to the middle
shell surface is constant along the shell meridian. It should be noticed that the
joint between the meridional stringers and the shell is written down in the local
coordinate system, while the joint between the circular rings and the shell is -
written down in the global coordinate system due to the diversity of functions
that the circular rings may play in the shell system (elements reinforcing -the
shell segments, boundary rings or elements joining two segments).

Employing the relations (2.3) and (2.4), the energy components (2.2) may be
expressed only in terms of the displacements of the shell middle surface u, v, w:

1tk
E = E,?‘I(Aqu)TCquu, g =s,1C.10
(2.5)

2

i
¥ 7=$fq[(Fqu)TMqFqu+(Bqu)TIqBqu],



FREE VIBRATIONS OF THIN, ELASTIC, ORTHOGONALLY STIFFENED SHELLS 69

where
[ )rdods for q=s,
s 0

7 — <4 J()RAO foroveg =u¢! @andps =5y
1 0
J( )yds for g=1 and 0=0,

The quantities C, are the elasticity matrices and M,, I, are proper inertia
matrices. The entries in the matrices M,, I, for g = s, c are given in [5] Chapter
7, and for g =1 are as follows:

(2.6) M, = g, diag [ 4,, 4, 4, L], 1, =g¢diag I-Iyl’ Lo 1s

where ¢, is the density of the stringer and 4, I, I, I,, are geometrical
parameters of the cross-section of the stringer.

The kinetic energies (2.5), are composed of two parts. The first part is
connected with the translation inertias of each element of the system and the
twist of stiffeners and the second with the rotational inertias of these elements.
Of course, the operator F, for the shell segment (g = s) is the unit matrix.

3. SOLUTION OF THE PROBLEM

The problem formulated above has an integro-differential form, identically
as the problem presented in [5] Chapter 8. The solution is similar too, i.., it is
reduced to an .algebraic quadratic form via expansion of the displacement
vector u into trigonometric series in the circumferential direction 6, and
discretization in the meridional direction s into finite differences.

As a result of the integration with respect to 0, the elastic and kinetic
energies of the elements of the system for one segment take the form

N

E, ) Z L Z,(A k)Tanﬁ as U
3.1) ft nlsr rings
T=03 T % () Mt Fipuj + (BLub L, By,
a,p 1kn=0
g =5t

where the operator % describes the operations

[()ds for g=s,I,

(3.2) £ =<"c
' > () for g=c
c=1

and C is the number of rings on the shell segment.
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The operators Ak, F%,, B%, resulted from the differentiation of the opera-
tors A,, F,, B, with respect to 0. The matrices of stiffness Ci; and inertia
ME,. I',;:,, coefﬁments for g =s,c are given in [5] Chapter 8, and for
meridional stringers (¢ = ) they have the form

L

c =1y ety
Tp=1

(3.3)

L L
Mip =13 @yYMTy, =13 @HLTY,
=g Ty=i
where L is the number of meridional stringers on the shell segment. T, T, T
are diagonal matrices with trigonometric functions of the type sink6,, cosk0,.
The subscripts o, f assume the values 1,2 and are connected with
skew-symmetric («, f = 1) and symmetric (x, f = 2) components of the dis-
placement vector u, and the subscripts k, n, are connected with the numbers of
circumferential waves. _

Employing the finite difference method along the shell meridian, the
integro-differential problem is converted into the algebraic one [5]. During the
process the differential operators Af,, F%,, Bk, are replaced by suitable
matrices and the integrals — by sums. Eventually the algebraic form of the
functional H which describes free vibrations of orthogonally stiffened shells of
revolution may be written in the form

(G4 A=Y ¥ % Z (P (K3 — w0 M ug,
a,f=1kn=0p=1i= :
where P is the number of shell segments, m the number of subsegments in
the segment p. Local stiffness matrices K“f‘,"" and inertia matrices M%*" are
calculated as a sum of the respective local matrices for the shell and stiffeners,
what can be written symbolically in the form
K;tilkn s Z Kaﬂkn Maﬂkn sed Z Maﬁkn

pqr > pqi >

q s,¢,1 g=s,c,l
where i
k T (apk
K?ﬁz" =3 5(qu:) C?'Z:"Aﬂzu
k k \T k k \T yapk
ML = SR I Rl (B0 "B

and J denotes 4, for g=s,1 or Z 0, for g =c (6, denotes the place of
c=1
fastening of the ring to the shell segment).

Summation with respect to the indices appearing in Eq. (3.4) is carried out
via introduction of the global vectors and matrices [5]. The stationarity
condition for the quadratic form (3.4) leads to the generalized eigen-problem,
similarly as it did for the shell reinforced -only with circular rings [5], that is

(3.5) Kq = v’Mq.
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FiG. 2. The structure of the global matrix K.

The important difference between these two problems lies in the structure of
the global matrices K, M and the global vector q. For the shell stiffened with
meridional stringers, the global vector q has components which are symmetric
and skew-symmetric global vectors of the individual harmonics n

A N N~ 1 k 0 a0 n -1 N\T
q—{ul’“& )’--"“1’--~su1’“2,"-’u2’“g ),uZ} ]

and the structure of the global matrices K, M is shown in Fig. 2. These
matrices have block structure. It is visible that the couplings between
individual numbers of circumferential waves and between symmetric and
skew-symmetric mode shapes are induced only by the term K" which refers
to the meridional stringers. So, in the case of smooth shells or shells reinforced
only with the circular rings, the problem is uncoupled to N + 1 eigen-problems
as it was shown in [5]. All matrix blocks lying outside the diagonal are zero.
For shells stiffened with meridional stringers, we need, in general, to
examine the couplings between the symmetric and skew-symmetric com-
ponents of vibrations as well as between the individual harmonics.

4. THE GLOBAL MATRICES — DISCUSSION

The total size of the eigen-problem (3.5) depends essentially on the number
N of the terms in the trigonometric development series. But it depends on the
number of the shell segments P and the finite difference mesh, too. Important
here is the way in which the constraints are introduced into the functional H.
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Appropriate elimination of the rows and columns due to the boundary
conditions and proper aggregation of the global matrices due to compatibility
conditions between shell segments [4] decrease the size of the problem
contrary to the problems where Lagrange’s multipliers are used. It is
particularly important when the number of coupled harmonics and shell
segments is large.

For shells stiffened with meridional stringers, we consider three cases: a)
general case, when the stringers are arbitrarily spaced along the shell
circumference, b) the symmetric distribution of the stringers with respect to the
plane containing the axis of revolution, and c) the uniform distribution of the
stringers.

In the general case a) we ought to assume all possible couplings and solve
one full eigen-problem (3.5).

In the case b), the stiffness (inertia) matrices of stringers (3.3) may be written
in the form

L
Con = Z T@O)%*C,TO)) =
Ti=y

L/2

L/2
L -[Z T()*C,TO)0 + Z T(—0)*C,T(— 0,8
Since T¥ are diagonal matrices of the type

T = diag [ sink0,, sink@,, coskf),, cosk0, | ,
TY% = diag [ cosk0,, cosk0,, sink0,, sink0, | ,

and the matrices of the stiffness coefficients C, (inertia coefficients M,, I,) are
diagonal, too, due to the assumed hypothesis, the stiffness and inertia matrices
(3.3) differ from zero only when o = f. That results in uncoupling of the
symmetric and skew-symmetric modes.

For the uniform distribution of the stringers (c), the places of fastening of
the stringers to the shell are described by 0, = 2nl/L Then each element of the
matrices (3.3) has one of the factors

2nl
(4. 1) Z s1nk—2——lsmn2—nl =0, 2 cosk%cosnz—zl = pkiiafor a'=P,

=1 =1

and

. .
2
Z smk—cosn—%! =0 forw2 D,
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The sum of the series Q*", P*" are [9]

L/2when|n—k| = gLandn+k # qL,
Q" = < —L/2when|n—k| # qLandn+k # qL,

0 otherwise,

L/2when|n—k| = gLandn+k # qL,

L/2when|n—k| # gLandn+k = qL,

Lwhen|n—k| =gqLandn+k = gL,

0 otherwise,

Pkn e

where ¢ =0, 1,2, ... is a positive integer number.

That means that the couplings occur only between the numbers of
circumferential waves when the sum or absolute difference between them is
a multiple of the stringer numbers L. Of course there are no-couplings between
symmetric and skew-symmetric modes due to the case (b).

5. NUMERICAL EXAMPLES

The numerical examples enclosed here are treated as the verification of the
method of analysis presented above. A comparison between the three cal-
culation models of shells with meridional stiffeners is also shown (Example 5.2).
It is shown that each of the models gives quantitatively different results and
that couplings between harmonics have an important influence on the
frequencies and modes calculated when the shell is stiffened only with a few
meridional stringers.

5.1. The cylindrical shell with 60 stringers

The influence of the stiffeners on the frequencies and mode shapes of free
vibration of non-stiffened shell has been examined. A simply supported
cylindrical nonstiffened shell (N), a shell with 60 external stringers (Z) and
internal stringers (W) has been calculated. The geometry and physical data of
the shell and meridional stringers are given in Fig. 3. During the calculation,
the meridional of the shell was divided into 15 subsegments.

In this case, the couplings between harmonics are negligible due to the large
number of the stringers. The frequencies calculated for the number n =
=0,1, ..., 18 of circumferential waves, and results given by Egle and Sewall
[7] are shown in Fig. 4. Comparison of the stiffened (Z), (W) and non-stiffened
shells leads to the conclusion that the stringers may have an important
influence on the frequencies of free vibration (Figs. 4, 5, 6). In the example
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FIG. 3. Geometry and material constants of the cylindrical shell and stringers (Examples 5.1
and 5.2).
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FiG. 4. Eigen-frequencies @ [Hz] of the cylindrical shells (N), (Z), (W) versus n.
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discussed, the external stringers increase the fundamental free-vibration fre-
quency about 10% (Fig. 5), and internal ones decrease it about 20% (Fig. 6)
with respect to the nonstiffened shell. The local maxima of the curvature shown
in Figs. 5 and 6 turn out to be close to the lowest frequencies for each number
of meridional half-waves m and they increase with increasing m. For example,
for m=3, n=11, the external stiffeners increase the lowest frequency
corresponding to the mode m = 3, n = 11 about z 60% when compared to the
non-stiffened shell (Fig. 5). The stringers may change also the mode correspond-
ing to the basic free-vibration frequency, e.g., the basic frequency of the shell
(N) corresponding to the mode m = 1, n = 7 whereas the frequency of the shell
W corresponds to the mode m =1, n=6.

5.2. The cylindrical shell with 4 stringers

This example gives comparison between the three calculation models of the
shell with stringers:

A — the shell with stringers replaced by a smooth shell with modified
stiffeners and inertia parameters [3] (stiffeners smeared-out),

B — the shell with stringers without taking into account the couplings
between harmonics,

C — the shell with stringers with couplings between harmonics included.

The geometrical and physical data of the simply-supported shell with
4 internal stringers are given in Fig. 3. The calculations were performed for 10
subsegments in the finite difference mesh.

Figure 7 shows some of the frequencies calculated for each calculation

w
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FiG. 7. Eigen-frequencies w [Hz] versus n. Example 5.2.
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model 4, B, C and the experimental results published in [11]. The correspond-
ing modes are shown in Fig. 8. Because of 4 stringers we have the couplings
between the following harmonics: n=0,4,8,..., and n=1,3,
5,7,9,..., and n=2, 6, 10, according to the factors (4.1).

In this case, for all three models, frequencies do not differ much but each of
the models gives qualitatively different results. The models B and C allow to see
the differences between the symmetric and skew-symmetric modes contrary to
the model A. Additionally, using the model C we can get more exact modes of
vibrations (Fig. 8). The models 4 and B give so-called classical modes, that is
modes identical to those of a non-stiffened shell.
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FiG. 8. Modes of the free-vibrations (Example 5.2); a) symmetrical vibrations, b) skew-symmetrical
vibrations.
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It should be noticed here that when couplings between harmonics are
considered, it is often not possible to find the unique relation between the
frequencies and the circumferential number n, contrary to the shell without
stringers or when the couplings are not taken into account. But for the first few
free-vibration frequencies, usually one of the modes dominates (Fig. 8), thus we
can plot @ versus n.

In this case the differences between the frequencies corresponding to the
symmetric and skew-symmetric modes occur only for the even number of
harmonics n = 2, 4, 6, 8, 10, ..., ie., when the value 2n/L (L —the number of
stringers) is an integer. It arises from the different location of the stringers with
respect to the plane x,0 = 0 in the symmetric and skew-symmetric modes of
vibrations (Fig. 9). During the symmetric vibrations, for n =2, 4, 6, ... the
stringers coincide with the points of the maximal amplitude of the circumferen-
tial modes, whereas during the skew-symmetric vibrations the stringers occur
in the knots of the circumferential modes. For the rest of the harmonics, in this
case the odd ones, the equal number of the stringers occur in the points of
maximal amplitude and in the knots of circumferential modes (Fig. 9). So the
frequencies corresponding to these harmonics do not differ for the symmetric
and skew-symmetric modes.

FI1G. 9. Location of the stringers during: o — symmetrical vibrations, [] — skew-symmetrical
vibrations.

5.3. A conical shell with 3 rings and 6 stringers

The last example is a simply supported conical shell reinforced with three
circular rings and six meridional stringers (Fig. 10). The meridian of the shell
has been divided into 18 subsegments. Figure 11 shows a comparison between
the experimental and numerical results published by CRENWELGE and MUSTER
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F1G. 10. Geometry and material constant of the conical shell and the stiffeners (Example 5.3)
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Fic. 11. Eigen-frequencies @ [kHz] versus n.(Example 5.3).

[6] and some results obtained with the aid of the program DYSAR (based on
the algorithm presented above).

In the case of six strings, couplings occurs between the following numbers
of circumferential wavesn =0,6,...,andn=1,5,7,...,andn=2,4,8, ....
Figure 12 shows the modes and the corresponding frequencies obtained for the
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Fic. 12. Modes of the free-vibrations (Example 5.3) a) skew-symmetrical vibrations with respect to
the plane 0, = 0, b) symmetrical vibrations with respect to the plane 6, =0.

symmetrical and skew-symmetrical modes. Since, for the coupling harmonics
n=1,5,7 and n=2, 4, 8, the frequencies corresponding to the symmetric
and skew-symmetric modes are equal, they are not repeated in the figure for the
symmetric vibrations. -

The meridional stringers generate couplings between harmonics and the
circular rings may generate modes in which each of the parts of the shell
vibrates with different numbers of circumferential waves n, as it has been shown
in [5, 10]. In [6] it was mentioned that the experiment has given complex
modes and it has been explained by aggregation of vibrations corresponding to
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the neighbouring frequencies. Thus a single frequency obtained from the
experiment has been assigned to various modes, e.g, m =1, n=3 and m = 3,
n =29, Fig. 11. It should be noticed that it is rather difficult here to classify
some modes in the classical sense, that is, to describe them as a mode with
n number of circumferential waves and m number of meridional half-waves, for
example, the mode for n=3, 9, w = 5901 Hz, Fig. 12b (the frequencies .
underlined with a dashed line in the figure). As it is shown in Fig. 13, only the
part of the shell between two circular rings vibrates with n = 9. The rest of the

shell vibrates with n = 3.
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Fic. 13. Composition of modes of the free-vibrations in the successive cross-sections; a)
y 0 16 1 ) Fe et 2 -
skew-symmetrical vibrations o = 5457 Hz, b) symmetrical vibrations ¢ = 5301 Hz

For the stiffened shell described above, calculations, without taking
couplings into account, were performed as well. The results are shown in Fig.
14. Comparison between the results demonstrated in Figs. 12 and 14 shows
that the frequencies calculated without including couplings (Fig. 14) differ only
slightly from the ones with the couplings included (Fig. 12) when the
frequencies correspond to the modes with one harmonic dominating distinctly.
In the other cases, when the couplings are stronger, both results may differ
more than 20%. Therefore, including couplings into calculation is necessary.

6 — Rozprawy Inzynierskie 1/89
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FiG. 14. Eigen-frequencies  [kHz] versus n (Example 5.3) without couplings between n included.

6. FINAL REMARKS AND CONCLUSIONS

Analysis of the model and the numerical examples show that the meridional
stringers cause couplings between the numbers of circumferential waves n, and
differences between symmetrical and non-symmetrical vibrations. But these
results may be obtained only when the meridional stiffeners are treated as
discrete elements. The couplings play an important role in the calculation of
the frequencies and modes of free vibrations.

In general, the problem of free-vibration analysis of orthogonally stiffened
shells of revolution is reduced to a single generalized eigen-problem of
comparatively large size (Fig. 2), contrary to the free-vibration analysis of shells
without meridional stringers [5]. For the symmetric distribution of the
stringers with respect to the plane containing the axis of revolution, the
symmetric and skew-symmetric modes become uncoupled. Thus the problem is
reduced to two generalized eigen-problems half the size of the original one. For
uniform distribution of the stringers along the shell circumference, couplings
occur only when the absolute sum or difference of the numbers of circumferential
waves n, k is a multiple of the stringer number L, ie., [n+k| = gL (9 — integer
number). Thus the problem is reduced to several eigen-problems of smaller size.
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This shortens the time of numerical calculations (the time of "calculation
increases progressively with the size of the eigenproblem).

For a shell with meridional stringers the values of the frequencies
corresponding to symmetrical modes may differ from the ones corresponding
to skew-symmetrical ones. This phenomenon is not observed for smooth shells
or for shells with circumferential rings because of the axial symmetry of the
systems [5]. Similarly as for smooth shells or shells with circumferential rings
[5], due to the concentration of frequencies in the spectrum, the real
free-vibration modes may be linear combinations of modes numerically
calculated and connected with the same or proximate frequencies.

Numerical tests have proved the effectiveness of the method presented here.
Comparison of the results obtained here with the experimental data from the
literature indicates accuracy sufficient for practical purposes even at the
relatively small number of finite difference mesh. The algorithm enables to
carry out a preliminary analysis of a structure before the numerical calculation
is started. Additionally, only the one-dimensional problem is solved numerically.
All these decrease the computation time.

The method presented above enables the analysis of the orthogonally
stiffened shells with three different calculation models, i.e., A) a replacement
shell with stringers by a smooth orthotropic one, B) a shell with stringers
without including the couplings between harmonics n and C) a shell with
stringers with couplings between n included. It is important that the com-
putation time corresponding to the models 4 and B is almost the same, but the
results differ qualitatively. Only for the meridional stiffeners treated as discrete
elements, may the difference between symmetrical and skew-symmetrical
frequencies be exposed. In the models B and C we do not need to estimate the
stiffness and inertia coefficients of the equivalent orthotropic shell. Each of the
models gives satisfactory results for the few smallest frequencies of the system
because these frequencies usually correspond to the modes with one harmonic
dominating distinctly. However, when one seeks a broader frequency spectrum,
the model C ought to be primarily employed. It is necessary, too, when one
wants to find the free-vibration modes.

The method developed here can be easily extended to other dynamical
problems of stiffened shells of revolution, such as taking into account the
distribution of initial stresses or linear stability of shells. It can also be used as
an important part of the complete dynamical analysis of shells under given,
time-varying loads.
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STRESZCZENIE

DRGANIA SWOBODNE CIENKICH, SPREZYSTYCH I ORTOGONALNIE
USZTYWNIONYCH POWLOK OBROTOWYCH Z ZEBRAMI
TRAKTOWANYMI JAKO ELEMENTY DYSKRETNE

Przedstawiono metode rozwiazania i przyklady liczbowe dotyczace wyznaczania czgstosci
i postaci drgan wlasnych cienkich powlok obrotowych z ortogonalnym usztywnieniem. Cal-
kowo-rozniczkowy funkcjonat Hamiltona sprowadzono do postaci algebraicznej metoda rozdziatu
zmiennych, a nastepnie rozwinigto w szereg trygonometryczny w kierunku obwodowym oraz
zdyskretyzowano metoda réznic skonczonych w kierunku potudnikowym. Porownano ze soba
trzy modele obliczeniowe: powloka z zebrami zastapiona ortotropowa powloka jednorodna,
powloka z zebrami traktowanymi jako clementy dyskretne bez sprzezenia postaci drgan har-
monicznych oraz ze sprz¢zeniami. Wykazano, ze uwzglednienie sprzezen moze wplywaé na
wyznaczone czgstosci i postacie drgan swobodnych powloki. Wyniki poréwnano z danymi
doswiadczalnymi znanymi z literatury.
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PE3IOME

CBOBO/IHBIE KOJIEBAHMS TOHKHUX, VIIPYTUX U C OPTOTI'OHAJIBHO
MPUJIAHHOM XECTKOCTBIO BPAIIATEJIbHBIX OBOJIOYEK C PEBPAMMU
TPAKTOBAHHBIMU KAK AUCKPETHBIE SJIEMEHTBI

IMpeacTaBieH METOJ PELICHHs M YMCIIOBbIE MPUMEPHI, KACAIOUIMECS ONMPENENCHUs 4YaCTOTHI
¥ BUa COOGCTBEHHBIX KONEOAHMHA TOHKHX BpAlIATEIbHBIX 000JIOYEK C OPTOTOHAIBHO MPHAAHHOM
xecTkoCTbi0. MHTErpo-mmbdepentmanbaeii ¢yHkimonan MaMuabToHa CBesieH K anreobpanyec-
KOMY BH/Iy METO/IOM Pa3/IEJIeHUsl IEPEMEHHBIX,  3aTEM OH Pa3JIOXeH B TPUTOHOMETPUUECKHH Psll
B NIEPUMETPUYECKOM HATIPABJIEHHH M JMCKPETH3UPOBAH METOJIOM KOHEYHBIX PAa3HOCTEH B MEPH-
IMOHANBHOM Hampasiienuu. CpaBHEHbI ¢ coGOi TpH payeTHble Mojenu: obosouka ¢ pebpamu,
3aMeHeHa OPTOTPOMHON OJHOPOAHON 060JIOYKOH, 06oNMoUka ¢ pebpamMu, TPAKTOBAHHBIMM KaK
JMCKPETHBIE 3JIEMEHTHI G€3 CONpPSDKEHMs BHJA TAPMOHMYECKHX KOJIEOAHUMH, a TaKKe C CONpsKe-
gusiMa. TToka3aHo, YTO yYeT CONPSKEHMI MOXET BIMATh HA ONPEIEJICHHBIC YaCTOTHI M BHIbI
cBoGoHBIX KonebGanuii 060y104KkH. Pe3ynbTaThl CpaBHEHBI C OKCIEPHMMEHTAJIbHBIMH JAAHHBIMU
W3BECTHBIMH W3 JIATEPATYPHI.
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