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MODE INTERACTION IN WIDE PLATE WITH ANGLE SECTION
LONGITUDINAL STIFFENERS UNDER COMPRESSION

Z. KOLAKOWSKI (LODZ)

Interaction of nearly simultaneous buckling modes in the presence of imperfections is studied.
The investigation is concerned with infinitely wide plate with thin-walled angle longitudinal
stiffeners under uniform compression.

The asymptotic expansion established by Byskov and HuTcHiNsON [1] is also used here. The
present paper is devoted to the improved study of equilibrium path in the initial postbuckling
behaviour of imperfect structures with regard to the effect of interaction of the global mode and
two local buckling modes.

NoTATION

—

length of the stiffened plate,

b, width of wall i of the plate,
h; thickness of wail i of the plate,
E Young’s modulus,
D; flexural rigidity of wall i,
u;, v;, w; displacements of middle surface,
i;, 6;, w; prebuckling displacement fields,
i, ;, W, buckling displacement fields,
A . measure of the applied pressure,
Nix, Niy, Niy, in-plane stress resultants for wall i,
M., M;,, M;,, bending moment resultants for wall i,

0, Eq (29)
n number of mode,

m number of axial half-waves of mode number n,
A scalar load parameter,

A value of A at bifurcation mode number n,
maximum value of 4 for imperfect stiffened plate,
¢, amplitude of buckling mode number n,
imperfection amplitude corresponding to &,

dimensionless stress of mode number n,

o¥ dimensionless limit stress,

oF min (0%, 0%),

a;;; postbuckling coefficients (see Byskov and HuTcHINsON [1]),
dz az21,

dy ayx3+az;,.
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1. INTRODUCTION

Interaction between the buckling modes may result in an imperfec-
tion-sensitively structure and is the principal cause of collapse of thin-walled
structures.

In recent years more and more papers have been devoted to the analysis of
the interaction of buckling modes as a factor that determines the construction
imperfection sensitivity at nearly the same magnitudes of bifurcational loads
corresponding to different buckling modes and to the closely related problem
of optimum structural design.

The constructions shaped as an infinitely wide plate strengthened by
longitudinal stiffeners have been analysed in the most detailed manner with the
application of general methods of stability analysis of constructions, susceptible
to imperfections [1-8].

The general theory of interaction of buckling modes of stiffened plates was
developed by KoITER [2] by means of a generalization of the approach [3].
KorTer and Van der NEUT [9] proposed a technique in which the interaction of
an overall mode with two local modes having the same wavelength were
considered. The fundamental mode is henceforth called “primary” and the
nontrivial higher mode (having the same wavelength as the “primary”)
corresponding to the mode triggered by the overall long-wave mode is called
“secondary”.

The previous paper [10] was devoted to an analysis of the initial post
buckling behaviour of a wide plate with the thin-walled trapezoidal section
stiffeners. In the following paper [11] the difference between the two- and
three-mode approach has been shown.

As the effect of shear lag is more pronounced in stiffened plates than in
unstiffened plates of the same extensional rigidity, the designer is even more
concerned with the interaction of shear lag.and collapse by buckling in the case
of wide stiffened flanges.

The possibility of dangerous interaction of the global and the local buckling
modes for finite displacements gives rise to another question: how to reduce
those interactions and how to estimate their efficiency. One way of accomplish-
ing these goals consists in using angle profile stiffeners.

In the present paper the initial post-buckling behaviour of wide plates with
thin-walled angle section stiffeners being under compression in the elastic range
is examined on the basis of Byskov and Hutchinson’s method with the
cooperation between all the walls of the structures being taken into account.
The obtained solutions include the effect of interaction of two modes having
the same wavelength, shear lag and cross-sectional distortions.
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2. STRUCTURAL PROBLEM

A simply supported plate of infinite width with the angle section of
longitudinal regularly arranged stiffeners is considered in the present paper.

The type of cross-section of this structure consists of a few flat plates with
a perpendicular axis of symmetry and the assumed local coordinate systems are
presented in Fig. 1.

2t

F1G. 1. Part of wide plate with longitudinal stiffeners.

The material of the stiffened plate obey Hooke’s law.
The membrane strains of the wall i are obtained as

&ix = Uix+0.5(Wix+vfs),
(2.1) &iy = i,y +0.5(Wéy +u?y),
Yixy = Ui,y + Vi,x + Wi,x Wi,y
and the bending strains are given by
(2.2) Kix = —Wixx, HKiy = —Wiyy, Hixy = — Wixy.

The differential equilibrium equations resulting from the virtual work
expression for one wall can be written as

—Nixx—Nixyy—(N iy“i,y),y =0,
(23) '—Niy,y —'Nixy,x—(Niin,x),x = 0,
D,VV Wi (Nix Wi,x),x i (Niy Wi,y),y = (Nixy Wi,x),y e (Nixy Wi,y),x = (.
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The geometrical and statical continuity conditions at the junctions of plates
(Fig. 2) may be written as
wi|" = w,|%ingd+0v,/°cosd = w; 4],
vl* = v,|°sing—w,|°cosp = 44|,
Wiplt = w0 = wisq,l7,
D;(wi yy + Wi x| — Dy(Ws,yy+ VWi xx) °
(24) —Diy 1(Wit1,yy+WWis1 )" =0,
wl*t = “slo =44l
Nyl+ — Ny |%sing+Q,,|°cosdp—Niy 3| ™ =0,
Qiyl* — Ny |°cosp—Qy,|%sing — Qi1 1,|~ =0,

Nixy|+—Nsxy|0_Ni+1xy|_ b Oa

b bis1

‘(’; VZiv1

FI1G. 2. Local coordinate systems for each plate meeting at the corner.

where
(25) Qiy = Niy wi,y + Nixy Wix— Di(wi.yyy + (2 7 v)wi.xxy)'
The prebuckling solution consists of homogeneous fields and we may take

2.6) ;= —x,4, 8, =vyd, W=0.

1
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The boundary conditions permit the first order solution to be written as
‘:lvi = (élicosm;u}’i)"'éziSinh(;liYi)+é3icos(;2ix)+

mmnx;
1 ]

- C"4,-sin(;2,.y,-))sin

i'ci =(C ,.cosh(; y,-)+(n? ,.sinh; )+
2.7) (s ’ i e
+é7icosh(;4yi)+C"‘g,-sinh(ay,-))cos—] i

n

b = (Csib, sin h(F Y)— Ce;b, cos h(F, Y, —

—Cib,sinh(F, Y)— Cyib,cos h(F, Y))sin m’l”"',
where F,;, I, I, I'4> bys b, (see Appendix I).

For some values of the load parameter, the trigonometric functions (2.7),
have to be transformed into suitable hyperbolic functions.

The bifurcation load 4, is the smallest value of the parameter for any
integer value of m for which the determinant of the coefficients of conditions
Eqgs. (2.4) vanishes. The global buckling mode occurs at m = 1 and the local
modes occur at m # 1. All the modes are normalized so that the maximum
normal displacement is equal to the thickness of the skin plate h,. On the free
ends of the stiffeners, conditions corresponding to a completely free edge have
been assumed (M, =Q,=N,=N,, = 0).

The formulae for the postbuckling coefficients a;;; involve only the buckling
modes. In the points where the scalar load parameter A, reaches the maximum
value for imperfect structure (bifurcation or limit points), the Jacobian of
system of nonlinear equations [1] (see Appendix II):

2.8) E (=AY +EE ays+ ... = HA,E at J=1,...,n

is equal to zero.
The symbols, formulae and methods of the solution applied in this paper
are identical to those in the paper [10].

3. RESULTS

Detailed numerical calculations for some wide plates with thin-walled
longitudinal stiffeners, the geometry of which is known from literature [8, 11,
12], have been performed.

Because of the symmetry with respect to the longitudinal centre lines of
each skin plate, only the action of a typical panel included between two
successive centre lines is considered.
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Let us take into account a wide plate strengthened with regularly displaced
angle ribs, the dimensions of their cross section [12] (Fig. 1) being
b,/b, =05, h,/h,=10, " h,/hy =10, /b, =132,
bifh; =300 ¢ =0,

Figure 3 presents the dimensionless stress o (v = 0.3) as a function of the width
of the angle stiffener flange b,/b,. A circle in the latter diagram indicates the
results which have been obtained in [12] where only the lowest values of the

ork
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F1G. 3. Dimensionless stresses o* carried by the width of the angle stiffener flange b,/b, for different
buckling modes.

load o* are reported for a given value of b;/b,. The plot can be divided into
four parts. The significance of Interval I, 0 < b,/b, < 0.05 is merely theoretical
since b,y/h, < 1 for these values. The global load ¢% (at m = 1) increases in this
interval as a result of an increase in the height of rectangular stiffeners
(b, = b, +hy; by = 0). That, in turn, causes a reduction of local load values
o¥*(n #1). In Interval II, 0.05 < b,/b, < 0.25, values of load of increase
rapidly. It is a consequence of the increased flexural rigidity of stiffener flanges.
In Interval III, 0.25 < b, /b, < 0.5, values of local load stabilize. The flange has
an influence only on torsional not on flexural rigidity. Moreover, in the same
interval a further increase in global load of takes place. Interval IV,
bs/b, > 0.5, is characterized by a slow, monotone decrease in the values of the
load o*. The rib flange appears to be the “weakest” part of the stiffened plate,
responsible for the loss of stability. Also the shear lag effect gains in importance
and is discussed below.
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Figure 4 shows the dependence of dimensionless stress o;f upon the flange
width b,/b,, other dimensions of stiffened plate being constant:
b,/b, =4226, h,/h, =2367, h,/h,'=2367,
b, = 2591, b,/hy=35714, ¢ =0°.

ey _
7||Jo :
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FI1G. 4. Relationship between dimensionless stresses o) and the flange width b,/b,.

For geometrical dimensions of rectangular stiffeners (b, = 0), we have taken
the same values as in the papers [7, 11]. It can easily be noticed that for the
geometrical dimension b,/b, =0 of the stiffened plate two local buckling
modes at different numbers of half waves occur almost simultaneously. In this
case the primary local mode at m = 3 may be called “local mode of skin plate”
and in the case m = 7 the primary local mode “local mode of stiffeners”. In
Fig. 4 only the Interval I (0 < b,/b, < 0.05) can be clearly distinguished; it is
identical to that in Fig. 3. In the Interval II (0.05 < b,/b, < 0.4), however, even
a weak flange makes the load values o} rise significantly. In the Interval III,
where b,/b, > 0.4, the global load ¢} drops sharply and there is a marked
tendency to a slow decrease in local values at m = 3, 4. For m = 2 only a slow
futher rise in ¢* load can be observed.
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In Fig. 5a the first two overall buckling modes are shown at b,/b, = 0 and
the first three local modes at half waves m = 3 and m = 7 are presented in Figs.

5b and 5c, respectively.

6'& 6.06'I

/ o"=2.109

\

F16. 5. Two global and several local modes for the wide plate with rectangular stiffeners.

The next diagram (Fig. 6) depicts global buckling modes (m = 1) of the
discussed plate at different widths of strengthening flanges (b,/b, = 0.1; 0.2;
0.3; 0.4; 0.5). One can easily find out that the wider the flange, the higher the
values of stiffener deflections and the asymmetry of skin plate in relation to the
stiffener web (cf. Figs. 5 and 6d). Hence the technical theory of stiffened plates
[13, 14] even if used for the determination of global load values for angle
stiffener-strenthened plates may lead to considerable discrepancies in compari-
son with the assumed, here, description of global buckling by means of
nonlinear Karman’s equations.

Subsequent Figs. 7-9 present exemplary plots of in-plane stress resultants
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Fi1G. 6. Global buckling modes of stiffened plate for several flange widths bs/b,.
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FiG. 7. Plot of in-plane stress resultants Ii],, I{Jy, 1:/“ for the flange width b,/b, = 0.3.

ﬁ],, J\I/y, ﬁxy, distributions of the global modes for three values of the ratios
bs/b, = 0.3; 0.4; 0.5; respectively.

On the grounds of the present plots of normal components ]{[x, it can be
stated that in the centre of gravity of the considered segment ABCD (Fig. 1)
there occurs a reversal of signs of these components. As regards the skin plate,
a distribution of 1{[, stress typical for the shear lag effect can be observed. As

the flange width increases, ﬁx components remain virtually the same for the
skin plate and diminish only for stiffeners. This is obvious since the sum of
projections of ﬁx components on the longitudinal axis of the plate must always
be zero. Sectional force components ﬁy, ﬁxy (Figs. 7b-9b) and (7¢-9c) are of
the same order and they reach their maximum values either at the symmetry
axis or at the point of stiffener-to-skin plate junction. Furthemore, if the
simplified conditions of the cooperation between all the walls of the structures
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Fic. 8. Plot of in-plane stress resultants ﬁ,, I%J,, 1:],,y for the flange width by/b, = 0.4.

at the junction are assumed, we will not always be able to neglect summary
transverse Kirchhoff forces Q, the values of Wthh can be of the same order as
those of maximum N, [15] (compare Nsy Q,y Q1+1y in Figs. 7b-9b).
Summing up, the in- plane stress resultants are of the same order and their
omission in the analysis may lead to quite large differences as compared with
the case when they are taken into account.

Figure 10 depicts changes in dimensionless stresses of (m =1) and
o%(m = 3) as a function of angular displacement ¢ of the web (see Fig. 2) for
different values of the flange width. Calculations are based on the assumption
that before the load has been imposed upon the stiffened plate, rib flanges are
parallel to the skin plate (i.e., the angular displacement of a local coordinate
system at the transition from the web to the flange is 90° + ¢). Changes in the
¢ angle cause a considerable decrease in global load values of. The only
exception is the flange width b,/b, = 0.5 where 0¥ reaches its maximum value
at ¢ =~ 7°. As the flange width b,/b, increase, we observe more and more
distinct asymmetry of load o%f for positive and negative values of angular
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FiG. 9. Plot of in-plane stress resultants Iil,,, Iify, 1:1,,, for the flange width b,;/b, = 0.5.

displacement ¢. This is the result of different buckling modes for different
¢ angles while the value of by/b, is fixed. At the same time the values of the
local load o%(m = 3) remain virtually constant, their changes being practically
negligible. This fact can be explained in the following way. While determining
approximate values of load, corresponding to the first local modes under
conditions of mating, we are able to take into account only a situation where
the angle is constant and the bending moments are equal; moreover, the
deflection function w; for individual plates is assumed to be zero at the points
of junction.

Changes of some nonlinear coefficients (2.8) d,(= a;;;) and d;(= ay,;
+a,q,) (see [7, 8, 10, 11] for more detailed discussion) for different values of
flange width b,/b, and angular displacement ¢ of stiffener web are presented in
Table 1. The influence of the flange width and web angular displacement on the
coefficients a;;; is very complex. The coefficients are sums of integrals of
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Fi1G. 10. Relationship between stresses 0%, o% and the angular displacement ¢ of the web for several
flange widths.

different signs; they depend on the ratios of displacement amplitudes of skin
plate and stiffeners. As the flange width b,/b, goes up, there is either
a monotone increase in coefficients d, and d, or a reversal of signs. In the latter
case, if by/b, is “properly” chosen, the sensitivity to imperfections can be
diminished. The Byskov and Hutchinson theory applied here reduces all kinds
of imperfections to such imperfections that correspond to initial deflections of
a thin-walled structure; the nonlinear coefficients a;;; (2.8) remain constant.
However, the results for by/b, = 0.5 (Table 1) indicate that even a slight
alteration of angular deflection ¢ of the web may bring about even a reversal of
signs of those coefficients. Not all kinds of imperfections can be reduced to
a single type. Calculations of slight deviations of load and geometrical
dimensions allow to obtain “proper” imperfection sensitivity of constructions
as well as to find out whether the assumed model of single type imperfection is
correct.

9 — Rozprawy Inzynierskie 1/89
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Table 1. Results of calculations of coefficients d, and d,
: for several stiffened plates.

bs/b, ¢ d, dy
0.0 0 —0.0734 —0.0386
0.1 0 —0.1306 —0.0864
0.2 0 0.1409 0.0601
. 03 0 0.2377 0.0951
0.4 0 0.2631 0.0961
0.5 0 —0.3149 —0.0788
0.5 10° —0.2810 —0.0928
0.5 20° 0.2803 0.0979
0.5 30° 0.2885 0.0995
0.5 -10° —0.3586 —0.0677
0.5 -20° —0.4045 —0.0597
0.5 -30° —0.4441 —0.0542

Figure 11 shows the ratio of dimensionless limit stress o¥ to the lowest
dimensionless stress o* as a function of the angular deflection ¢ of web for two
pairs of imperfections: & = 10.5[; £, = 0.2] and &, =110]; &, =10.2|. In each
case the signs of imperfections &, and &, have been chosen in the most
unfavourable fashion, i.e., so that ¢* would assume its minimum value (see [10,
11] for a more detailed discussion).

Table 2 contains the ratio of dimensionless limit stresses ¥ to that lowest
dimensionless stresses o* for the following imperfections: &; = 19, &, =102,
Z, = 0.0; the 2- and 3-approach model interaction has been assumed in the
calculations. The same table contains the values of dimensionless global stress
o¥(m = 1) and the first three values of local stresses o%, 0% af (at m = 3).

On the basis of the results obtained for the wide stiffened plate, it is possible
to conclude that in that case the interaction of the overall buckling mode with

462’/5;:
10
&,=l05]
£,=102|
. 2=|U
- a5
30 0 30 ¢ Jdeg]

FiG. 11. Relationship between o¥/c¥% and the angular displacement ¢ of the web for several values
of € and &,.
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the primary and the corresponding secondary local modes triggered by overall
mode (having the same shape as the global) is of great importance (for example
compare cases 1 and 2 for ¢% and ¢¥). This effect is contained in the term
o,°ly,(u,, w) (where I, k =23) in the coefficients a;;; of Eqgs. (2.8). As the
imperfection &, and &, becomes more significant, the difference between these
two approaches increases [11], too. The local mode imperfections promote an
interaction between the local mode (s) and the global mode. As the second
nontrivial buckling mode ¢% increases largely (Table 2), the differences between
the 2- and 3-approach interaction model become less and less significant. This
statement is valid also in the case of the 3-approach model if two different
second local buckling modes are taken into account (namely o% and ¢%). The
detailed analysis [11, 15] has proved that one needs only to consider the
interaction of global buckling mode with the primary local and nontrivial
secondary local modes. In order to find the most unfavourable second local
buckling mode, several first values of local stresses, corresponding to a given
number of half waves m, must be determined. Then the coefficients a;;, for each
of these values are calculated. The only way of finding the most unfavourable
second local mode is by obtaining those coefficients.

4. CONCLUSIONS

The initial postbuckling behaviour of the thin-walled infinitely wide plate
with the angle section stiffeners has been presented. The present approach
regards the secondary local mode activated by the interaction of the overall
mode with the primary local mode. Rational dimensions of angle stiffeners can
be determined on the basis of the assumption of the plate model of ribs. The
influence of the flange upon the nonlinear characteristic and imperfection
sensitivity is related to a number of different factors. The imperfection
sensitivity can be lowered provided that the flange parameters are selected
entirely by means of nonlinear analysis. The assumption of a single type of
imperfection is quite questionable. In the case when a few buckling modes are
comparable, disregarding of mode interaction may lead to overstimating the
load carrying capacity of the structure.

APPENDIX [
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APPENDIX II

The method outlined in the following was developed by Byskov and
HuTcHINSON in [1] where a complete derivation is given. This method is
suitable for structures with M simultaneous or nearly simultaneous buckling
modes.

Assume that the structure is perfect and that the prebuckling state is linear
with respect to the scalar load parameter 1. The displacement field is expanded
in the following fashion:

(A.1) u=Aug+&u+&Eu+ ...,

where the prebuckling displacement field is described by iu,, the amplitude ¢,
measures the influence of the buckling mode u;, and u;; is the second order field
associated with u; and u;. Summation from 1 to M is implied for repeated Latin
lower-case indices.
The stress and strain fields are expanded in a fashion similar to (A.1):
A2) o =Aog+&0+E &0+
& =Aeo+ &+ 6+ ...
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The strain-displacement relation can be written in the form
(A.3) e=1,(w+0.51,(u),

where I, and I, are linear and quadratic operators, respectively. A bilinear
operator [,, is defined by

(A4) Lu+v) = L@+2l,,(u, v)+1,@).

The linearity of the prebuckling state is characterized by

(A.5) li;(ug, ©) =0

for any v which in turn implies

(A.6) g0 = 1y (uo)-

The material is assumed to be linearly elastic so that the stress ¢ is given by
(A7) o= H(eg)

where H designates a linear operator.
The dot notation used in the following denotes integration over the entire
structure:

(A.8) o= [o;8;dv.

The eigenvalue problems determining the buckling modes and their associated
eigenvalues 4, are found from the variational equation

(A9) 0y 1,00+ 4,00 1y Uy, W) =0, J=1,..., M,

where du denotes all kinematically admissible variations of u. The buckling
modes are taken to be mutually orthogonal in the following sense:

(A.10) o Ly u) =0, i#j.

The second order and all possible order fields may be shown to be orthogonal
to all buckling modes in the sense of (A.10). For a displacement field u the
amplitude &, of its component in the shape of u, is defined by

(A.11) 0ol (U, uy) = §00°1,(u)).
A variational statement of the second-order boundary value problems is
(A12) o1, (6u)+ Aoy 1y (uy, Ou) = —0.5(0; 114 (uy, ow)+0;° 1y, (u;, ou)),

where u;; and du are orthogonal to each u, in the sense of (A.10) and A = 4,
= min(4,).

The right hand side of this expression is symmetric in their indices.

If the structure suffers geometric imperfections # given by

(A.13) i=Eu,
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the following M nonlinear equations determine the equilibrium path

A A
(A.14) éJ(l—7>+éifjaijl+éi€j§kbijkl — X—Ep J=1,.., M.
J

J

The formulas for the coefficients are
@ijr = [0y 11 (s, u)+20; 1, (u), u))1/(20, &)
and
(A15)  bijus = Loy 1y, (), w)+05ly 1 (uy, ug)+ 0,15 (u;, up)
+0; 11 (uy, up)+20;° 14 (u), w)1/20, ¢)).
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STRESZCZENIE

WSPOLDZIALANIE POSTACI WYBOCZENIA SZEROKIEJ PLYTY WZMOCNIONE]
WZDEUZNYMI KATOWNIKAMI I PODDANEJ SCISKANIU

Rozwazono problem wspotdziatania niemal réwnoczesnych postaci wyboczenia ptyty wzmoc-
nionej podtuznymi katownikami o profilu cienkosciennym. Zastosowano rozwinigcia asymptotycz-
ne Byskova i Hutchinsona. Praca po$wigcona jest poglebionej analizie rtownowagi W poczatkowej
fazie odksztalcen ponadkrytycznych konstrukcji z imperfekcjami, z uwzglgdnieniem zjawiska
wspotoddziatywania jednej globalnej oraz dwoch lokalnych postaci wyboczenia.

PE3IOME

B3AMMOJENCTBUE BUJIA MPOJOJILHOI'O M3IABA NIMPOKOM TJIATHI
VIIPOYHEHHO¥ MPOIOJIBHBIMU YT OJIbBHUKAMUA U MOJABEPTHYTOM CXXATHUIO

PaccMOTpeHa npo6ieMa B3aMMOZEHCTBUs TOYTH OJHOBPEMEHHBIX BHIOB MPOZNOJIBLHOTO
u3ruba IUMMTHI, YHIPOYHEHHOW TNPOJONBHBIMH YrOJbHHKAMH C TOHKOCTCHHBIM npoguiem.
[IpUMEHEHB! ACMMNTOTHYECKHE pa3oXeHns beickoBa H latkuHcOHa. PaboTa TOCBAIIEHA
yriy6GieHHOMY aHAJM3y PAaBHOBECHA B HAYaJIbHOM (ase cepxXKpUTHUECKHX aeopmanmi
KOHCTPYKIIMH C MMICP(EKIUsIME, C Y4ETOM SABJICHHUS B3aMMO/IEHCTBHSL OJHOTO IJIOOAIBHOTO
W JBYX JIOKaJbHBIX BHJOB IPOOJILHOrO M3ruba.
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