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ON THE PROBABILITY OF RESPONSE OF A LINEAR
OSCILLATOR TO A RANDOM PULSE TRAIN™

R.IWANKIEWICZ (WROCLAW)

Dynamic response of a linear oscillator to a Poisson.- distributed train of general pulses is
considered. The complete expansion for the one-dimensional probability density function of the
response is presented in explicit form. The coefficients of skewness and of excess are evaluated for
the stcady-state response to a stationary train of square pulses and their behaviour is analyzed. The
truncated serics is used to examine approximately the probability density function of the stationary
response. The effect of the pulse duration and of the expected rafe of pulses occurrence on the
approximate probability density is discussed. Positive skewness and the departure of the response
probability density from the Gaussian behaviour arc cxplained.

1, INTRODUCTION

Dynamic response of structures to random trains of pulses has been the
subject of interest for some time {1-4]. The theory of Poisson or more general
stochastic point processes has been used to describe the occurrence of pulses
in time.

Statistical moments of the response of a linear system to random trains of
Dirac delta impulses can be evaluated by following the general procedure of
averaging the pertinent multifold integrals equivalent to the products of
convolution integrals which represent the response. Then use is made of the
degeneracy properties of product density functions {3]. Likewise the statistical
moments of the response to random trains of general pulses can be evaluated.
Tt suffices to regard the response of a linear system as the random train of
filtered pulses which are the responses to individual pulses of the excitation [4].
Equivalently, direct use can be made of existing theory of random pulses (with
Poisson distributed occurrence times [5] or given by the gemeral counting
process [4]). Then, for example, the evaluation of the cumulants of the response.
of a linear system is straightforward; the response to the individual general
pulse has to be substituted for the pulse shape function in the pertinent
formulae [4]. ‘
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It is a more difficult task to evaluate the response probability density
function. In the case of Poisson distributed Dirac delta impulses, the response
represented in the phase plane is a Poisson-driven (non-diffusive) Markov
process and its probability density function satisfies an integro-dilferential
partial equation which is the generalized Fokker-Planck-Kolmogoroy equa-
tion [6, 7]. A solution to this equation through the Fourier transform
technique has been proposed [7-10], and this leads to the first-order partial
differential equation for the characteristic function. However, it appears that
effective evaluation of the response probability density is only possible in the
case of a first-order system (filter) [7, 9. Also, in the reference [11] the response
probability density is obtained from the characteristic function.

Closed-form probability density functions have also been obtained [12] for
some particular cases of the filtered pulse shape function by making use of the
integral equation for the distribution function of the Poisson-driven shot noise.

In principle, the one-dimensional probability density function may be
obtained from the characteristic function by the numerical inversion of the
Fourier transform (e.g. [131). However, it appears that straightforward
numerical techniques for the inverse Fourer transforms are often time-con-
suming [147].

In view of the aforementioned difficulties, the approximate analytical solutions
to the problem of probability density are sought. An approximate technique
widely used in stochastic dynamics is the expansion of the unknown probability
density with respect to the Gaussian density function known as a Gram-Charlier,
or Edgeworth, expansion {cf. e.g, [15-18]). Of special interest is the paper by
RoBERTS [ 15], where the Edgeworth form of the Gram—Charlicr expansion is used
to investigate the probability density of the oscillator response to a random train
of Dirac delta impulses. Another approximate technique is the saddle point
approximation approach [19] which is based on the expansion of the cumulant
generating function about the saddle point. This method requires the numerical
evaluation of some integrals. Although formulated for general pulses, this method
is used for numerical analysis in the reference [197 only in the case of Dirac delta
impulses.

In this paper the expansion for the one-dimensional probability density
function is presented in an explicit form which allows to construct systematically
both Gram Charlier and Edgeworth serics. Then the truncated series is used to
evaluate approximately the probability density of the response of a linear oscillator
~ to a Poisson — distributed train of general pulses. The skewness and . excess
coefficients are evalnated for the stationary response to square, pulses and shown in
figures. The effect of pulse duration and of the average rate of pulses occurrence on
the approximate stationary probability density is discussed. The contribution of
consecutive terms of expansion is also investigated.
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2. STATEMENT OF THE PROBLEM

Consider a linear oscillator subject to a random train of general pulses. The
dynamic response is governed by the equation
N(t)
(2.1) d-+2ewgt+oig =Y Fs(t,t),
i=1

where s(t, t;} is the pulse shape function satisfying the conditions

t—t), L<i<y
S(t t.) — {S( !)’ 13 < < I+ T‘,

22 0 t<t, cor t>4+T,

where T denotes the pulse duration. The number of pulse occurrences in the
time interval [0, ¢) is given by the Poisson process N(t) with intensity' v(t) (the
average rate of pulse occurrences). The magnitudes of pulses are given by the
random variables F; which are assumed to be mutually mdependent of the
process N(t).
* The response g(f) can be expressed as
N{t)

(23) Q(t) - 2 F ts i1 ’I'ls

where z{t, ¢, T) is the response at time ¢ to the pulse which occurs at time t; {4]
The response g(f) has the following integral representation (cf. [3]):

-t

2.4) a(t) = { z(¢, v, T)F ()N ().

4]

t ' .
The substitution of z(t, 7, T) = {h{t—0)s(0—1)d0 (where h(t—0) is the

T
impulse response function) into the expression (2.4) and elementary con-
sideration of the integration domain (the integration is performed only over the
domain where 0 < 0—1t < T) yield, as was shown by KawczyNskr [20], the
-splitting of the function z{t, T, T) into two parts:

2

t
2,6t T) = [h(t—0)s(B—2)d0, —T<t<t

t+T

z(t, 7, TY= | ht—0)s(0—2)df, O0<t<t—T

2.5) z(t, 7, T) =

from which the obvious splitting of the intégral (2.4) follows:

t—T

(2.6) g(t) = I z,(t, T, TYF(1)dN (1) + j zz(t T, T)F()dN('r).

This representation may be used to determine the expected value and
variance of the response to random pulses (e.g. {21, 22}).
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Cumulants of the response process are evaluated by making use of the
expressions given by Lin [4], the response z(t, t, T) heing substituted for the
‘pulse shape function. The n-th order cumulant x, is expressed as

1
2.7 s, (0 = | 2" (t—7, Thv () E[F" ()] dx,
0
and taking into account the splitting (2.5) of the function z (¢, =, T), one obtains

(2.8) x,0)= t]Tzﬁ(t—t)v(r)E{F"(r)] dr+ j[ Zi{t—1)v (1) E[F" (7)) dz.
0 .

t=—T

In order to evaluate the probability density function, the Edgeworth series
will be used. Following the procedure due to LONGUET-HIGGINS [23] and
shown also by OcHr [18], let us derive the explicit and systematic form of the -
expansion for the one-dimensional probability density.

The probability density function f{g) is expressed as the inverse Fourier
transform of the characteristic function @ {iw}, ie.,

2.9) ft(q)-:% [ ®(iw)e " do.

Using the identity @ (iw) = exp [K (iw)] and expressing the cumulant genera-
ting function K (iw) in terms of the cumulants, one obtains

(2.10) | @ (i) = exp{ f (iﬁ)j %, (r:)}.

j=1
where x,(t) is the j-th order cumulant. Substituting Eq. (2.10) into Eq. (2.9),
mtroducmg the standardized variable & = (q—,)/y/ %, changing the variable
= S/\/—2 and expandmg the exponential in the series, we obtain

211} [ =— j exp{4—(3 +215S){1+ > = zs)j+%.§ ’1:;:»:((; YA

A Ay

I oo
+7 (I ))+k+l+ }ds,
3!“(; S jIk
where
Ay= e and & ={g—x)/\/,.

By making use of the relationship
| 1 2
(2.12) 7 ‘[ exp{ ~5(32 -+ 2i st)} (iS)" ds = €7§ {2 _H" (5),
T —co

where H, (¢) is the n-th order Hermite polynomial, the following expansion for
the probability density is arrived at:




ON THE PROBABILITY OF RESPONSE OF A LINEAR OSCILLATOR 251

L 2 A 1 & 44
2.13 = e§2f2{1+ TH (D45 ¥ S HylO+
L2 A
+§j‘k§=3j! KV H;+k+a(5)+ }

In each term the sum of the indices of the coefficients (cumulants) is equal to
the order of the pertinent Hermite polynomial. This explicit form {cf. e.g., [ 18],
[237) allows to derive systematically the expansion up to any degree required.

All, except for the unity, terms of the expansion (2.13) are non-Gaussian
terms, i.e., they account for the departure of the probability density f,() from
the Gaussian behaviour. The basic measure of this departure are the coeffi-
cients of skewness 1, and of excess 4,. Therefore it is important to evalunate
these coefficients and to examine their behaviour.

3. SKEWNESS AND EXCESS COEFFICIENTS OF THE STATIONARY
RESPONSE TO A RANDOM TRAIN OF SQUARE PULSES

Let us confine our attention to the steady-state response to the stationary
train of square pulses, i.e., when s{t) = 1 for t; < t < t;+ T, the Poisson process
is homogeneous: v(t) = v = const and the statistical moments of the random
variables F,; are constant as well: E[F"(t)] = E[F"] = const.

The expression (2.8) for the cumulants takes, after change of the variable
u = t—7, the form

w© T
(3.1 n, = vE[F"] | 2% (u) du+vE [F"] | 23 (u) du.
T 0
Evaluating the integrals (2.5) in the case of square pulses yields
(3.2) z, () = mgz[lwe"m‘““( 1 2siméuﬂ-cos §u)].
—0
(3.3) 2z, () = wg *s(a, wy, Tye *sinlu+wg > c(x, vy, T)e ***cos{u,
where
—a o i
(3.4) s{o, g, T) = +( cos (T4 sin CT)e"“"DT,
| J1—a? /102

—u )
3.5 cla, wgy, T)= —1+(4nsinCT+cosCT)e“"’°f.
( ) ( 0O ) \/1—_&‘5

The same results for z, (u) and z, (u) are given in Ref. [21], in which the
variance of the response to square pulses is also evaluated.
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The expressions for the variance 67 = x,, the third-order cumulant x, and
the fourth-order cumulant x, are given, respectively, by

2
J1—a?

2
o 2

g8, (T
e

+ 5% (o, g, T)s, (0)+2s(, my, T)elo, wy, TYDyq(0)+

(3.6) ¢ =VE[F?)] cog"*{T— 5, (T)—2¢, (T)+

Dy (T)+¢,(T)+

+c*(a, o, T_)cztoo')}. |

(.7 %y =vE[Flog® 5;(T)—3¢, (T)+

{T_g,_'ﬁ_
J1—a?

2

6o
43— 5 (N +——=D((T)+3c,(T)—
1— 2(T) - 11_( ) AT
o’ 32
_(1_az)3/233(T D21(T) 3mD12 (T)—c; (T +

+8% (&, o, T)8y [oo)-tf3s (&, wy, T)cla, wy, T) D,y {0)+

+3s(2, wg, T)? (a, wy, T) D14 (00)+6 (2, 0, T}ca(co)}.

G8)  x, = vE[F wgs{T—ﬁl 5, (T)—de, (1)-+

o
ST —a?

2

o o
+6—-—05282{T')+ Izﬁbna‘]*‘&z(ﬂ“

1
o’ 1202
“4W53(T) DEI(T)_
124 at
_ﬂDlz(T)ﬁz;cS(T)"—(_l_—a—z—ija(n'f'
4o - (e
+73,/2D31(T) Dzz(T)+

(1—a?)
4o

J1—a?

+4s° (OC, Dg, T)D31(OO)+632 (OC, Wg, T)CZ {OC, Wy, T)Dzz(oo)+

+ D3 (T (T)+5* (2, w4, T)s, (0} +

+ 45, 0y, TV (@, g, T) D13 {00)+c* (o, wg, T)c4(oo)},
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where

e P sin® [u du,

e e eos® Mudu,

I
O Cnmy ] O ey R

Co (T) =

(3.9 D (T) = [ @ a®otm¥mugin™ Fyy cos” (u du,

e~ wom ain® P du,

oD
¢, (o0} = | e ™ cos" {u du,
T

Dy(00) = [ e7o@otmtmugin® £y cos” fudu.
T

The coefficients of skewness 4; and of excess 4, are expressed, respectively,

as
oy l6afu fw, E[FY %
(3.10 P Rk TTR o N R 517 23 JECP 5
2y 3o w, E[F*Y] %,

(3-11) Ae = o, 2(1+3e®) v {E[F?]}?6%

It is interesting to note that in view of Eq. (3.1) the coeﬂiments A; = 3, ulf?
appear to be of the order (w,/v)>~1 (cf. [157) 7

It can be proved that as T—0 in such a way that the following
products are kept constant: T2 E[F*] = const, T° E{F?] = const. T*[F*] =
= const, the expressions for a7, %, and x, approach the respective solutions for
Dirac delta impulses and so do the coefficients A5 and A,. Hence it follows that
lim %,/67 = 1 and lim %,/67 = 1 and these are the normalized coefficients of
T—0 T—+0
skewness and excess, respectively.

The coefficients of skewness #,/6; and of excess %,/6;, plotted against
the pulse duration, are shown in Flgs. 1 and 2, respectively. Both coefficients
are ‘always positive and reveal very pronounced maxima at the values
of pulse duration equal to the multiple natural period, ie, for w,T
=n-2r, #n=1,2,3,.... The minima of these curves are flat and occur at
w, T=2n+1)n,n=1,2,3,.... The heights of maxima decrease and the
heights of minima increase as the pulse duration T increases.

An important information is that the skewness of the probability density of
- response to square pulses is always greater than in the case of Dirac delta

~3
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impulses. On the other hand, the behaviour of the excess coefficient is different;
for example, at the values of @, 7T in the neighbourhood of (2n+1)=,
n=1,2,3, ..., the excess is much smaller than in the case of Dirac delta
impulses.

The absolute maxima of both coefficients occur when the pulse duration
equals the natural period of the system, ie., w, T= 2=. This means that the
departure of the probability density from the Gaussian behaviour is then
expected to be the largest.
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4. ANALYSIS OF THE APPROXIMATE STATIONARY PROBABILITY DENSITY FUNCTION

Let us confine our attention to. the probability density f(&) of the
steady-state response to the stationary train of square pulses.

Expansion (2.13) of the probability density may be viewed in two ways.
Collecting the terms of expansion according to the orders of Hermite
polynomials (or, equivalently, according to the order of derivatives of the
corresponding differential series), one obtains the Gram—Charlier series.

On the other hand, since the coefficients 1, are of the order (w,/v)? ', the
expansion (2.13) is the one in powers of (w,/v}'/2. Grouping the terms
according to these powers yields the Edgeworth series

o0 iz
@) GE \/lz_nexp(~éz/z){1+ p) (—"3—) 2 (é)}.

where the term c;{¢) includes all possible products of the coefficients 4; for
which the product is of the order (w,/v)'2.

Two questions arise in a natural way. The first one concerns the
convergence of the power series (4.1) and hence the validity of such an
expansion. The approximation accuracy attained by using a truncated series,
consisting preferably of the first few terms of expansion only, is a second
question.

CraMerR [24] stated the following condition for the validity of the
Edgeworth expansion for the density function f (x): the expansion is convergent
to f (x) in every point where f (x) is continuous if f (x) is of finite variation in

o

{— o0, o) and the integral _[ exp (x%/4)f (x)dx is convergent, i.e., the tails of

the density function approach zero faster than exp(— x2/4). Unfortunately, this
condition is of litile practical value because the rate of approaching zero is for
f (x) unknown. '

Some insight into the question of validity of the Edgeworth expansion is
found in the references [25] and [26]. The paper by WaALLACE [25] deals with
the distribution function of the standardized sum of n independent, identically
distributed random variables. The asymptotic expansion of the distribution
function is obtained, which is a formal Edgeworth expansion in powers of n™ /2
(cf. the powers of (w,/v)'/* in the case of the expansion (4.1)). Moreover, the rate
of convergence to normality is estimated to depend on n™*/*, The bounds for
the error of approximation by using the truncated Edgeworth series are given,
which depend: on the unknown distribution function entering through the
absolute moments or through the characteristic function, but their numerical
usefulness is rather poor. It appears that this error is of the same order of
magnitude as the first neglected term. An important information is that the
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asymptotic property of expansion is a property of finite partial sums (as the
nzmber of components n— o). From the explanations given in the reference
[25] concerning the convergence of the infinite series (dependence on the value
of n), it follows that the convergence of the infinite series (4.1) is assured if the
ratio w,/v is sufficiently small (i.e., v is large), but for an arbitrary w/v the series
may or may not be convergent. Usually for large wy/v (small v) only the
addition of the first few terms improves the approximation.

In the reference [26] more precise formulation of the assumptions under
which the formal Edgeworth expansion is valid is given, The estimates for the
rate of convergence to normality and the error due to using the partial sum of
expansion are given not for the distribution function, but for non-zero
probabilities defined on Borel sets.

_ The most important thing in practical applications is to know whether the

truncated series (preferably at a low level) may provide an adequate appro-
ximation to the actual probability density. For example, satisfactory results
have been obtained in approximating the experimental histograms by the first
few terms only of the Edgeworth series [18]. When it is known that the
truncated series is a good approximation, then the question of convergence is
of minor importance. ' ' .

There exist also some results concerning the total deviation from Gaus- -
sianity of the Poisson driven shot noise processes. For example, in the reference
[27] the upper bound for the maximum of the difference of the shot noise
distribution function F(x,t) and normal distribution function G{x,t) is
evaluated as '

| Al B
(4.2) IF(x, O)— G(x, o) <§|:271: Iggﬂ ,

where I,(¢t) is the third absolute moment
(43) | L= | |, P vdr,

where h(t, 1) is the pertinent filiered pulse shape function, and I,(f) is the
variance. :

Under the assumption that the pulse shape function s {t, 7) of the shot noise
process is bounded by a constant M, i.e., [h(t, 7)] < M, the bound given by the
inequality (4.3) is estimated from above and is shown to depend on the inverse
standard deviation. This means that as the variance tends to infinity (e.g. when
v—co cf. [2]), the shot noisec approaches the Gaussian process. '

On the other hand, the obvious inequality

(4;4) _ - %y = T R, t)v(r)dr < Oj? h(t, 23 v(t)dr,
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which holds for the oscillatory function (¢, 1) (e.g., the response of a vibratory
system to an impulse or general pulse) may be used. Then the bound given by
the inequality (4.2) is estimated from below by the skewness coefficient
Ay = #4f(3¢,)*"*. Thus the skewness coefficient behaviour provides information
about the departure of the shot noise process from normality. Let us explain it
in more detail. In the case of a small skewness coefficient, two situations are
possible: the upper bound of the departure from normality may be low and
then only small departure can be expected, or this bound may be high — then
both large and small deviations are likely to occur. On the other hand, when
the skewness coefficient is large, the upper bound has to be accordingly high,
hence the first situation described above is impossible; the deviation cannot be
bounded at a low level

Altogether it may be concluded that the successive approximations in-
cluding the first few terms of the Edgeworth expansion are certamly improve-
ments with respect to the Gaussian approximation (Gaussian term of the
expansion) and provide the information about the tendency of the departure
from normality.

In view of all the above observations and remarks, let us truncate the series
(2.13) in such a way as to retain the terms of the order (w,/v)'/? and (wy/v)!.
The result 1s

O GE fexp( 52/2){1+( )mcl(é)+%c2(a},

where _
(4.6) ¢ (&) = a; H;(2),
(4.7) ¢y (&)= a, Hy (&) +agHy (8),
8o fu E[F %
(“8) T 9+ 802 {E[F?1}37 63
B x E[F*] #,
“9) Y T 16(1+309) [E[F21)7 6%
32 o {E[F1)PR
(+10) % TSI (182 {E[F?1 58
{411) H,(8)=&-3¢,
(4.12) H, (&)= &4 —6E243,
(4.13) H (&) = &5 — 1584+ 458215,

It is seen that the contribution of the non-Gaussian terms (the departure of
the probability density from the Gaussian distribution) increases as the

4 ~ Rozprawy Iniynierskic 2/89
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damping ratio « increases and as the average rate v of pulse occurrence
decreases; morcover, it depends on the distribution of the random amplitudes
and, of course, on the pulse duration T.

Let us first discuss the effect of the pulse magnitudes (amplitudes)
distribution on the probability density f(£). In the case of normally distributed

pulses magnitudes, denoting = (p, one obtains

g
E[F]
E[F?] 1+ 3¢°
(4.14) ETF T (e O
E[F4] . Jp*+ 602 +1
{ELF?])* (1+¢%

It appears that the coefficient @y attains maximum when ¢ = 1, and then
@m = ﬁ, @y = 2.5. The other extreme case takes place when ¢y attains
maximum, ie. when ¢ —oco. Then E[F]=0 and also E{F*] =0, which
implies that ¢y =0, ¢ = 3. This means that in the case of zero-mean
normally distsibuted pulse magnitudes the response probability density curve
is symmetric. ‘

If the pulse magnitudes are Rayleigh distributed, then it can be shown that

(4.15)

= Pry-

3 . o ...
@m = l_iﬁ = 1.329 and ¢y = 2. In the case of uniformly distributed positive

. , 1
pulse magnitudes, with probability density function, g,(n) = P e, a), the

3
coefficients are @y = 3—4—; 1.299, ¢ = 1.8. Of course if the pulse mag-

nitudes F are deterministic, both coefficients are equal to unity: o = @ = 1.

Hence, except for the case of zero-mean normally distributed pulse
magnitudes, the coefficients ¢ and ¢y expressed in terms of third- and
fourth-order moments, respectively, take the values which are not very much
different for different probability distributions assumed. In the following
analysis the pulse magnitudes are assumed to be Gaussian distributed, with
P = ﬁ and @y = 2.5. '

The results of the analysis of the approximate probability density are shown
in Fig. 3 through 10.

In the case of very short pulses (w, T < 1/4), Fig 3., the probability density
is practically the same as for Dirac delta impulses; even for a large value
we/v = 100 the effect of the skewness term of expansion (4.5} is very weak
(dotted. line), but taking into account the excess term (dashed line) reveals the
large departure of the probability density from the Gaussian distribution
(represented by a solid line}. '

When the pulse duration is equal to half of the natural period (w, T = =),
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Fig 4, also the contribution of the excess term is very low as it might be
expected from the behaviour of #,/6F shown in Fig. 2. Consequently, even for
a large value w,/v = 50 the probability density is merely slightly non-Gaussian,

In the subsequent analyses the skewness 1, the excess 4, and the A2 terms
are taken into account. The evolution of the probability density curve with
increasing pulse duration can be observed in each of the Figs. 5, 6 and 7, for
cach of the values of the ratio wy/v =1, 2, and 5, respectively. Indeed, the
probability density curves reveal positive skewness, ic., the probability of
occurrence of large positive values of the response is greater than that of large
negative values, whereas the probability of occurrence of small positive values
is less than that of small negative values. The approximate probability density
curves attain negative values in some small regions in the vicinity of £ = —2

. 15
(ie, for wy T=mand wy/v = 1 — Fig. 5, for w, T= gn; 2m and Do _ 2 — Figé
Vv

15 . .
and for my T= Kn; 2r and wy/v = 5 — Fig. 7), which should be regarded as

a result of the insufficient number of terms of expansion. This also means that
departure from the Gaussian behaviour is large in these cases.

The evolution of the probability density curve for w, T= 2n and with an
increasing ratic m,/v is shown in Fig. 8.

As the pulse duration increases (up to @,T=2n) and as the ratio wy/v
increases {the average rate decreases), the positive skewness of the probability
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By, ()

Fic. 8.

density curve increases, what corresponds to an increase of the probability of
large positive and small negative values of the response and to the decrease of
the probability of small positive and large negative values.

The contribution of consecutive terms of the expansion (4.5) in the case of
large departure from normality {w, T= 2m) is shown in Fig. 9 for wy/v = 2 and
in Fig. 10 for wg/v = 5. .

Positive skewness of the probability density function can be explained by
the quasi-static effect of the general pulses, which is the most clear when the
pulse duration equals the natural period of the system T=2r/wy. Then the
valué of the response z, (T) decisive for the induced free vibration is very smali,
hence the free vibration has the nature of small amplitude oscillations about
the equilibrium level; the response is essentially quasi-static. However, the
probability density considered herein is that of the standarized variable, hence
these small oscillations should be regarded as negative values with respect to
the mean level. Therefore the small negative values of the response are more
frequent (more probable) than small positive ones and large positive values are
more frequent {(more probable) than large negative ones. 7

The departure of the probability density from the Gaussian distribution
may be explained as follows. The response of the system at the time t is, of
course, due to all the pulses which occurred before the instant ¢ and, as the
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number of pulses tends to infinity, the response probability density approaches
the Gaussian one (cf. e.g. [2]). However, the physical interpretation of the
splitting of the integral (2.6) is such that the first term accounts for the free
vibration due to the pulses which originated before the instant t— T (cf. [21,
227). When the pulse duration is equal to the natural period of the structure,
the induced free vibration is not important (see the explanation above) and the
response is essentially quasi-static. Consequently, the pulses which occurred in
the time interval (t— T, ¢} are decisive for the response at the time t. However,
from the Poisson distribution law it follows that for finite v only very small
probabilities correspond to the occurrences of large numbers of pulses in such
a short time interval. The response is then effectively due to the relatlvely small
number of pulses and hence it is far from being Gaussian.

The effect of damping can be explained in a similar way. As the damping
ratio o increases, the free vibration induced by each pulse is more strongly
damped out and hence only the pulses which occurred in a certain limited time
interval prior to the instant ¢ are practically decisive for the response at that
instant.

5. DISCUSSION AND CONCLUSIONS

The verification of the accuracy of the approximation used should be made
by comparing the results presented with those obtained by other, highly
reliable methods, e.g., digital simulation for a sofficiently large number of
sample functions. Unfortunately no studies are available dealing with the
problem of random general pulses which would make possible a direct
comparison of results,

However, as far as the departure of the response from Gaussianity is
concerned, some extra insight into the question may be gained by comparing
the findings of the present paper with others, also dealing with the problem of
Poisson driven responses.

in the reference [19] Rogerts developed the saddle point approximation
technique for evaluating the probability density of the response to Poisson
distributed pulses. While the Edgeworth series may be regarded as the result of
inverting the characteristic function with the help of expanding the cumulant
generating function about the origin, this alternative technique is based on the
expansion of the cumulant generating function about the saddle point. The
advantage of saddle point approximation over the Edgeworth series approach
is that the resulting expansion can yield accurate approximations to the
probability of exceeding extreme amplitudes, whereas the approximations
obtained from the Edgeworth series assume negative values in some regions at
the tails of the probability density curve. Though the numerical analysis based
on the saddle point approximation is performed in the reference [197] for Dirac
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delta impulses only, the findings of a qualitative nature may be helpful.

The results obtained from saddle point approximation and from digital
simulation for Dirac delta impulses with Gaussian magnitudes and for
we/v =5, =02 as well as for wy/v =442, a=00226 show that the
departure of the density curve from the Gaussian behaviour is large in these
cases. It is worthwhile noting that Jansgen and LAMBERT [14] have proposed

—1
the parameter y = (20&—) for the characterization of the departure from
v

normality for the response to Poisson distributed impulses and adopted the
condition y < 1 as the requirement for a highly non-Gaussian response. This
means that the response is highly non-Gaussian if the damping ratio is
sufficiently large and/or the train is sparse enough (sufficiently large ratio w,/v);
the combination «w,/v being decisive for the departure from normality. In fact,
in both cases mentioned above of the reference [19), it is owy/v = 1.

If the damping ratio equals o =0.01, as in the present paper, the
requirement for a highly non-Gaussian response to Dirac delta impulses is
we/v > 50. As a matter of fact, the approximate probability density curve for
Dirac delta impulses with wy/v = 100, as it is seen in Fig. 3, is highly
non-Gausian.

However, in the case of general pulses, owing to the behaviour of the
skewness and excess coefficients, the highly non-Gaussian response should be
expected even for much lover values of wgy/v. This conjecture is certainly
supported by the occurrence of negative values of the approximate probability
density for w,/v =1, 2,5 and for o, T= 2n (see e.g., Fig. 8), which can be
interpreted as the effect of the insufficient number of terms of expansion in the
case of highly non-Gaussian density function being difficult to approximate.

The findings of the present paper concerning the influence of the ratio w,/v
and damping ratio o on departure from normality are in accordance with the
observation due to JANSSEN and LAMBERT [14]

The numerical results reported herein have been obtained for the part1cular
case of square pulses. However, the qualitative features of the response
probability density behaviour which have been revealed will be similar for
other types of general pulses.

It may be concluded that in spite of the fact that the approx1mate
probability density is obtained for the first few terms of expansion only, it
reveals the behaviour which is supported by the results of other studies on
Poisson driven responses of lincar systems. Although the Edgeworth series
truncated at a low level may yield very reliable results if the departure from
Gaussianity is not large (e.g. the train is dense enough), the approximations
constructed by including the consecutive non-Gaussian terms of the expansion
are useful also in other situations since they are improvements with respect to
the  Gaussian approximation. This way it provides information about the
probability density of the response to Poisson distributed general pulses, in
particular about the tendency of the departure from Gaussianity.
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The approach presented may be generalized to the case of an acutal
continuous structure. If the problem is described by the set of equations
governing the modal responses, then the cumulants of the structural response
are expressed in terms of the cross-cumulants of the modal responses. The
generalization of the pertinent formulac to the case of cross-cumulants is
straightforward.
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STRESZCZENIE

0 ROZKLADZIE PRAWDOPODOBIENSTWA ODPOWIEDZI
OSCYLATORA LINIOWEGQ NA DZIALANIE LOSOWEZ SERIT IMPULSOW
ROZLOZONYCH W CZASIE

Rozwaiane sa drgania oscylatora liniowego poddanego poissonowskiej serii impulséw
roziozonych w czasie. Pelne rozwinigcie w szereg: jednowymiarowe] funkeji gestoSel praw-
dopodobienistwa odpowiedzi vkiadu jest przedstawione w jawnej postaci. Zanalizowano wspol-
czymniki skosnodei i splaszezenia rozktadu wyznaczone dla ustalonego stanu drgan pod wplywem
stacjonarnej serii impulsdw prostokatnych. W celu przybliZonego zbadania pestosci praw-
dopodobienistwa odpowiedzi dokonano obcigcia omawianego szeregu. Zbadano wplyw czasu
trwania impulsu oraz éredniego natgzenia pojawiania si¢ impulsow na gestosé prawdopodobien-
stwa odpowiedzi. Wyjasniono zjawisko dodatniej skoénodci oraz odchylenia rozkiadu praw-
dopodobiefistwa od rozkladu normalnego.

PE3IOME

O PACHIPEJEJIEHUM BEPOSITHOCTH OTBETA JTHUHEMHOIO OCIIMIJISTOPA HA
JEUCTBAE CIIVUANHOW CEPHMUW UMITYJbCOB, PACIIPEJENEHHBIX
BO BPEMEHWM

PaccmaTpBaioTes KONeOAHMA JHHSHHOTO OCLHMANATOPA, IIOABEPACHHOIO IYyACCOHOBCKOM
CEPEM HMNYILCOB, PACTIPEAEACHHEIX BO Bpemenn. [lomHoe pasioxeHHe B pap oaHOMEpHOI
yEXIEY IIOTHOCTH BSPOATHOCTH OTBETA CHCTEMb! NPEJCTABNGHO B 4BHoM Buje. [lpoana-
NE3HPOBAHEL KO3 GHIMER TS ACHMMETPHE H CITOTIEHHOCTH DACIPEACICHAS, OTPeACeHREIE 1T
YCTAHOBNEHHEBIX KoneCanuil o NedcTBrEeM CTATRROHAPHON CePHE TIMOYTOLHEIX HMITYIILCOB.
C menpro NPHONEKEHHOTO HCCICHOBAHKA MIOTHOCTH BEPOATHOCTH OTBETA ORETO HPOH3BEACHO
YCEUCHHE PpaCCMATpHBACMOTO DHAA. HCCRCHOH&J’[OCB BIHAHAC HPOACIDKHTCIBHOCTH HMDYJIBCA,
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d TAKXKC CpCﬂHCﬁ HATCHCHBHOCTH NMOABJCHHA HMIYARCOB HA IIOTHOCTE BEPOATHOCTH OTBETA.
Belno BeiicHeHO ABMEHHE TONMOXKHTENBHOH ACHMMETDHH, a4 TalKe YXJIOHA paclpefleyleHus Be-

POATHOCTH OT HOPMANBHOIC PACIPCHACIICHNI.
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