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INTERACTIVE BUCKLING OF THIN-WALLED BEAMS WITH OPEN
AND CLOSED CROSS-SECTIONS

Z. KOLAKOWSKI (LODZ)

Influence of the interaction of nearly simultaneous buckling medes on the postbuckling
behaviour of thin-walled beams with imperfections is studied. The investigation is concerned with
thin-walled closed and open cross-section elastic heams under an axial compression and a constant
bending moment. The beams are assumed to be simply supported at the ends. The asymptotic
expansicn established by Byskov and Hurcamison {17 is employed in the numerical caleulations
in the form of the transition matrix method. The paper’s aim is to achieve the improved study of
the equilibrium path in the initial postbuckling behaviour of impesfect structures in which the effect
of the interaction of a few buckling modes would be included. The calculations are carried out for
several types of beams.

1. NoTtaTioN

ayy postbuckling coefficients (see Byskov and Hurcminson [1]),
width of the i-th wall of the beam,
flexural rigidity of the i-th wall,
E Young's modulus,
thickness of the i-th wall of the beam,
[ length of the beam,
m number of axial half-waves of mode n,
M., My, M;, bending moment resultants for the i-th wall,
n number of mode,
Nix, Niy, N, In-plane stress resultants for the i-th wall,

Qi Eqn. {3.5),

u;, v, w; displacement of middle surfacc,
ﬂ,., 1[)),., vg,- prebuckling displacement fields,

i, D w;, buckling displacement fields,

A load factor,
#, & global coordinate system of the beam,

2 scalar load parameter,
value of A at bifurcation mode number n,
maximum value of A for imperfect beam,
amplitude of buckling mode number »n,
£, imperfection amplitude corresponding to &,
oy, = min{g}..q,),
o4 =0,10%E dimensionless stress of mode number n,
ot limit dimensionless stress for imperfect beam.
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2. INTRODUCTION

Thin-walled elements are widely used as structural components in many
types of metal structures in which the interaction buckling of elastic beams may
result in an imperfection-sensitive structure and is the principal cause of
collapse of thin-walled structures. Such problems often arise in connection with
optimal structural design.

Korter and van der NUET [2] have proposed a technigue in which the
interaction of an overall mode with two local modes having the same
wavelength have been considered. The fundamental mode is henceforth called
“primary” and the notrivial higher mode (having the same wavelength as the
“primary”) corresponding to the mode triggered by overall longwave mode is
called “secondary”. _

SrRIpHARAN and Awi {3] have presented an analysis of 3-mode interaction
using a finite strip method for thin-walled columns having doubly symmetric
cross-sections and in which the secondary order solution has been used.

MoLIMANN and GOLTERMANN [4,5] have studied the postbuckling
behaviour and the imperfection-sensitivity, the buckling modes and the 2-nd
order displacement fields being determined by the finite strip method. The
method has been based on Koiter’s asymptotic theory of stability.

PigNATARO and LuonGo [6] have analysed the interaction of buckling
modes in thin-walled open columns on the ground of the general theory of
elastic stability and using third-order term of the energy expansion of the finite
strip method.

Paper [7] has been devoted to an analysis of the interactive buckling of the
trapezoidal column in the initial postbuckling behaviour. However, a 3-mode
approach analysis is introduced in the four latest papers [4-7].

Byskov [8] has proved that very few of local modes need to be taken into
account for the particular structure — ie. van der Neut’s column possesing an
“infinitely many” nearly simultancous local modes but having only the different
wavelength,

Some works concerning the interactions between the only two independent
buckling modes of thin-walled structures have been done by BeniTo and
SRIDHARAN [9], Hur [107], Byskov {11], Koraxowski [12].

In the present paper the initial postbuckling behaviour of thin-walled
structures in the elastic range being under an nonuniform compression is
examined on the basis of Byskov and Hutchinson’s method with the
co-operation between all the walls of the structures being taken into account.
The study of the interaction modes is based on the determination of the
transition matrix. The background of this method has been discussed in the
papers [13-15]. An attractive feature of this method is that it is capable of
describing the complete range of behaviour of the thin-walled structures from
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global to local stability. In the solution obtained, the effects of interaction of
certain modes having the same wavelength, the shear lag phenomenon and also
the effect of cross-sectional distorsions are included. :

3. STRUCTURAL PROBLEM

The long thin-walled prismatic beams of a length [ and composed of plane,
rectangular plate segments interconnected along longitudinal edges, simply
supported at both ends are considered for which b/l < 1.

Cross-section of this structure consists of a few plates and assumed local
Cartesian coordinate systems are presented in Fig. 1. :

¥zi

Yiet

Fic. 1. Prismatic plate structure and the local coordinate system,

The memnibrane strains of the i-th wall are as follows:

8= Uy x +0.5(WH, +07),
(3.1) &y = 0;,+0.5(w?, +u?),

Fixy ™= Uy + Uy x T+ Wix Wiy,
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The bending strains are given by
(32) Hix = _wi,xs %iy = _Wi,y’ %ixy = —Wi,xy-

The differential equilibrium equations resulting from the virtval work
expression for single wall can be written as;

- Nix,x - Nixy,y_ (Niy ui,y),y =0,
(33) - N:‘y,y _'Nixy,x - (Nzx Ui,x),x: 0!
Di VV wi _(Nix Wi,x),x _"(Ni_v Wi,y),y _'(Nixy Wi.x);y _(Nixy Wi.y),x =0,

The geometrical and statical continuity conditions at the junctions of plates
may be written in the form:

ui+1|0 = ui|+,

wis1|® =w,|t cosd—uv,;|" sin ¢,

vl =w|tsing+u|" cosd,
(3.4) wi+l,y|0 = Wi,yl+,
Dt Wi 1y + Wi 160l — Dy Wi Wi T =0,
Niws =Nyl " cos =0, sing =0,
Qi 1,|° + Nyl " sinp— Q| * cos =0,
Ni+ 1xy%O“Nixy|+ = 0,
where

(35) - Ql’_\' = Nr'_r Wi._v + Ni.\').! Wy — Di (Wi.yyy + (2 - \’) Wl’,xxy) {f) = (/)i,i+ 1-

The prebuckling solution consists of homogencous fields which is assumed
as:

(3.6) b= —xd, B=wnd, W =0,

where A is a linear function of y according to the actual loading. This loading is
specified as the product of a unit loading system and-a scalar load factor A. The
boundary conditions permit the first order solution to be written:

H

G i = Uyeos™=, &= V)sin

!

mm X,

{

. W= T'f’v,-(y)sinm"; *

where U, (), V,(y), W,(y) (with m-th harmonic) are initially unknown functions
which will be determined using the transition matrix method [13-15]. The
restraint conditions on the unloaded longitudinal edges of the adjacent plates
are determined by applying -the variational principle. The system of the
differential equilibrium equations (3.3) is solved by a modified reduction
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method in which the state vector of the final edge is derived from the state
vector of the initial edge by numerical integration of the differential equations
in the y-direction wsing the Runge-Kutte formulae.

The global buckling mode occurs at m = 1 and the local modes occur at
m# 1. All the modes are normalized so that the maximum normal dis-
placement is equal to unity.

The formulae for the postbuckling coefficients a;;, involve only the buckling
modes. In the points where the scalar load parameters A, reach the maximum
value for the imperfect structure (bifurcation or limit points), the Jacobian of
system of non-linear equations [17:

(3.8) E (=Mt E& ay+..c= AL E, at J=1,..n

is equal to zero. The postbuckling coefficients a;;; are equal to zero when the
sum of te wave numbers associated with the three modes (m;+m;+m,) is an
even number.

4. RESULTS

A computer program has been elaborated and tested for cases which have
been known from the literature {4, 5, 7, 9, 12, 14, 15]. In all tested cases a very
good agreement has been found with results known from the literature; the
only exception has been observed in [12] (item 3, Table 1, p. 338). In this case
the nonlinear coefficients d, and d4 should be zero. The above numerical error
has been caused by the improperly conditioned input data vector.

The detailed numerical calculations for some beams, geometry of which is
given in references [4, 5, 7, 9, 12, 14], have been performed.

4.1. Closed column

The solid line in Fig. 3 represents the results obtained in the paper [5] (for
3-mode approach of 1-st order fields) for a compressive thin-walled column of
square cross-section (Fig. 2)

bifb, =10, byfb, =10, h/hy =10, hyfh, =10,
Ifby =240, byfh, =350, v=03

while crosses show the results obtained in the present paper. For a square
~column, the geometrical dimensions of which are the following [7, 12]:

bifby =10, byb, =10, h /b, =10, hyh, = 10,
b, = 67.39,  b,/h, — 1000, v =0.3.

Fig. 4 presents a relation of the dimensionless stress o) instead of load
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Fii. 2. Closcd-column geometry.
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F16. 3. Load-carrying capacity of versus local imperfection &,.

parameter A, (where index n takes the value 2 in the primary local buckling
mode and 3 in the secondary local mode) in terms of number of half-waves
m, and in Fig. 5 the ratio of the dimensionless limit stress of to the lowest
dimensionless stress ¢, as the function of m for imperfections &; = |1.0],
&, =102], £&;=00.In these figures the maximum of load carrying capacity
(6%} is marked by a crosslet. In each case the signs of the imperfections &, and
&, have been chosen in the most infavourable fashion, ie. so that ¢} would
assume its minimum value (see [7, 12, 16] for a more detailed discussion). It can
be easily noticed that the maximum value of ¢} (for steady values of the
imperfections) and the minitnum values of ¢% and ¢4 (Fig. 4) are, in general,
achieved at different values of m. The complex nature of the dependence of
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F1G. 4. Dimensionless stresses ¢ carried by the numbers of half-waves m for square box-column,
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Fic. 5. Relationship between of and number of half-waves m for square box-column.

o5 against number of half-waves m results in the most dangerous local modes in
linear and nonlinear analysis possibly being different.

The global buckling modes are illustrated in Fig. 6 and a few first local
buckling modes at m = 67 in Fig, 7.

Table 1 contains values of nondimensional stresses %, in brackets, numbers
of half-waves m and the ratios of the dimensionless limit stress oy to the
dimensjonless stress o, for the imperfections &, = [1.0, &, =10.2), £, =00
(at j=3,..n) and for some possible combinations of buckling modes,
presented in Figs 6, 7. The following code has been used in Tabl. ! in order to
identify support conditions at element edges: 1 — antisymmetry on the axis of
the symmetry of the cross-section; 2 — symmetry on the axis of the symmetry;
3 — a completely free edge (M, =Q, =N y = Ny, = 0), respectively, for the i-th
buckling mode. The postbuckling coefficients a;,, generally vanish, i.e. a;y =0
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Fi1G. 6. Two [irst global modes for squarc box-column.

| 3.2136 0784 0.5199

Fic. 7.Several local modes for square box-column.

[382]
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Table 1. Load-carrying capacity for the square column of following cross-section dimensions
bi/by = byfb, = 1.0,  hy/h, = hyjh, =10,
b, = 6739, b,/h, = 100.0,
at imperfections £, = |1.0[, &, =02, F=00 (=23, o).

Interaction ot o - o - oot

of n-mode 3 4 5 of O

1522210 1 03614(1)  0.3614(67}  0.5199(67) 0.3614(1)  0.5199(67) 0.7213
2 522222 | 03614(1) 0.3614(67)  0.5199(67)  (.3619(65)  0.3616(69) 0.7191
3522222 | 03614(1)  03614(67)  0.5199(67)  0.5287(65)  0.5124(69)  0.7077
4 5-22222 1 036141)  03614(67)  0S19%(67)  0.3631(63)  0.3624(71) 0.7212
5 5-22222 | 03614(1)  0361467)  0.519%(67)  0.5389(63)  0.506%71) 0.7207
6 5-22222 | 0.3614(1) 0.3614(67)  0.5199(67)  O.7814(67)  3.2136(67) 0.7196
7 4-2222 0.3614(1)  0.3614(67)  0.5287(65)  0.5124(69) 0.8096
8§ 42222 0.3614(1)  03614(67) 0519967}  0.4904(80) 0.7213
9 3222 03614(1}  0.3614(67)  0.5199(67) 0.7213
10 3-121 03614(1)  03614(67)  0.5199(67) 0.7213
11 3-12t 0.3614(1)  03614(67)  3.2136(67) 0.9528
12 3-222 0.3614(1) 0.3722(30)  0.4904(R0) 0.7052
13 2-22 0.3614(1) 0.3614(67) A =0

at i,j, k=1, ..,n except that a;; # 0 at i #j # k for beams having doubly
symmetric sections. The results obtained allow to conclude that in the case of
the interaction between Euler buckling mode and the primary local buckling
mode and the corresponding secondary having the same shape as the global
one is of great importance. This effect is contained in the term oy Iy (u;, uy)
{where /, j = 2, 3} in coefficients ;;, of the equations (3.8) which are the sums of
integrals of different signs and they depend on the ratios of amplitudes of
displacements of particular walls. The dominant coefficients are those for which
number of local half-waves m, is of the order my. If |my—m)] » O these
coefficients in particular can be neglected. The lowest value of stress as has been
found in the 3-mode approach, taking into account the influence of the value of
imperfection on the number of half-waves m (case 12). A similar result has been
obtained when an interaction of five buckling modes has been considered (case
3): the global mode, the first least local mode (m = 67 ), the second local mode
corresponding to the latter, and two local modes corresponding to the mode
triggered by the global one and having the number of half-waves of two last
modes m+2 (according to what is suggested in [8]).

The next four diagrams (Figs. 8-11) and Table 2 show respective dependen-
ces for a column of trapezoidal cross-section (Fig. 2):

byfb, =0.5237,  byfb, = 1.0474, h /h, = 04651,
hyfh, = 1.5814,  1/b, = 46095, b,/h, =888, v=03.

The conclusions that can be drawn from the calculations of the cross-section
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Table 2. Load-carrying capacity for the trapezoidal column of following cross-section dimensions

Z. KOLAKOWSKI

by /b, =0.5237,  by/b, = 10474,  h/hy = 04651
hofhy = 15814, Ifb, = 46095, b,/ = 88.8
at imperfections &, =[1.0], & =02, &=00(=3,..,n).
Interaction - e o o o oo
of n-mode 1 T2 3 4 E Gl o
1 5-22211 0.5677(1) 0.5659(53) 1.1992(53) © 0.5657(1) (.6148(53) 0.6820
2 522222 0.5677(1) 0.5659(53) 1.1992(53) 0.5674(51) 0.5662(55) .6699
3 5-22222 0.5677(1) 0.5659(53) 1.1992(53) 1.2023(51) 1.1884(55) 0.6861
4 522222 | 0.5677(1) 0.5659(53)  1.1992{53)  0.5699(49)  0.5678(57) 0.6866
5 522222 | 0.5677(1)  0.5659(53)  1.1992(53)  1210249)  LI722(57)  0.6875
6522222 | 05677(1)  0.5659(53) LI1992(53)  1.4144(53) 3.4290(53) ~ 0.6847
742222 0.5677(1) 0.5659(53) 1.2023(51) 1.1884(55) : 0.6938
8 42222 | 0S67%1)  0.5659(53)  1.1992(53)  0.5982(69) 0.6876
o 3222 0.5677(1) 0.5659(53) 1.1992(53) 0.6876
10 3-121 0.5657(1) 0.5659(53) 0.6148(53) 0.6901
11 3-121 0.5657(1)  0.5659(53)  3.0546(53) 0.9567
12 3-222 0.5677(1)  0.5982(69)  0.9578(69) 0.6543
13 2-22 0.5677(1) 0.565%53) 0.6957
G
1.3
\\
55
0.9 \\
e
.——"_'_—-
s | —
_-—X_——-/
05 50 70 a0
m

FiG. 8. Dimensionless stresses o carried by the number of half-waves m for trapezoidal column.

with a single symmetry axis (Figs. 8, 9; Tabl. 2) are analogous to those in the
case of the two-fold axis of symmetry (Figs. 4. 5: Tabl 1).

In the energy expression the coefficients of the cubic terms &, &3, £, €5 and
&, &, &, are the key term governing the interaction. In the case disregarding the
interaction between overall mode and the primary local mode and the
secondary local mode, the coefficient of the &, ¢,¢&, term in the energy
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Fia. 9. Relationsip between 67 and number of half-waves m lor traperiodal column.

Fic. 10. Two first global modes for trapezoidal columan.

expression vanishes (see [3, 4, 5, 7]). The analysis of column [3] with doubly
symmetric cross-sections shows that the cofficients of the &, &5 and &, &3 terms
(Tabl. 1 — case 13) vanish. The exception is connected with the fact that in the
calculation of the section with the single symmetry axis only the interaction
of the overall buckling mode with the local mode can be taken into account
(Tabl. 2 — case 13). In the considered case the influence of the second local
“buckling mode cannot be neglected (Tabl. 2 — compare cases 12 and 13}
because the error is 6.3 per cent.

MangvicH [16] has determined a post-bifurcational equilibrium path of an
infinitely wide plate with thin-walled stiffeners. Manevich presents a theory
which, in terms of the first nonlinear approximation, allows to determine the

12 -- Rozprawy Iniynierskie 2/89
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TFig. 11 Several local modes for trapersvidal column.

relation between the system with several modes and that of one local buckling
mode. The theory is valid in the case of symmetrical characteristic of the global
(111 = 0) and several different local buckling modes with different numbers of
halfwaves m. If n— 1 local modes are considered, the only interaction which can
be taken into account is that of two modes: the global and the most dangerous
local one, having assumed an equivalent value of local imperfection. A o to
g%, ratio has been determined for the column of the trapezoidal cross-section,
analyzed above; the value of the global imperfection £, =={1.0| and of the
equivalent local imperfection & corresponding to a local imperfection
£, =10.2] (Z, = 0.0); an interaction of the two local buckling modes has been
considered. The resulting value of o%/o}, is 0.6552. This is close to the value
corresponding to case 12 in Table 2.

4.2. Open beams

The interactive buckling of thin-walled open beams has been investigated in
cold formed steel structures.

Figures 12 show the cross-sections of the considered beams. Let us consider
the channel-section beam analysed in [9] dimensions of which are (Fig. 12.a):

bijb, =05, byb, =05 hfh,=1, hyfh,=1,
bojh, =50, Ifb, =13
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Fis. 12, Types of open cross-scctions considered.

The ratio of the flexural-torsional (primary global) stress to the primary
local stress is found here as equal to 0.99 and the ratio of purely flexural
(secondary global) stress to the primary local stress is determined as equal to
142 {in the paper [9] these rations are 1.04 and 1.44, respectively).

Table 3, similarly to Tables 1 and 2, comprises the values of nondimen-
sional stress o and the ratio ¢i/o;, for imperfections &, = |10, &, = 0.2],
& =00 (at i = 3, ..n) and for some possible combinations of buckling modes;
indexation remains the same as previously. The calculations carried out readily
show that the most dangerous case is an interaction of the second global mode
with local modes (compare cases 8 and 16). The local mode imperfections
always promote an interaction between the local mode(s) and the global mode
(compare cases 1,2 and 3,4: 5, 6, 7 and 8, 16). Morcover, one can sce that the
interaction of two global modes of buckling is very weak or even does not
occur at all (compare cases 5, 6, 8 and 16). It can be noticed that the Euler
buckling can interact with an even number of local modes symmetric or
antisymmetric but the flexural-torsional mode only with pairs of symmetric
and antisymmetric modes (see [6] for more detailed analysis). In these cases
a;;; # 0 and in the others a;;; = 0 (case 9). In some cases an improper selection
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Table 3. Load-carrying capacity for the open column of following cross-section dimensions

bifb, =05, bafb, =05, h/hy=10, hyfh, =10, by, =500, /b, =130
at fmperfections £, ={1.0|, & =02, &=00{(=3,....n.
Interaction . . . . -~ P
of r~-mode %1 72 % Ta s %I
1 533333 1.0434(1) 1.4908(1) 1.0513(10)  1.4399(10)  3.3079(10) 0.7932
2 533333 | 1.0434(1)  1.4908(1)  LOSI3(10)  14399(10) 16.779(10)  0.7951
3 5-33333 1.0434(1) 1.0513(10) 1.4399(10)  1.0813(8) 1.0857(12) 0.7093
4 5-33333 1.0434(1) © 1.0513(10) 1.439%10)  1.6510(8) 1.3734(12) 0.7015
5 4-3333 | 1.0434(1)  1.4908(1)  1.0513(10)  3.3079(10) 0.8409
6 4-3333 1.0434(1) 1.4908(1) 1.0513(10) 1.4399(10) 0.7961
7 3333 1.0434(1) 1.4908(1) 1.0513(10) 0.8416
g8 3333 1.0434(1) 1.0513(10)  1.4399%(10) 0.7153
9 3333 1.0434(1) 1.0513(10)  3.3079(10) a;, =0
10 3-333 1.0434(1) 1.0513(10)  16.779(10) - 0.8917
11 5-33333 | 14908(1)  1.0513(10)  1.4399(10) 165108}  1.3734(12)  0.6442
12 5-33333 1.4908(1) 1.0513(10)  1.4399(10)  1.0818(8} 1.0857(12) 0.6144
13 5-33333 1.4908(1) 1.0513(10) 1.4399(10)  4.4305(8) 2.7337(12) 0.6411
14 533333 | 14908(1)  1.0513(10)  3.3079(10)  44305(8)  27337(12)  0.6255
15 3-333 1.4908(1}) 1.0513(10) 1.4395(10) . 0.6450
16 3-333 1.4908(1} 1.0513(10)  3.3075(10) 0.6287
17 3333 149081}  10513(10)  16.779(10) 0.6450
18 2-33 1.4908(1} 1.0513(10) (.6450
19 2-33 1.0434(1) 1.0513(10) ‘ Ay = 0

of mode, even if a few of them are considered, may lead to an overestimation of
the construction’s load carrying capacity (cases 1, 2 and 12); also the
consideration of the two-mode approach may sometimes be misleading and
yield false conclusions (case 19).

Then, having assumed that the cross-sectional area is constant (ic.
F = b, h,+byh,+b;hy = const), calculations have been carried out for the
channel under discussion. Figure 13 shows the dimensionless first global stress
¢’ {m = 1) and the first local stress % (m = 10) plotted against the flange to web
width ratio b,/b, (where b, = b,) on the assumption that the thickness of all
walls is identical and constant (h, = h, = h; = const). Figure 14 presents
dimensionless stresses o7 and ¢% as a function of the thickness of the channel
walls 1/h, on the assumption that the flange to web the width ratio is constant
(b,/by = b,/b, = 2.0) and that h, = h, = h,. Another assumption is the con-
stancy of the channel length. In Fig. 13 an increase in b,/b, ratio causes an
increase in the value of o3 which results from the growing polar moment of
inertia and an increase in o% stresses since flexural rigidity of channel webs
becomes higher. In Fig. 14 the rising {/h, ratios cause an increase in ¢ which
results, as previously, from an increase in the polar moment of inertia and
a decrease in ¢% as flexural rigidity of channel webs lowers. In the last case the
webs are the element responsible for the loss of the local stability.
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F16. 14, Relationship between stresses o3 and M,

The next figure (Fig. 15) presents the two first global and local values of
nondimension stresses g, in terms of the angle ¢;;,, between walls of the
discussed channel:

bifby =05, byb, =05, hyfhy=1, hyh, =1,
by/h, =50, Ijb, = 13.
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F1G. t5. Relationship between stresscs o, and the auxiliary angle =

In this figure an auxiliary angle o is introduced between walls of the channel
(541 = 90°+0). If « changes, a substantial decrease is found in the value of
the first overall load o% at angles ¢, == 90" +a; ¢,3 = 90°—a; the second
global load o%(m = 1) at angles ¢, = ¢35 = 90°+a; and a relatively small
change in the value of 6% at ¢, = 90°+a and ¢,3 = 90°—a. In the latter case
stress o3 reaches its maximum value at « = +10° The only exception is the
first overall load o at ¢, = ¢3 = 90°+o which increases along with the
increase in angle «. It is a result of different buckling modes for different
o angles (see Figs. 16). At the same time values of local load o%(m = 10) and
o4 (m = 10) remain virtually constant, their changes being practically negligible,
This fact can be explained in the following way. While determining ap-
proximate values of load, corresponding to the local modes under conditions of
meeting, we are able to take into account only the situation where the angle is
constant and bending moments are equal, moreover, the deflection function w,
for individual plates is assumed to be zero at the points of the junction.
The Byskov and Hutchinson theory, applied here, reduces all kinds of
imperfections to such imperfections that correspond to initial deflections of
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A — @, =90° pp3=390° C— 60° 60°
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F1G. 16. Two global modes at different angles ¢y;..:-

a thin-walled structure: non-linear cofficients a;;, (3.8) remain constant. Not all
kinds of imperfections can be reduced to a single type. Calculations of slight
deviations of load and geometrical dimensions allow to oObtain “proper”
imperfection sensitivity of constructions as well as to find out, whether the
assumed model of single type imperfection is correct (see [ 18] for more detailed
discussion),

Figs. 16 (a to ¢) present the first two global buckling modes for various
extreme values of angles between walls of the channel under consideration
(Fig 15). In the cross-section with a vertical symmetry axis (Fig 16 a to ¢) two
distinct global modes can be found, namely the flexural-torsional and the
flexural (Euler) ones. In the two other cases (Figs. 16 d to e) this distinction is
more difficult to find. '

Hence the technical theory of buckling, even if used for the determination of
global load values for thin-walled beams may lead to considerable discrepan-
cies in comparison with the assumed here description of giobal buckling by
means of nonlinear Karman’s equations.
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Figure 17 presents the dimensionless stress o}, as a function of the width of
channel flange b,/b, = bs/b,, other dimensions of column being constant
(Fig. 12b)

bofby = byfby =05,  hyfhy = hyfhy = hyfhy = hsfhy = 1.0, l/by = 13.

The plot can be divided into four parts. The significance of Interval
1,0 < b, /b, < 0.025, is merely theoretical since b, /h, < 1 for these values. The
global loads (m = 1) increase in this interval as a result of an increase in the
height of column webs (b, = b,+hy; by = by = 0). That, in turn, causes
a reduction of local load values. In Interval 1T, 0.025 < b, /b, < 0.15, values of
load increase rapidly. It is 2 consequence of the increased flexural rigidity of the
channel flanges. In Interval IT1, 0.15 < b /b, < 0.5, values of local load stabilize.
The flange has on influence only an torsional not on flexural rigidity. Moreover,
in the same interval a further increase in secondary global load takes place.
Interval IV, b,/b, < 0.5, is characterized by a slow monotone decrease in the
values of load . The flange appears to be the “weakest™ part of the column

Gh
3
m=10
el A
/ r
? _ . '
' m=18
v P —
\__[I?_\:Z\
‘\_.____-_—-_—
0 01 0.3 05 by /by

FiG. 17. The dimensionless stresses o, vs b, /b,.
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responsible for the loss of stability. For the primary global load only a slow
decrease in o*{m = 1) load can be observed in Intervals II-IV.

Figure 18 shows a global mode for the considered channel, the
ratio of its walls being b,/b, = b/b, = 0.5. Also in this case two kllldb of
global buckling can be seen: flexural-torsional and flexural.

- — 1

-
L 24210 ‘

i

FiG. 18, Global modes for the flange width b /b, = bs/by = 0.5.

Table 4 contains results of calculations for an open beam, compressed
eccentrically {Fig. 12¢), whose geometrical dimensions are:

byb, =byfb, =30, b/b, =10, Ijb, =200,
hofhy = hyfh, = hyfhy = 1.0,  by/h, = 100.0.

In this table the following data are presented: the eccentricity of the point of
application of compressive force for a global coordinate system #, 3; respective
values of stress distribution at characteristic points of the cross-section {ratio of
stress of at the point “1” to the maximum stress oh., applied to the beam);
values of global and local stresses, o3 and o35, respectively; number of
half-waves m corresponding to the local buckling mode; ¢% /0% and o}/c}, ratios
when only two buckling modes for imperfections &, = |1.0|, &, = [0.2] are taken into
consideration. Dimensions of the beam’s cross-section as well as the eccent-
ricity of the point of application of compressive force have been assumed to be
analogous to those in [14] where only the critical value of the local load have
been determined. It is not difficult to find out that even interactions of two
buckling modes, that significantly differ from each other (¢%/c% > 3.9), may
largely diminish the load carrying capacity of the construction.

On the basis of the results obtained, one can conclude that our calculations
should take into account an interaction of three buckling modes: the global
and the most dangerous first and second local (having the same number of
half-waves) ones (see Table 1 — case 12 and Table 2 — case 12) as well as for
the influence of the value of imperfection on the number of half-waves of the
local buckling, Attention should be also paid to the proper selection of local and
global (the latter for open beams) buckling modes {compare Table 3 — cases 8
and 16). This can be accomplished only by means of nonlinear analysis.':_
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The calculations carried out and, indirectly, the results published in [8, 16]
make use state, with the precision sufficient for engineering purposes, that
taking into account only the first order approximation of the interaction of
three buckling medes can serve as a lower estimation of load carrying capacity.
Such an estimation enables to avoid serious numerical problems occuring
when the second order solution is considered for typical thin-walled structures.

5. CONCLUSIONS

The initial postbuckling behaviour 6f thin-walled closed and open beams
under nonuniform compression by means of the transition matrix method has
been presented. The present approach regards the secondary local mode
activated by the interaction of an overall mode with the primary local mode.
Rational dimensions of the beams can be determined on the assumption of the
plate model. The imperfection-sensitivity can be lowered provided that the
beam parameters are selected entirely by means of the nonlinear analysis. The
assumption of a single type of imperfection is quite questionable. In the case
when critical stresses of a few buckling modes are comparable the disregarding
of the mode interaction may lead to overestimating the load carrying capacity
of the structure, _

The present analysis has to be completed by including the second order
solution in order to investigate postbuckling in cases when the first order of the
interaction is weak.
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STRESZCZENIE

WSPOLDZIALANIE ROZNYCH POSTACI WYBOCZENIA BELEK O PRZEKROJACH
CIENKOSCIENNYCH OTWARTYCH I ZAMKNIETYCH

Rozwazano wplyw wzajemnego oddzialywania bliskich sobie postaci wyboczenia dzwigarow
cienkosciennych na ich zachowanie sig po wyboczeniu. Zajeto si¢ przypadkiem dziatania osiowego
$ciskania 1 stalego momentu zginajacego na belki o otwartych 1 zamknigtych przekrojach
cienkoéeiennych, swobodunie podparte na obu koficach, Zastosowano rozwinigeia asymptotyczne
Byskova i Hurcumsona [1] w obliczeniach numerycznych zwiazanych z metoda macierzy
przejécia. Celem pracy jest przeprowadzenie Scislejszej analizy przebiegu procesu nastepujacego
bezposrednio po wyboczeniu w konstrukcjach z imperfekcjami, z uwzglednieniem wptywu
wspoldziatania kitku bliskich sobie postaci wyboczenia. Obliczenia przeprowadzone dla rdznych
typow belek.
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PE3lOME

B3IAUMOJIEMICTBHE PA3ZHBIX BHAOB EOKOBOI'O BEINYYUBAHULA BAJIOK
C TOHKOCTEHHRIMH OKTPBITBIMA W 3AMKHYTBIMI CEUEHWAMMNI

O0cy®anock BIMSHHE B3AMMONCHCTRM NOMOBHLIX TO BHTY GOKOBLIX  BHITYMMRAHMHA
TOHKOCTEHHBIX RECYILIMX BOMOK Hat X ROBEACHHC MOCIIE TOTEPH yeToitumnoctn. Byl paceMorpen
CAyddH BO3ACHCTBHA OCEBOTO CHWATHA M M3THOMOTO MOMCHTA Ha BaIKH ¢ OTKPBITEIMM
W 38MKHYTHIMH TOHKOCTCHBIMH CEUeHMAMH, CcBOOOIHO OHEPTEIMH Ha OGOMX  KOHIAX.
Hcrions30Banock ACHMITOTHYCCKOS DPasNoXedre BHICKOBA M XauuHCOHWa [1] B uncnerHBIX
pacueTax, CBA2AHHBIX C METO/OM MATpULl Nepexosa. lens paboTH 3aKIH09aIach B NPOBENSHNUH
TOYHOCTHOTO aHaNlH3a HPOWECCA, BACTYNAIOWIEro TOCHE BEUIYYMBAHHA B  KOHCTPYKIESX
¢ BMEPHEKIMIME, C YIETOM BIMAHNA BIZHMONCHCTBHSE HeCKOALKHX NONOGHEBX 110 By GOKOBEIX
BhIIyuHBaHE. Pacuers: Grinu mpoBefeHnl nna OajoK PAsHLIX THIIOB.
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