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CONCENTRATION-DEPENDENT, SURFACE-TENSION DRIVEN
INSTABILITY IN A HORIZONTAL LIQUID LAYER WITH A
~ DEFORMABLE FREE SURFACE

ZH. KOZHOUKHAROIVA and S, SLAVCHEV (SOFIA)

The subject of the paper is the problem of the onset of Marangoni-type convection in a thin
viscid liquid layer with deformable surlace, induced by surface gradients due to the liquid
concentration gradients.

1. INTRODUCTION

Surface tension-driven instability problems are among the most interesting
ones not only due to their intrinsic academic’ value but also to their
technological importance in fluid phase separation processes such as distil-
lation, absorption and’ extraction [1, 2], coating and drying processes [3], in
the containerless processmg of materials in the reduced-gravity environment of
a spacecraft [4] as well as in biological systems as a biological cell [5], a tear
film on the eye [6] etc. Since the first systematic experiments of thermal
convection in a thin liquid layer were performed by BERNARD [7], substantial
progress has been made in the study of thermal and/or concentrational
instabilities in liquids. Following the pioneering theoretical works of PEARSON
[8] on thermal convection in a layer with a free surface and of STERLING and
Scriven [97] on interfacial turbulence due to mass transfer across the surface
between two liquids, a number of investigators have modified and improved
their models. NIELD [10] has included buoyancy effects on thermal convection.
ScriveN and STEMLING [11] have accounted for capillary waves, Smrre [12]
— for gravity waves, and ZEREN and Reynorps [13] — for both gravity and
buoyancy effects. The liquid layer with two free surfaces has been also
considered [14]. The stability of a surface between two layers with finite
thickness has been studied [15]. The influence of surface dctive agents at the
interface [16], of nonlinearity of the temperature profile [17], of the surface
deformation [18] as well as of the overstability [19, 20] has aiso been
considered.

The main goal of the small disturbance stability analysis is to determme the
condition expressed as a critical value of the Marangoni numbel
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Ma, = (—do/dT) frd*/uD, -(in the thermal case) under which the surface
tension acting at the surface will produce cellular convection. Here T is the
temperature, £, the thermal gradient across the liquid layer, d the depth of the
fayer, u the dynamic viscosity and D the thermal diffusivity of the liquid. For
example Ma,. is about 80 in the case of the isothermal wall on which the layer
is spread [8]. :

The onset of solutal Marangom convection has also been extensively
studied by many authors (for references see ['1, 3] etc). Here we will mention
some papers which are related to the present report. The dynamics and
instability of fluid interface was the main topic of the meeting held in 1978 at
the Technical University of Denmark in Lingby [21]. The majority of the
papers reported there have been translated into Russian and published in [22].
The editors of the publication [22] present a review of the latest important
works, including those published in Russian.

Considering the surface-tension driven convection due to concentration
gradients, we shall dwell on BriaN’s works [23, 241, where the effect of Gibbs
adsorption is incorporated into hydrodynamic stability analysis. It is shown
that Gibbs adsorption can have a profound stabilizing influence on the
Marangoni convection. BRIaN [23] proves that the gas-iquid system is always
stable to transfer the surface tension-lowering solute from the gas to the liquid
phase. Moreover, in the case of desorbing the same kind of solute, the fluid
Iayer is completely stable when the so-called’ adsorption number
N, =Ty/C, —~Cld (F is the m;tlal excess surface concentration of the solute,
C, = C, the concentration difference across the layer) exceeds a value equal to
0. 05 at whlch the critical Marangoni number tends to infinity. BRiaN and Ross
[24] have also introduced a penetration-type mass transfer in the stablhty
analys;s taking the “frozen” brokenline concentration profile in the unpertur-
bed state. It has been demonstrated that the solute storage in the Gibbs layer
may have an 1mp0rtant effect on the rate of transfer from the liquid before
instability occurs. The theory shows much better agreement with the ex-
perimental results obtained by BRIAN et al. [25] than the theory based on the
constant profile. But the experimental value of the liquid-to-gas phase transfer
ratio is still eight times larger than the theoretical one. _

Recently, the interfacial turbulence in gas-liquid mass transfer by describing
six organic solutes from their aqueous solutions has been studied [26, 27]. The
comparison of the expcrlmental results reported there with the theoretical ones
based on Brian’s theory shows a discrepancy in two or three cases. This is
attributed to the time requrred for the growth of the microturbulence.

Besides, a question still remains. It is not understood why the experlmental
points of the critical Marangoni number for some solutes like tricthylamine lie
on the Ma — N, plot in the area where the adsorption number is more than
0.05 in contrast to Brian’s theoretical result pointing that area as an ared of
absolute stability.



CONCENTRATION-DEPENDENT, SURFACE-TENSION DRIVEN INSTABILITY IN LIQUID LAYER 405

One of the possible reasons for this paradox is the surface deformation
which influences the convection and the mass transfer in desorbmg processes
from a liquid-jet column and wetted-wall column used [26], but it is not taken
into account in the stability theory.

In the present paper the effect of the free surface deformation on the onset
of the Marangoni convection in a horizontal liquid layer subjected to
description or adsorption of a surface-active solute from (to) its surface is
studied using the linear staiblity theory. The main difference between Brian’s )
analysis [23] and the present work is that the boundary condition which
represents a solute material balance at the interface consists of additional terms
due to its deformability. Besides, the gravity values are also considered. The .
study shows that as a general rule the surface deformation causes a des-
tabilizing effect and long wave disturbances are most unstable.

2. FORMULATION OF THE PROBLEM

Consider an 1nﬁn1te horlzontal layer of viscous liquid of demsity g,
kinematic viscosity v and surface tension ¢ placed at a rigid wall at z =0,
A surface active solute is describing from (or adsorbing on) the free surface of
the layer into (from) an ambient gas. The motion of the gas is assumed to be
negligible. The mass transfer coefficient is supposed to be constant. In the
unperturbated state the liquid is at rest and there is a’ constant concentration
gradient of the solute species, ie.

(21) ) U= 0: Po :p(;+Qg(d"—Z), 60=cw_ﬁza

where v is the fluid velocity, p, the hydrostatic pressure, p, the gas pressure
above the layer, ¢, the unperturbed solute concentration, ¢, solute concent-
ration at the bottom of the layer, (—f)) the concentration gradient, d the liquid
depth and g the gravitational acceleration. The coordinate z is measured from
the bottom. The constant [3 is p031t1ve in the desorbing case and negative in the
adsorbing case.

Restricting our analysis to dilute solutions, we assume all physical
properties of the liquid unchangeable except the surface tension which is taken
to depend linearly on the surface excess concentration I'. Then, the governing
equations are the equations of mass, momentum, and solute diffusion

(V-9) =0,

(2.2) 7

dc
E{ = DLV2C,

1
- =g——Vp+ V37,
t 2
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where t is the time, p the dynamic pressure, ¢ the solute concentration in the
Hquid phase, D, the diffusion coefficient for the solute in the liquid, V the
gradient operator, V2 the Laplacian.

Suppose the equilibrium state is perturbed by a dlsturbance denoted by
pr:mes ie.,

(2.3) V=7, p= p0+p', c= c0+c’.

ACcofding to the linear stability theory, the vertical cdmpoﬁént of the velocity
w and the perturbed concentration ¢ satisfy the following equations:

., -
—— W2 V20 =0,
)

| (bg ‘"DLVz)'é' ~pw.

Employlng the cylindrical coordlnates (r @, 2) the Laplacian is expressed here
in the form

"(2..4) )

8% & 14 1 8
2, =g+l P=—gt-—t55.
@3) V=t Femtia T
The perturbed free surface is presented by
e z=d+{@ 9, 0.

Involvmg the Gibbs adsorption into hydrodynam;c stability analysis, we ﬁrst
suppose the adsorbed layer on the surface with the excess concentration being
the sum

2.7 _ I =To+T,

where I'; is a constant unperturbed value. Second we assume the surface
concentration to depend on the bulk concentration at the surface by the
adsorption isotherm :

2.8 = -
I i (a dc)
with the “Gibbs depth™ § being constant. Usin'g‘ the relation (2.8) twicé for

unperfurbed and perturbed quantities and Eqs. (2. 3) and (2.1) for ¢;, the
expression follows from Eq. (2 7 '

(2.9) = d(ci— pO).

Since { is small compared to d, the boundary conditions at z = d+{ can
be expanded about z = d using the Taylor series. Applying Scriven’s balance
equations [29] and retaining only the linear terms in perturbed relations, we



CONCENTRATION-DEPENDENT, SURFACE-TENSION DRIVEN TNSTABILITY IN LIQUID LAYER 407
have the kinematic condition
o
(2.10) W= —
ot

a normal force balance

0,, ~ |0 d* 2\ [ ow 212
(2.11) Ty AL W)—Q[at_v (52—2—3L )} 5, (eg—oL)L°C,

a tangential force balance .

| o fowN [ o
2.12 ' —Lo = = —+ 12 |\wW—=II"
@12 °6t(32> Q"(azfr )"" sU
and a solute material balance - _
oc’ , or- ... ow 3 1w
(2.13) _DLE = Hk,(c —_Bz)+—at——F0€Z——DsL r,

where H is Henry’s law constant and D, the diffusivity of the solute in the
interface.

The terms on the left-hand side of Eqs. (2.11) and (2.12) represent the
inertial force acting on the material surface.’ The right-hand parts of these
balances consist of viscous, gravity and capillary forces. The terms on the
left-hand side of the material balance represent diffusion of the solute to (from)
the surface from (to} the liquid phase and the first term on the right-hand-side
- the transfer of the solute from (to) the interface to (from) the gas phase. The
other three terms represent Gibbs’ adsorption. The first of them is the solute
within the Gibbs layer, the second one the surface convection and the last on
the surface diffusion.

On the wall the boundary conditions for the velocity are

_BW’_

{2.14) w-az—O at z=0

2

where the second condition is received by utilizing the continuity equation. The
condition for the concentration may be in two forms

de .
Z=0
0z _

named “conducting” and “insulating”, respectively. The experimental realiza-
tion of both cases is discussed by BriaN [23]. We restrict our analysis to the
“conducting” case in which the bottom wall could be imagined to be

a membrane with very high permeability through which the solute diffuses
from an intensively stirred solution.

(2.15) c=0 or
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The solution of the system (2.4) with the boundary conditions (2.10)(2. 15)
is written in the form
(2.16) [w, ¢, {]1=[w(2), c(z), z] £,exp wt,

where o = w,+iw, is the wave frequency and %, the cylindrical harmonic
function of order [ satisfying the equation

2.17) (2+12) %, =0.

Before substituting Eq. (2.16) into Eq. (2.14) and the boundary conditions, they
are rewritten in a dimensionless form using d, d°/Dy, D,/d and Bd as scaling
quantities for length, time, velocity and concentration, respectively. Reserving
the same notations for the variables, we have (D = d/dz)

(2.18) [Sc™to—(D*—-PID*-P)W =0,
21 o e—D*-PCc=w

with the boundary conditio_r_ls at z =1
W—owZ =0,
—wyCrSc ' PW = Cr[Sc™ ' w—(D?— 3131 DW +(Bo+ P) PZ

(2200 - T
| (D2+12)W+Ma12(c;z")+wysc"11)we: 0,
- DC—N DW+(B1+12S+360)(C Z)
andatz—{)__ o o
2y - oo W=DW=C=0,

The foliowing dimensionless groups are introduced: -

r - D
“Lo 50 5D
od d D,d
r, - B
N,= iE the adsorption mumber,
D . .
cr=2"¢ crispation number,
od ‘
\ d2 - o
Ma = «p Marangoni number, .
ovD,, . o
d o
Bi = %6 gifusion Biot number,

L.
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_ ogd?

" Bo Bond number,

S¢ = — © Schmidt number,

* The parameter y is the ratio of the solute mass at the surface unit element to the
liquid mass of the column of the layer bencath this element. It could be named
a surface mass number. This number as well as the Schmidt number and the
depth ratio & disappears in Eq. (2.20) in the case of stationary convection, when
w = 0 and will not affect neutral stability curves and, consequently, the value of
the critical Marangoni number. But these groups are expected to influence the
rate of growth of an unstable disturbance in the case of oscillatory instability.

The quantity S represents the relative importance of the surface diffusion.
As shown by BrIaN [23], the surface diffusion has a small effect on the neutral
stability in comparison with the surface convection presented by the adsorp-
tion number. This number gives the ratio of the solute flux in the Gibbs layer
due to surface convection to the flux from the liquid phase to the surface. Its
sign depends on the sign of the product of « and f§ and always coincides with
the sign of the Marangoni number. Both numbers are positive in the case of
desorbing a surface-tension-lowering solute (when o > 0, B > 0), or adsorbing
a solute which increases the surface tension (¢ < 0, § < 0). They are negative
when a surface-tension-lowering solute adsorbs « > 0, B < 0 or surface-ten-
sion-increasing solute desorbs {x <0, § > 0).

The deformability of fluid interfaces is characterized by the crispation
number which is negligibly small only for thick layers and interfaces with high
surface tension. The Bond number shows the relative importance of gravity
waves. The diffusion Biot number represents the ratio of the liquid phase mass
transfer resistance to the gas phase resistance.

3. SOLUTION AND RESULTS .

 We assume that .instabil,ity sets in as stationary convection and-thus @ = 0.
The general solution of the system (2.18)2.21) with @ = 0 has been obtained.
The solubility condition gives.the expression for the Marangoni number

_8i(sinh] cosh =1 cosh I+ (Bi+I2S) sinh []
Gl Ma= e eosni j
Bo +7?

+(sinh®[-~ P cosh ) — 4N , sinh | (sinh?/ — 12)

As expected, this formula expresses in an explicit form Brian’s result for a flat
liquid surface when Cr = 0 (then Bo disappears). If N, = § = 0 additionally,
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the results is identical to that of PEArson’s for the conducting case [8]. For
S =Bo =N, =0 the expression (3.1) coincides with the result of LN and
BRENNER {sec (2.12) in [6]) due to the fact that by definition their solutal
Marangoni number is twice smaller than the number defined here.

To compare the results obtained in the case of a deformable free surface
with those for a nondeformable one, we present in Fig. 1 neutral stability

10'Ma |

| Ny=0.04; Bo=01; 5=Bi=0

Fig. .1 — Cr=10, 2 — 0000602, 3 — 0.000063, 4 — 00001, 5 — 0.001.

curves for various values of the crispation number and the same values of N,
Bi and § (ie., for N, = 0.04, Bi = § = 0), as have been taken by BRiAN [23] in
his Fig. 1. In our calculations for Cr # 0, we take Bo = 0.1. The branches of the
curves corresponding to negative Ma with positive N, will be disregarded as
they have no physical sense. From the other side, for negative values of N, the -
Marangoni number is always positive, what also corresponds to a situation of
of no physical significance. Hence the gas liquid system with a deformable free
surface is always stable to transfer of a surface-tension-lowering solute from the
gas to the liquid phase as well as to desorbing a surfactant which raises the
surface tension. . _ _ :

It is seen from Fig. 1 that the behaviour of the curves for small wave
numbers changes considerably with when the crispation number increases. In
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contrast to the case of nondeformable interface, at Cr # 0 the Marangoni
number does not go to infinity when ! approaches zero. This follows from the
expansion of Ma in a series in the vicinity of I =0 given by the formula

2Bo o 2 . 2
(32) Ma= 56(1 +B1)+ﬁ[(1+31)(1—EB0)+

1 Bo 1 s

+(3+S)B0—6—C—r(1+B1)(%—NA)]l +O(M,
As the region below each curve represents a stable state, the lowest point on the
curve determines the critical value Ma, of the Marangoni number and the
corresponding critical wave number I,. When the crispation number increases
from zero, Ma, decreases slowly from 1170 at i, = 0.91 to 1057 at I, = 0.87,
occurring at Cr = 0.6305x 107%. At that value the critical wave number
changes abruptly to zero and the minimum value of Ma is given by the first
term of the series (3.2):

2Bo (1 + Bi)

. . Ma¥* =
(33) Yiae 3Cr

This formula gives in an explicit form the dependence of Ma, on the governing
parameters for every Cr = Cr*. It is obvious that this critical Marangoni
number decreases quickly when Cr increases further and, for instance, takes the
value 66.7 for a relatively large but still reasonable value of the crispation
number equal to 10™* (with Bo = 0.1 and Bi = 0). It is worth noting that Ma,
does not depend on the adsorption number as well as on S. Indeed, the value of
Cr at which a sudden change of I, occurs varies with Bi and N, The influence
of Bi may be demonstrated in the case under consideration where Cr ZrOwWSs
from 0.6305x107* at Bi=0 to 0.708 x 10™% at Bi =1 and 0.813x 10~* at
Bi = 100: For these values of the Biot number the critical Marangoni number
is plotted versus the crispation number in Fig. 2. It is seen that Ma, increases
with increasing Bi and that the surface deformation is important when the
crispation number is of order of 1075 and higher.
This sample case is interesting with another feature. The wave number

{ (say, li,,) for which the Marangoni number changes a sign varies a little with
Cr at fixed N,, while it goes down rapidly when the adsorption number
increases. For example, at Cr = 1075 I, changes from 1.47 at N 4 =004 to
0.28 at N, = 0.05 and 0.14 at N, = 0.06. But the main differcnce between the
deformable surface and the flat one is that at Cr s 0 the inversion wave
number Ly, does not become zero and the curves do not rise and go to infinity
as N, approaches 0.05 as it occurs for nondeformable interfaces, The point
Ly is determined from the condition that the denominator of Eq. (3.1} be zero
for fixed Cr, N, and Bo. It is easy to show that for Cr=0 (with Bo
disappearing) li,, goes to zero and Ma tends to infinity when N, approaches
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Ma, )
f Bi=100
10 =
10° |
, - Bi~10
107
0L
0% : B
E Ny=0.04; Bo=01, S=0
rm i 1 =.;....| [ ||...,| . 11 I-lllnl 1 Illtllil 1 lilllul
R U A A R A

Fia. 2.

0.05. This proves Brian’s result [23]. But for Cr s 0, the inversion number is
different from zero for any finite N ,.-So, in the case of deformable surface there
is an interval [0, },,,]J in which the Marangoni number takes positive. and
bounded values.

As the neutral Stdblllty curves shift to the left with increasing N (and
decreasing 1,,y), the minimum of the functlon Ma(l)_appears at smaller values of
I. Then, it may be expected that there is a value of N, {(say, N ,) which, after
reaching the absolute minimum of Ma, will be only at the point =0
irrespective to the crispation number :

The condition for a local minimum of Ma to exist at l = 0 is derived easﬂy
from the series (3.2). The crispation number must be larger than the quantity

o o .'B02(1+Bi2)(1u20NIA)
120[(1+-Bi)(1—-1—5130) (3+S>Bo] .

if the.denominator of. the fraction is different from zero. This denominator is
really positive for physically reasonable values of Bi 2> 0, § = 0 and Bo < 7.5. It

is seen that Cr is not positive for N, = 0.05 and hence in this case the local
minimum of Ma exists for every Cr > 0. A detailed analysis shows that this
minimum presented by Egs. (3.3) is the absolute one when N, > 0.05: Thus
there are two intervals of changing the adsorption number w1th a different
behaviour of the system. N, increasing from zero to the value 0.05 has
a stabilizing effect on the system only for sufficiently small values of the
crispation number. If Cr is larger than Cr for which a sudden change of the
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critical wave number to zero occurs, the adsorption number doesn’t influence
more the stability of the layer. In the last case as well as when N 4= 0.05 the
critical Marangoni number is presented by Eq. (3.3) and depends strongly on
the crispation number. It is obvious that the surface deformation destabilizes
the system and long-length waves are the most unstable ones.

The present analysis makes reasonable the appearance of points presenting
critical Marangoni numbers at the Ma,—N, plot in the arca where the
adsorption number is larger than 0.05 as reported by Imasmi et al. [27]. Those
critical Marangoni numbers are probably influenced by the surface defor-
mation which, in principle, is not avoidable in their experiments with
a liquid-jet column. Regarding the influence of the other paramecters, we sce
that Bo and Bi are directly included in Eq. {3.3) and cause an increase of the
critical Marangoni number when they increase, The parameter S has a relative-
ly small effect on the stability of the layer because of the little change of the
expression (Bi+1%S) in Eq. (3.1) for fixed Bi and variable [ in the vicinity of the
critical wave number which is smaller and in many cases much smaller than
one. :
In conclusion, the present analysis shows that in the desorbing processes of
a surface-tension-lowering solute from the horizontal liquid layer, the defor-
mation of the gas-liquid surface has a destabilizing effect on the onset of
Marangoni convection while the gravity stabilizes the system.
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" STRESZCZENIE

NIESTATECZNOSC POZIOMEJ WARSTWY CIECZY Z POWIERZCHNIA
SWOBODNA WYWOLANA NAPIECIEM POWIERZCHNIOWYM W WARUNKACH
ZMIENNEJ KONCENTRACJI

W pracy omdwiono powstawanie konwekgji typu Marangoniego w cienkicj warstwie cieczy
lepkiej ze swobodna powierzchnia, wywotanej gradientami napigcia powierzchniowego indukowa-
nymi gradientami koncentracji cieczy.

PE3TOME

HEVCTONYHMBOCTh IMOPH3OHTANEBHOTO CIOA XKHIAKOCTH
CO CBOBOJIHON IMOBEPXHOCTBLIO BBI3BAHHAS ITOBEPXHOCTHBIM
HATPSKEHWEM B YCITOBWSIX ITEPEMEHHOU KOHHEHTPAHI/II/I

B pafote ob6CyXICHO BO3HMKHOBCHHE KOHBEKITHH THIIA Maparomt B TOHKOM CIIO€ B3KOH

HAAKOCTH CO CBOGOHOM NOBEPXHOCTEIO, BH3RAHAOH IPaAHECHTAMH IIOBCPXHOCTROTO HANPMKCHHIT
WH/IYIIAPOBAKHEIMA TPASMEHTAME KOHUCHTPAITHH HKHAKOCTH. : :

INSTITUTE OF MECHANICS AND BIOMECHANICS
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