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ACTIVE STRATEGY OF AVOIDING RESONANCE

). HOLNICKI-SZULC (WARSZA WA}

The probiem of active control of natural frequencies by changes of local stiffness in structural
elements in order to avoid resonance (due to variable frequency of excitation) is considered. The
optimal strategy of play with switchable control parameters in the case of a stmple discrete
structure and continuous beam cantilever is discussed. It is concluded that even onc structural
element with a controliable stiffness coefficient gives us an efficient (in most cases) device to avoid
resonance frequencies in the structure under variable excitation.

Yo

cross sectional area of beam,
modulus of elasticity,
modulus of inertia,

stiffness coefficient,

limit values of &,

mass of material point,
magnification factor,

local deliections,

dynamical load,

amplitede of excitation,
static deflection,

frequency of forced vibration,
frequency of free vibration,
density of material,

y = Ayq,
C*=Elfy,
D = k¥/EJ,
A =w/C,
B =il

NoTaTION

1. INTRODUCTION

Problems of active damping of vibration in structural design appeared in

the literature in the seventies [11, 12, 15, 16, 17]. However, one can find some

“earlier formuiations (e.g., [18]). Particularly, the following important subjects
in civil engineering were considered:
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a) vibration in tall structures subjected to random pressure due to
turbulent wind,

b) structural vibration caused by movable load,

¢) resonance forced by supported engines.

The problem of active damping in design of large space structures is also
very important. Because of the requirement for low weight, such structures will
lack the stiffness and damping necessary for the passive control of vibration.
Therefore applying the active control idea appears to be very hopeful
(e.g. 11, 107). .

Two approaches can be distinguished in the optimal design of actively
damped structures. The first one (e.g., [6, 14]) starts from an iniiial design
satisfying all sets of comstraints and then an optimal control system improving
the dynamic response of the structure is invented. In the second approach (e.g.,
[2, 3, 5, 7, 8 13]) a simultaneous integrated design of the structure and
vibration control system is achieved by improving the configuration as well as
the control system. Both formulations, however, make use of some undefined
external force-sources which realize the sysiem of actuators. The idea of
vibration control presented in this paper describes a closed, sclf-controlled
systemn without exiernal force-sources. It can be of some use in space structures
under forced vibration but, particularly, it can be applied in civil structures.

Assuming that the geometry of the structure is fixed and only slow changes
of excitation frequency are allowed, the response of the structure (following
load changes) and the optimal strategy of actively avoiding resonance will be
considered. Avoidance of resonance will be possible by changing natural
frequencies due to the stiffness control of an element of the structure. The idea
will be presented on the basis of a two-degree-of-freedom problem (thé second
section), on the basis of an example of beam with controllable support stiffness
(the third section), and then some generalization will be made (the fourth
section). _ _—

First let us discuss the problem taking the simple, one~-dimensional example
of the spring-mass system (shown in Fig. 1} loaded by oscillating force

lm‘)

FiG. 1. One-degree-of-freedom spring-mass system.
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F(t) = Fycoswt. The equation of the forced vibration motion takes the
well-known form:

(1.1) mi+ku =F(), #=du/d*

where the parameter k describes the stiffness coefficient of the structure
supporting the mass m. The general solution of Eq. (1.1) is given by

(L.2) u = Ccosat+C,sinat + Fycosmt/k[1 —(w/a)*],

where o” = k/m, C,, C, — the constant coefficients dependent on the initial
conditions.

The amplitude of motion of the particular solution representing the
steady-state forced vibration can be expressed in nondimensional form through
the so-called magnification factor:

(1.3} M = [1/[1—(w/o)*]}.

In engineering practice analysis of the case of variable frequency of external
load o = w(t) is particularly important because of the danger of resonance
(when w approaches o — cf. (1.3)). In this situation, however, the idea of active
control of macrostiffness characteristic & (subject to constraints:
0 <k, < k< k) of the supporting structure can be very helpful. Assuming
quasi-static changes of both: the forced frequency w(t) and the coefficient
k = k(t) (which follows variations of w), the above steady-state description can
be used as the first approximation of the problem, Therefore the problem of
active damping of vibration amplitude can be formulated as follows. For each
forced frequency w define such stiffness coefficient k (k, < k < k,) that the
magnification factor M is minimum: : :

(1.4) o © M = 1/ ~(w/o)*]| = min.

Substituting the relation «* = k/m to Eq. (1.4), the following optimal solution of
the above problem can be calculated (cf Fig. 2, 3a):

[k
(L5) S k={ . for o<,
ky for  w>=wm,,

where

o = f 2 k fmlk,+ k).

The solution (1.5) gnarantees that the magnification factor M < M o> Where the
value M,

(16) MO = (kd “+ ku)/(ku - kri')

. is reached for w = @,. :
The step function (1.9) descrlbmg the optimal active control of the
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. Frg. 3. Optimal control of stiffness coefficient in the one-dimensional case.

macrostiffness characteristic k can be realized, for example, by using a switch-
able element in the supporting structure (¥Fig. 3b). The discussed structure
should be designed in such a way that the stiffness coefficient k, is related to the
substructure composed of elements b and ¢ while the cocfficient k, is related to
the whole structure composed of all elements a, b, ¢. Also the control box
should switch off the element a when the forced frequency is bigger than o,
and switch it on when @ < ®,. The effect of the switch-damper designed above
depends on the difference k,—ky (cf. (1.6)). Therefore the switchable element
a should be as stiff as possible.
_ Notice that in real application, switching of the element a should be done
more smoothly (Fig. 3a) in order to minimize the impact due to the sudden
change of macrostiffness k. If the forced excitation is defined a priori, the
switch-damping technique can be applied in the open loop control. In the
opposite case the closed loop control detecting the current frequency of
excitation through sensors measuring the frequency of structural vibration has
to be used.

2. OPTIMAL STRATEGY OF AVOIDING RESONANCE

Generalizing the problem discussed in the previous section, let us consider
forced vibration in the two-degree-of-freedom spring-mass system as shown in




ACTIVE STRATEGY OF AVOIDING RESONANCE 679

FiG. 4. Two-degree-of-freedom spring-mass system.

Fig. 4. For forced vibration without damping, the equations of motion are
given by
@1 mytiy + kg +k)u, —kyu, = F sinwt,

myily+kyuy—kyuy = 0.

Substituting F,e™" for Fysinmt, U, ! for u, and U,e™™ for u, (where U, U,
do not depend on time) and dividing by ¢, the equations of motion become
(ky +ky,—m, 00U, —k,U, = F,,

2.2)
—k, Uy +k,—my0?)U, =0,

The solution of the above set of equations takes the form

U, = Fo(kz_mzwz)/d,

(2.3)
U, = Foky/A,

. where the determinant 4 is given by
(2.4) A =m myw*—[m, +m,)k, +myk,Jo®+k k,.

If the determinant .A approaches zero (due to the approach of excitation
frequency @ to some natural frequency w, of the system), resonance occurs.
~ Therefore the formulation of the problem of optimal strategy of avoiding
resonance by control of the stiffness parameters k,, k, should be based on
maximization of the function

(2.5) max|4(w, k,, k,}.
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for all e from a given range and for the stiffness coefficients k, k, chosen from
the following admissible range:

Al
L8]

1"<“-ku5
, <k,

d

(2.6)

=
N
=~

d

Let us note that the expression |4| can be treated as the measure of the distance
between the actual frequency @ of the excitation and the closest natural
frequency @, of the system |4] = [|o—a,|l. The goal function (2.5) and the
domain of admissible control parameters (2.6) are convex. Therefore the
process of optimal control of the stiffness coefficients k,, k, chooses the states
describing the corner points of the domain (2.6).

Computing the solution of the problem (2.5), (2.6) (for m, = m, = 1 kg,
ks = 9.8 Njem, k, = 19.6 Njcm), the optimal control process was determined
(see Fig 5a). Four functions A(w) corresponding to configurations of the
control parameters k,, k, which describe the corner points of the domain (2.6)
are presented in Fig. 5c. After interpreting results, one can see that for low
@ the maximal stiffness coefficients k; = k, = k, are required. However, in
order to pass the first natoral frequency of the system in the most distant way,
the control parameter k, has to be switched for the lowest admissible value
k, =k, when @ exceeds @, = 0.784. Then, when o grows up more than
@' = 1414, the parameter k, can be switched back to the value k; = k, in order
to magnify additionally the cost function |4]. The most distant way of avoiding
the second resonance frequency requires the final switching of both control
parameters for the lowest possible values k, =k, =k, when @ exceeds
m, = 1.962. The function describing the value of the determinant 4 depends on
the actual frequency of excitation @, and the corresponding optimal con-
figuration of the control parameters (cf. Fig. 5c} demonstrates that the cost
function (2.5) takes its minimal value |A| = 0.69 for o = w,.

After generalizing considerations for »- degree of-freedom systems, one can
check that the optimal control process requires the maximal possible values of
parameters k; (i = 1, ..., n) for @ below-the first resonance frequency @, and
the minimal possible values of parameters k; for  above the highest resonance
frequency w, of the system. The optimal strategy of play with parameters k; for
we{w,;, w,> depends on the particular problem. *

_ In general, having n control parameters available gives us the best solutions
in the sense of the criterion (2.5). However, the problem of active control by
m (m < n) parameters is more reasonable from the engineering point of view
and can be successfully used. In most cases just one control stiffness parameter
is enough to avoid all resonance frequencies, unless its location coincides with
a nodal point of some mode. The optimal location of the controlled elements of
the structure is an important problem and can be determined through
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Fig. 5. Optimal control of stiffness coefficients in two dimensional case.

sensitivity analysis. Briefly speaking, the location of the controlled elements
should coincide with the maximal modal deflections.

Assuming in the example considered above that only the coefficient k, is
controllable (while k, =k, is constant), the solution of the active control
problem is determined (see Fig. 5b). The two discussed results differ about the
“distance” A of the structural response from the resonance for the second mode
of vibration. If the forced excitation describes a combination of several forced
excitations with frequencies m; independently (but slowly} variable, then the
strategy (2.5) of active damping has to be modified. The maximization of the
smallest distance |4| = [[w,—w,|| between the actual frequencies @; of exci-
tation components and the closest natural frequency w, of the system should be
required in this case. . : :
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3. EXAMPLE OF BEAM WITH CONTROLLABLE SUPPORT STIFFNESS

Finally, the idea of optimai sirategy of avoiding resonance frequencies will
be discussed in detail using the example of continuous beam structure with
only one control parameter (the stiffness of the support B controllable — see
Fig. 6).

pr(x)e""”f TR:/\JW(!)
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F1g. 6. Bcam with the support stiflness controllable,

Let us consider the transverse harmonic vibration of the beam
(3.1) w(x, t) = W(x)e"

due to some external excitation

(3.2) p(x, ) = P(x)e™.
The forced vibration caused by the excitation (3.2} is described by the
well-known nonhomogeneous equation :

- N
(3.3) C2(*wfoxH +w = ;P(x)e“‘”,

where y = Ay,, 7, — the density of the material, 4 — the cross-sectional area,
C? = EJJy, E — the modulus of elasticity, J — the moment of inertia.

Substituting the assumed form (3.1) of generated vibration to (3.3), the
equation of amplitude is obtained:

(3.4) d*W (x)/dx*— 2* W (x) = P(x)/EJ,
where
At = w?/C2.

Let us develop now the functions W(x) and P(x) in series:
(3.5} Wxy= Y AW,x), Px= 2, P,W(x)
n=1 n=1

where the orthogonal eigen functions W,(x) of natural vibrations safisfy the
homogeneous problem (Appendix (A.1)} with the boundary conditions {A.4).
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The natural vibration dependent on the stiffness k of the support B is discussed
in the Appendix.

The coefficients 4,, P, can be determined by multiplying Eqs. (3.5) by the
normalized eigen functions W, (x), 1ntegrat1ng these formulae in the range <0, I>

and makmg use of the orthonormality (f W.(x) W, (x}dx = &;,):

i
(3.6) = {WOW(x)dx, P,= j W, (x) P(x)dx.

0

Multiplying both sides of Eq. (3.4} by W,(x) and integrating this formula in the
range {0, I>, the relation between the coefficients is reached [9]:

3.7 A, = P /EJAX (12428,

Substituting Eq. (3.6), to Eq. (3.7) and then the calculated coefficient 4,, to Eq.
(3.5),. the amplitude W(x) is determined

1 2 W, (x) jP

EJ = 330 —3%% Vo

Finalty, makmg use of the relations

(3.9} =?/C*, Iy =w}/C*, C*=EJp,

the solution of Eq (3.3) describing forced vibration due to excitation (3.2) is
obtained: :

(3.8) Wix) =

. mn oo (X) I
(3.10) wilx, ) =— Z —M"Z—IP(u) 7 (1) du
] n=1 a)n / n
The last formula was derived under the assumption that the frequency of
external load o is constant. However, in the case of quasi-static changes of the
forced frequency, the accuracy of the above solution is also acceptable,
The problem of optimal strategy of avoidance of resonance can be
formulated as follows. For a given frequency o’ of external excitation define the
support B stiffness coefficient k = k{w) which corresponds to the sequence of
natural frequencies w,(k), the most distant from o':

3.1 - max o' — o, (k)|
’ k
where the distance ||ow’—w,(k)|} is defined as the following distance between o’
and the closest natural frequency w, (k)
(3.12) |lew" — o, (K} £ min jo' — 0, (k)| [ +w,,(k)].p

Maximization of the functional (3.11) means maximization of the denominator
in the formula (3.10), and so minimization of the amplitude of vibration.
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The solution k, @,(k) of the above problem follows the changeable
externally forced frequency w(t}. Therefore the idea of active control of the
support B compliance guarantees avoiding all resonance frequencies in the
most distant way and continuous minimiZing of vibration amplitudes.

Let us notice that considering a value ©' in the range w, < @' < w4
(w,, ®;+, — the closest to @ natural frequencies) the formula (3.12) determines
' as the geometric mean point of this interval

Introducing the notation f= A, D = kI*/EJ (cf. (A.8)) and the relation
(3.9),, the optimal criterion (3.11), {3.12) can be expressed in the equivalent
from

(3.13) max min g{f, 8,(D)),

D H

where the distance between f and f,(D) is measured by

(3.14) o = Ip*—Ba (D).

The relation between the control parameter D and the corresponding sequen-
ces of natural frequencies f8, is described by the equation (cf. Appendix (A.9)):

(3.15 %{coshﬁsinﬁ—sinhﬁcosﬁ)+coshﬁcosﬁ+ 1=0.

Now a computational procedure of the active control (3.13}), (3.15) can be
discussed in two formulations. One of them, when the control parameter D can
be changed continuously between zero and infinity and the other, when only
some discrete set of values can be taken by D.

In the case of continuous control of the parameter D, the optimal solution
of the problem (3.13), (3.15) was computed and exposed in Fig. 7 where the
transformation D = [£/(1—&)]* was applied, merely for better visualization of
the result. The function g of distance between f and the closest eigen value fi,
takes its minimal value ¢ = 1134 for # = 3.345, when the controlled parameter
¢ is switched from 1 (the position describing full support of the end B) to the
position O (describing free end B of the beam). Apart from this sore point, the
control characteristic passes relatively close to the first and the second branch
of lines describing the points of resonance frequencies (broken lines in Fig. 7).
For the higher modes, however, the function ¢ grows up rapidly, so the
resonance frequencies evade far away. The first elements of the sequence of
distances g, (Fig. 7) in the switching points {from & = 1 to { = 0) are presented
in Table la. '

In the case of discrete control of the parameter D the numerical results of
the problem (3.13), (3.15) are presented in Fig. 8. If only two realizations of the
support conditions &,, &, (0< & <1, i=1,2) are available, the optimal
control characteristic is shown in Fig. 8a. If the control parameter £ can take
three values: £, £,, &, (0 < & < 1,i=1, 2, 3), the optimal solution is exposed
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Fig. 7. Optimal conirol of the support stiffness — case of continuous control.

Table 1.
a)
- 1 2 3 4 5
2, 113.4 1009 3633 8826 17506
“y i29.3 710 2030 4420 8180
b)
i 1 2 3 4 5
by 198 1634 5330 12446 24087
byt 198 771 2092 4479 8256
c)
i t 2 3 4
‘g 215 1645 5375 12594
o7 215 1620 5374 12594
gt 215 765 2050 4325

in Fig. 8b. The intermediate control parameter £, is defined in such a way that
the condition ¢’ = ¢7 (Fig. 8b and Table 1b) is satisfied. Similarly, when four
values &y, &,, &5, &, 0<é&, <1, i=1, ..., 4) are available, the controf
characteristic takes the form of step function as in F ig. 8c. Notice that optimal
value £,, &, should be chosen from the conditions 01 = @1 = oY’ (cf. Table 1c).
. The optimal solution in the case of n available values of the control parameters
G =1,..,n &<E<E) can be constructed analogously. Therefore the
limit values should be reached: &, = &, ¢, = ¢, and the condition o} = const
(for each j) be satisfied. Of course the effect of control is bigger if the difference
E'— & is bigger.
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Fic. 8 Optimal control of the support stiffness — cases of discrete control.

From the results presented above one can see that the simplest case of
discrete, biparameter control (Fig. 8a) is relatively effective and easy to apply. It
allows us to avoid all infinite numbers of resonance frequencies. The control
box installed in the support B of the beam should realize the optimal strategy
of switching prescribed by the optimal solution.

4. CONCLUSIONS
As it was mentioned at the beginnig, the above analysis was presented

assuming quasi-static changes of the frequency w. If this condition is not
satisfied, then the function w(x, ¢) takes a more general form than the
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expression (3.1) and the whole problem has to be considered again. Also
realization of switching points in active control (cf. jumps in step functions
— Figs. 7 and 8) needs some comment, In real applications change of the
control parameter should be made more smoothly (cf. Fig. 3a). If not, the
mmpact due to a sudden change of the stiffness coefficient will cause some local
perturbation of the optimal solution. This perturbation can be calculated and
added to the solution. However, the range of its influence in the quasi-static
case is localized. The direct method of active damping computation for the case
of any variable load and a structure discretized will be presented in [4].

The problem of active damping of forced vibration was discussed on the
basis of the example of the beam with controllable support stiffness. However,
the problem is more general and no obstacles prevent the application of the
presented approach to optimal control of other engineering structures like
frames, trusses or continnous beams. The problem of where to locate (and how
many) control devices for maximization of the control effect is still open. The
sensitivity analysis should be applied for particular cases but, generally
speaking, one can notice that the control devices should be located in the
cross-sections where the modal deflections take maximal values and away from
nodal points (especially of the first modes of vibration). Normally, the support
points satisfy these conditions).

The advantage of the present method for avoiding resonance is the fact that
one or two properly located control devices (e.g., dynamical clutch) can
successfully damp the forced vibration in the whole structure. The control
procedure realizes a new constitutive characteristic k = k(w) for an element of
the structure and therefore it can be classified as an “active-passive™ method. It
. means that the procedure actively changes some internal, own properties of the
. structure but does not generate some external forces acting on the structure
{the “active-active” case). Usually the active-passive method can be realized in
an casier and cheaper way because the considered structure itself plays the role
of the controlling device.._ __ . .

The method of active damping by control of constitutive characteristics will
be applied for damping of natural vibrations of structures in the next paper [4].

APPENDIX. FREE VIBRATION OF BEAM WITH ELASTIC SUPPORT

Substituting the expression (3.1) to the well-known equation of transverse

free vibration of beam
84
(A.1) C2W+W =0, = EJfy,

where y = Ay,, yo — the density of material, A — the cross sectional area,
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E — the modulus of elasticity, J — the moment of inertia, the following
ordinary differential equation is obtained:
d*w

S AW =0, it =0

Making use of the Laplace’s transformation, the solution of the equation takes
the form [9] ' '

(A2)Wix) = W(Q)S (ix) + % W (0)T (Ax)+ % W}’(O) U(ix)+ 113 W)V (ix),
where

1

V{ix)= E(sin hdx—sinix),
1

U(ix) = E(cos hdx—cosix),
1 . .

T(Ax) = E{sm hAx +sinix),

S(ix) = %(cos hix +cosix).

The formula (A.2) easily allows us to take into account the boundary
conditions because the constant coefficients W{0), W'(0), W’{0), W' (0) have
a mechanical meaning. Determining the following derivatives of the function
(A.2): '

W«ﬁ;4vmuvug+mesun+%wmemm+£gvnmng,

(A3) wwa):vvmm?uuxy+wwmzyum+wvmmsum+§mwmeuxL

W (x) = W(0)A* T(Ax)+ W (0)A2 U(Ax)+ W (0) AV (Ax) + W (0)S(Ax),
the boundary conditions for the studied beam can be considered
W(0) — W'(0) = 0,
(Ad) W (1) =0,
W (ly = W(DHK/EJ.

The formula (A.4), describes the equilibrium between the transverse
internal force in the end B of the beam Q(y = —EJW"(]) and the reaction
force in the elastic support R = — kW (1). Taking into account the boundary
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conditions {A.4),, the function W (x} describing the deflection of the beam (A.2)
can be expressed as follows: :

(A.5) W(x) = %W" O)U(4x) +;11g W™ 0)V (Ax),

where the coefficients W(0) and W™ (0) should be determined from the two

remaining conditions (A.4), s, _ ‘
Caleulating W(l), W"(ly and W{)) from the formulae (A3}, 4, (AS)

respectively, the conditions (A4), ; lead to the set of two equations:

S(D %T(Al) W (0) 0
(A.6) k k -
WG =500, S5 osvan | | w) 0

The solution of Egs. (A.6) exists if the main determinant A vanishes:

(A7) 4= Sz(ﬁ)—B%S(ﬁ) ViB)—T(p) V(ﬁ)+£%T(B)U(B) =0,
where

B=A,
(A.8)

D =kIP/EJ.

The transcendental equation (A.7) describes the infinite number of roots f,
(where f7 = @,I?/C) defining the sequence of natural frequencies ,.

Substituting the definitions (A.2),_ 5 the frequency equation (A.7) takes the
final form

(A.9) B%(coshﬁsin[)’—- sinkificos )+ coshfcos -+ 1=0.

In the one, limit case of a cantilever beam. with a free end B{k = 0), the
parameter D vanishes and the frequency equation (A.9) takes the form
(A.10) coshficos i+ 1 = 0.

The second limit case of the beam fully supported at the end B(k = D = w)
leads to another particular form of the equation (A.9): :

(A1) coshfisinf—sinhfcosf = 0.

The first five elements of the sequence B! of roots of the transcendental

& — Rozprawy Inzynierskic 4/89
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equation (A.10) take the following values
Bl = 1875,  BL=4.694,  pi=7855,

A2
.12 gL =10996, fi=14.137,

while the corresponding elements of the sequence B2 of roots of Eq. (A.11) are
equal, respectively, '

g2 =3927,  pI=1069, 2 = 10210,

(A13)
B = 13352, fi=16493.

We can cstimate now the sequence B, = B.(D) of the roots of the
transcendental equation (A.9)

(A.14) B < B, < Bi.

When D grows up from zero to infinity, the elements f,(D) of root sequence
grows up from f; to 2. Therefore, by controlling the flexibility k of the
suppoit B, the natural frequencies w, of the beam can be changed taking values
from the ranges (o}, w3, respectively.
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STRESZCZENIE

AKTYWNA STRATEGIA UNIKANIA REZONANSU

Rozwazany jest problem aktywnego sterowania crestoéci drgan wlasnych przez wprowadzanie
lokalnych zmian sztywnoscl w elementach konstrukeyinych. Celem sterowania, ledzacego zmicnpne
W Gzasie wymuszenfa, jest omijanie czgstodci rezonansowych. Dyskutowana jest optymalna
strategia przelgczania sterowalnego, lokalnego parameiry sztywnodci w przypadku prostej
struktury dyskretnej oraz ciaglego wspornika belkowego. Wykazano, Ze nawet jeden clement
konstrukcyjny ze sterowalnym wspolczynnikiem sztywnodei pozwala zazwyczaj ominad czgsto%éi
rezonansowe w konstrukcji poddanej zmiennym w czasie wymuszeniom. 5

Pr3ioME

AKTHBHAS CTPATETHS M3BEXXAHIS PE3OHAHCA

Paccmatpupaercs  mpofiicMa  axTHBROrO  YNp4BACHUS  COOCTREHHBIMA  WACTOTAMHN
KOAcOAHUH TyTeM BBCIGHHA JIOKANBHBIX HIMEHCHMIA KCCTKOCTH B KOHCTPYKIAOHHBIX 3EMEHTAX.
Hessio ynpannenus, crnexamero NEPEMCHHGIE BO BPEMCHH BLINYEK/IEHHA, ABIACTCH H3BEKAHME
PC3OHEHCHBIX YaCTOT. OBCYRAACTCH ONTHMANLHAN CTPATCTH YUPARASEMOTO TEPEKIIONCHAS
JOKATTBHOTO TIRPAMETPA KECTKOCTH, B CIYT4e NPOCTOH JUCKPETHOR CTPYKTYPH M HeRpPEpPHIBHON
Ganouuoil xoncomd. Moxasaro, WTO D9KE ONHH KOHCTPYXITEOHFAUE SIEMEHT ¢ YIPABIACMERM
KOMMPUIMEHTOM KECTROCTH MO3ROjIAST 0BBMHO WIBEMATE PEIOHAHCHBIX WACTOT B KOHCTPYX-
HHH, TMOABEPrHyTOH TEPEMEHHBIM BO BPEMCHW BEIHYNCHSHHSIM,
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