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A NUMERICAL SOLUTION FOR THE HEAT TRANSFER
' IN NON-NEWTONIAN FLOW PAST A WEDGE
WITH NON-ISOTHERMAL SURFACE

.

R. VASANTHA (BANGALORT), L. POP (CLUJ)
' and G. NATH (BANGALORE)

In this paper, we present results obtained by using a numerical method for calculating the
development of the thermal boundary layer in a non-Newtonian flow past a wedge having a step
discontinuity. in surface temperature. In particular, solutions are determined for small values of
the Prandtl number and the method is shown to be very accurate. in comparison with previous
analytical solutions. : '

1. INTRODUCTION

In addition to the well-known Newtonian fluid, there are real fluids vsed in
the mechanical and chemical industries. Most real fluids exhibit so-called
non-Newtonian behaviour, which means that the shear stress is no longer lin-
early proportional to shear rate. The flow and temperature fields for non-
“Newtonian fiuids have been the subject of many investigations for the past
four decades and the number of journal articles dealing with such fluids has
been increasing rapidly. Our survey of the literature of non-Newtonian fluids
indicated two recent review articles by CHO and HARTNETT [1}, and SHENOY
and MASHELKAR [2]. '

~ During recent years, one-of the most interesting problem for a purely viscous
“fluid is that of determination, of the temperature distribution and the rate of
heat transfer through the laminar boundary layer in the flow over a body with
non-uniform surface temperature; notable papers are those from Refs. [3—8].
The case of a non-Newtonian boundary layer wedge flow with non-uniform
surface temperature hds been investigated by CHEN and RADULOVIC 191 by
means of a.series solution method. Although their solution gives good results
for large and moderate values of. the Prandt] number, Pr, it cannot be relied
upon for Pr < 1, where the solution tends to underestimate the value of the
wall temperature gradient, the discrepancy increasing as Pr becomes smaller.
- The object of the work reported below is to present a numerical solution
of Chen and Radulovic’s problem by using a very efficient ajpd accurate finite-
-difference scheme devised by KELLER [10, 11] and also to obtain results for
small Prandtl numbers. ' o ‘
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2. ANALYSIS

The formulation relates to a wedge of angle =f immersed in a steady
incompressible laminar boundary layer flow of a non-Newtonian fluid which
- obeys the power-law model of index . The x-axis is measured along the surface
of the wedge and the y-axis is normal to it, respectively (see Fig. 1). Suppose

" -Frg. 1. Physical model and coordinate system.

that the frec stream velocity outside the boundary layer in the x-direction is
U = Cx™ where C is a constant and m = /(2= ). The leading portion of the
wedge surface of length x, measured from the forward staghation point is at
the same temperature T, of the inicoming free stream fluid and the rémaining
portion of the wedge surface, x > x;, is maintained at a uniform temperdture
T,, which differs from T,.If f (1) represents the dimensionless stréam function
“and 0(Z, #) the dimensionless temperature function in the boundary layer, then

these .fUnctioné"satisfy_the:foll_owiﬁg equations (see [9]) _
PGP a =P =0,
SO =L0=0,  f(e0)=1,
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subject to the boundary conditions, for £ >0 i
(2.3) 0(6,00=1 and 6 o0)=0, -
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where the coordinate transformation is
E=[1—(xo/x)f]3, 1 ="bn/S, = o, Px%,
in which
a=f"(0), b=(axPr/6)!?  c=3(m+ 1)/(2n+2).
The primes refer to differentiation with respect to 4 and the constants oy, s, %4
and a5 are given by .

 om@ptl) (WHl)[ 1) ey
o= M(Zﬂ—1)+1’ 3T n+1 m(zn_1)+1 s
_AGmoh) o mEneDrl

o, = ——————
: B 4 3m+l) . m+1
Here Pr is the generalized Prandtl number. :

3. NUMERICAL SOLUTION

First, we note that Eq. (2.1) was solved analytically by HSU and COTHERN
[12] using MEKSYN’s method [13], and numerically by CHEN and RADULOVIC
[9]. Our aim here is to solve numerically both Egs. (2.1) and (2.2). To this end
we note that since ¢ is bounded between O and 1, the coefficient of 90/8¢ is
always positive and Eq. (2.2) may be solved by ,;marching” downstream in the
¢ — direction using a finite-difference method suitable for parabolic differential
equations. This algorithm is based upon a KELLER [10, 11] box scheme where-
by accurate results are obtained using extrapolation on crude grids. In detail,
Eq. (2.2) is solved as the set of two simultaneous equations

(3.1) B
. aﬁ_g)

By oy s g LAY % (1t df 00
(3.2) ﬁafﬁb Pr(1—¢&%) (a5£f+ 25 g g =3P — FE

A net is placed on the (¢,7) plane defined by
€0=O, €i=55_1+ki, i=1,2,...
o=0, Hy=#_4+h  J=1L2.,N
If w} denotes the value of any variable at (£, 7;), then variables and derivatives
of Eq. (3.2) at (&; 42, ;—1/2) are replaced by
wiZil3 = Z(W§+W§-1 +wiT 4w 1Y),

dw\I~ Y2 1 . . et 3 '
il o {wiawt il —piTt
(55),-_1;2 21‘:{(1Vt5,+wj_1 w) wiZi),

w1, :_ P
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1 : . 3'
Ehj. Equation (3.1), as it does. .

not involve £ explicitly, was centered at (&, 77, 4,,) using the relations

1 - _
where &;_,,, = 5i—1+§ki and 7,y =1;-1+

i mlii,'@mi _i-i;g
Wi 1/2 ) (WJ' + Wi— 1): (6;1- )} 12 hj (WJ Wj {)
The boundary conditions then imply
(3.3) 8l =1 and 65 =0."

If the problem has been solved up to &, ,, then we have (2N + 2)unknowns -
(9’, gj) j=0,1,.., N. These are nonlinear algebraic equations, which are solved
using Newtoman s iteration, the values of the variables at ¢;_, being used as an
initial iterate. To staft the integration procedure, we require initial profiles of
@ and 26/8n. CHEN and RADULOVIC [9] showed that a series expansion in
powers of £ (small) can be found to satisfy Eq. (2.2) subjected to (2.3} in the form

G4 S =Y ame o
The functions 0,(n) satisfy ordlnary chiferentlai equatlons of* rap;dly mcreasmg .
complexvty and ,(y) is given by
o : ?(1/3 7°)
@3. 5
- @it

where y and I* are, respectlvcly, incomplete and complcte gamma functxons

Now 0,(n) is taken as the 1n1t131 proﬁle of 9(5 n) and from Egs. (3.4) and (3.5)
we find that

0y 3
(ﬁ)m = T P

+'To this end, we mention that the quantity of physical significance is the heat
transfer rate which is defined through the Nusselt number

(3.6) .~ NuRe Vo0 — ¢ Pr& [ —(20/07); _o],

- where
c =1 m+ 1\ [m2an—1)+1 et O3
mn 6 n+1 n(n+1) .

4. RESULTS AND DISCUSSION

We have studied the effect of step sizes An and A&, and the edge of the
boundary layer 7, on the solution in order to optimize them. The results pre-
sented here are independent of An, A¢ and 7, at least up to the 4th decimal
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place. Although the results have been obtained for various values of the par-
ameters, only some representative results are presented here.

In order to assess the accuracy of our method, we have compared our skin
friction, £ (0), results for non-Newtonian fluids (n # 1) with those of CHEN and
RADULOVIC [9], and they are found to be in excellent agreement (they agree
up to the 4th decimal place). Hence, the comparison is not shown here. The
heat transfer, Eq. (3.6), results for Newtonian fluids (n = 1) for f =1 and £ =1
(or xo/x = 0) have been compared with those of ELZY and SISSON [14], and
ECKERT and DRAKE [15], and for non-Newtonian fluids (n = 0.5) for § = 0.5
and 1.0, and 0 < & < 1 with those of CHEN and RADULOVIC [9]. Our results
are found to be again in excellent agreement with those of [14, 15]. However,
they differ from those of [97. The maximum difference is about 12 per cent
when x,/x approaches unity, but the difference decreases as Xo/x decreases.
This difference is attributed to series solution method used by CHEN and -
RADULOVIC [9]. The comparison is shown in Table 1 and Fig. 2.

Table 1. Comparison of heat transfer results (Nu Re™ /%)
for f=10,n=10and =10

Pr 0.7 0.8 1.0
Erzy and Sisson [14] 0.496 0.523 0.570
EckerT and DRAKE [15] 0.496 0.523 0.570
CHEN and Rapurovic [9] 0486 0.514 0.562
Present results : 0.496 (.523 - 0.572
2.0
Pr=10,n=05 . \
Present results
----- Chen 8 Radulovic
=
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FiG. 2. Comparison of heat transfer results.




~1f(n+1)

NuRe
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FI1G. 4. Effect of pressure gradient paramefcr § on heat transfer coefficient.
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Fic. 5. Effect of the Prandil number, Pr, on heat transfer coellicient.
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The effect of power-law index n and the distance ¢ on the heat transfer
coefficient given by Eq. (3.6) is shown in Fig. 3. It is observed that for all ¢, the
heat transferis greater for the pseudoplastic fluid {(# < 1) and smaller for the
dilatant floid (n > 1) as compared to the Newtonian fluids (# = 1). Also for
a given non-Newtonian fluid (.., for fixed n), the heat transfer increases as
¢ decreases, the effect being more pronounced for small &, i.e., away from the
leading edge. The increase in the heat transfer is due to the reduction in the
thermal bouindaty layer thickness as n or ¢ decreases. '

The effect of pressure gradient parameter $ on the heat transfer coefficient is
presentéd in Fig. 4. Tt is seen that the heat transfer increases as § increases. The
reason for this behaviour is due to the reduction in the thermal boundary layer
thickniess as B-iricreases (i.e., increase in the favourable pressure’ gradient).

" The effect “of the Prandtl number, Pr, on''the heat transfer coefficient is
shown in Fig. 5. We note from this figure that for a given &, the Nusselt number
decreases as Pr decreases. This is due to the fact that a lower Prandtl number
fluid has a relatively high thermal conductivity which promotes conduction
and thereby reduces the flow convection. This results in increase in the thermal
boundary layer thickness and reduction in the convective heat transfer at the
wall. The effect of high Prandtl number is just reverse. Also the effect of £ is
pronounced only for smalt &, i.¢., for large xq/x. o '

5. CONCLUSIONS

The results found in this paper indicate that the heat transfer is greater for
pseudoplastic fluids and smaller for the dilatant ones as compared to Newto-
aian fluids. The heat transfer increases as the pressure gradient parameter or-
the Prandtl number or the distance along the wedge surface increase. The rate’
of increase is higher at large distance. Finally, we have shown here that the

series solution method does not give accurate results for large ¢ and it always
underestimates the value of the heat transfer coefficient.
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STRESZ&ZENIE _

ROZWIAZANIE NUMERYCZNE PROBLEMU PRZEPLYWU CIEPLA PRZY .
NIENEWTONOWSKIM OPELYWIE KLINA O NIEIZOTERMICZNYCH '
POWIERZCHNIACH

W pracy przedstawiono wyniki obliczen numerycznych dotyczacych rozwoju termicznej war-
stwy przyéciennej podezas nisnewtonowskiego oplywu klina zé skokowa nicciaglodcig temperatury
powierzchni. W szczepblnoéci uzyskano rozwigzania dla matych wartodci liczby Prandtia stwier- -
dzajac zarazem, e proponowana metoda jest doktadnicjsza od dawniej stosowanych metod ana-
litycznych, . : : .

Pea oMe '
tII/ICJIEHHOE PEINIEHUE- 3A,JIAIII/I TEHHOHPOBOI[HOCTH

IMPH HEHBIOTOHOBCKOM OBTEKAHWHW KJ/IMHA
C HEWM3OTEPMHWUYECKUMH TTOBEPXHOCTAMMU

B pdﬁOTe I'IPG,E[CTaHJIC!—H:I pe3ysTaThL YHCICHHBIX pacicToB, KacdoIMUXCA PasBATHAA TCD-

_MH‘IBCKOT‘O HOFpallH‘{HOTO CJIOA BO BpeMA HEH'EJOTOHOBCI(OI'O OGTCKELHHSI KAMHA CO  CKAYKO-
OﬁpaBHbIM paspeiBOM TEMIEPATYDbHL lTOBGpXHOCTH B ‘{aCTH()CTH HOIIY‘{GHBI pouICHHA  JUIg
MAJEX 3fHaverui qucia HpaH,E{TJTH OHHOBRCMCHEO KOHCTH.TH_{)YH UTO HPE,[UI&I'&EME-!_H MeTO,[[
bonee TO‘{H.BI.H YCM paHbpIHe HpﬂMCHHGMb!C AHANATHICCKHC MGTOJIBI
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