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The spectral decomposition of elasticity tensor for all symmetry groups of a linearly elastic
material is reviewed. In the paper it has been derived in non-standard way by imposing the
symmetry conditions upon the orthogonal projectors instead of the stiffness tensor itself. The
numbers of independent Kelvin moduli and stiffness distributors are provided. The correspond-
ing representation of the elasticity tensor is specified.
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1. Introduction

This work is devoted to the review on the spectral decomposition of the elas-
ticity tensor (Hooke’s tensor). Possibility of application of the spectral theorem
within this context was first noticed by Lord Kelvin (W. Thompson) in 1856
[10]. Then the idea was forgotten and rediscovered by Rychlewski in 1983 [22]
and independently by Mehrabadi and Cowin in 1990 [7]. The consequences of
the theorem have been thoroughly explored by the above researchers and their
co-workers, leading to many inspiring results, i.e. the spectral form of elastic-
ity tensor was derived for all elastic symmetry classes [2, 6, 25], the role of pure
shears was analyzed [3], the extremum of elastic energy was found for the selected
sets of stress states [19], the properties of biological materials were identified [7].
After that the idea has found numerous applications, especially when dealing
with anisotropic materials. Now, this invariant decomposition of the elasticity
tensors is widely known, though, still some aspects of it remain not fully un-
derstood. The main goal of this paper is to clarify the issue of invariance of the
decomposition, mainly the crucial notion of orthogonal projector introduced by
Rychlewski [22] with respect to the notion of an eigen-state which is preferably
used in the papers by Cowin and co-workers, e.g. [6]. Furthermore the spectral
theorem is applied for elastic material of each symmetry class. The novelty of
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the present work is the derivation of the form of the stiffness tensor for the
subsequent elastic symmetry groups by imposing the symmetry conditions upon
the orthogonal projectors instead of the stiffness tensor itself. We think that the
present paper will be useful for all who would like to apply the spectral theorem
in their fields of research.

Linear elastic material (classical elastic body) is considered for which the
small strain tensor ε depends on the stress tensor σ according to Hooke’s law:

(1.1) ε = M · σ or σ = L · ε, M ◦ L = IS ,

εij = Mijklσkl or σij = Lijklεkl, MijmnLmnkl =
1
2
(δikδjl + δilδjk) ,

where M is a compliance tensor and L is a stiffness tensor. The above law is
valid for the stress states restricted by the limit Mises condition

σ ·H · σ ≤ 1, σijHijklσkl ≤ 1,

where H is the limit tensor. Theory of elasticity of anisotropic bodies is presented
in detail e.g. in [9, 16]. In this paper we deal only with the properties of the
stiffness tensor resulting from its spectral decomposition, without referring to
any boundary value problem.

Hooke’s tensors M, L are linear operators which project the space S of sym-
metric II-nd order tensors into itself. Hooke’s tensors are defined as positive-
definite IV -th order Euclidean tensors with the following internal symmetries,
namely

Aijkl = Ajikl = Aijlk = Aklij (A → L,M).

Because of the above internal symmetries, in any Cartesian basis Hooke’s tensor
is, in general, specified by 21 independent components Mijkl and Lmnrs. These
components change when the basis in physical space is transformed, therefore
they are not material constants. The compliance and stiffness tensors are also
used in quadratic forms specifying the energy functional

(1.2) 2Φ = σ ·M · σ = ε · L · ε .

Unfortunately, the complete set of the invariants for Hooke’s tensor, which
uniquely describe such tensor with an accuracy to the rigid rotation of the con-
sidered body, is not known. Because there are 21 independent components of
Hooke’s tensor, while the orientation of a sample with respect to the laboratory
is specified by 3 parameters (i.e. Euler angles), an irreducible functional basis
of orthogonal invariants for L (M,H) consists of 21−3 = 18 invariants. Con-
ventional approach does not provide the form of such basis for the whole set of
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elastic continua. However, some results can be derived when the material enjoys
some external symmetries.

Note that for the tensor of even order, the following eigen-problem is well-
posed. Using the general theory of linear operators one finds that the conditions

(1.3) L ·ω = λω, M ·ω =
1
λ

ω

specify eigenvalues and eigen-elements of these operators. Eigen-elements corre-
sponding to different eigenvalues are always pairwise orthogonal. The condition
(1.3) is also the necessary condition for the elastic energy (1.2) to reach an ex-
tremum value over the unit sphere (that is for σ · σ = 1).

In general, the tensor L has no more than six real different eigenvalues λI ,
λII , ..., λV I to which one can relate six mutually orthogonal unit eigen-elements
ωI , ωII , ..., ωV I . These normalized eigen-elements are called elastic eigen-
states. They are specified with accuracy to a sign and constitute an orthonormal
basis in the space S of the II-nd order tensors

(1.4) ωK ·ωL = δKL, K, L = I, . . . , V I.

Eigenvalues λI , λII , ..., λV I specify the material stiffness in response to the defor-
mations ε = eωK of direction of ωK , where ωK are the elastic eigen-states. λK

are called stiffness moduli or Kelvin moduli [22, 25], and they are non-negative.
This is the only constraint imposed on elastic constants by thermodynamics. For
any deformation ε = eω, where ω is an eigen-state, Hooke’s law takes the form
of the proportionality rule

σ = λε ,

where λ is the Kelvin modulus corresponding to ω. The resulting form of the
elastic energy for the elastic eigen-states has been specified already by Kelvin
[10] as follows:

ε · S · ε = λIe
2
I + λIIe

2
I + . . . + λV Ie

2
V I , eK = ε ·ωK

and
ε = eIωI + eIIωII + . . . + eV IωV I .

Each sequence

(1.5) (λI , . . . , λV I ;ωI , . . . ,ωV I),

consisting of six Kelvin moduli λK ≥ 0 and six elastic eigen-states ωK specifies
an elastic material which is theoretically admissible.
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In order to derive 6 eigen-states ωK (symmetric second-order tensors) it
is sufficient to specify 15 quantities. Conditions (1.4) of orthonormality of the
eigen-states provide 21 additional conditions

(
6
1

)
+

(
6
2

)
= 6 + 15 = 21,

which reduce the number of independent quantities from 36 (6 × 6) to 15
(36−21 = 15). Consequently, the variety of elastic continua is locally described
in a continuous way by a set of 6+15 = 21 parameters.

Out of the 15 parameters describing eigen-states one can separate three which
are not invariants. They orient the stiffness tensor L with respect to a reference
frame (a laboratory). These three parameters can be defined as three Euler an-
gles φ1, φ2, φ3. Remaining 12 parameters are dimensionless material constants
– invariants and common invariants of eigen-states (eigen-tensors) ℵk [15]. They
are common for the stiffness tensor L and compliance tensor M and they are
called stiffness distributors as far as they characterize the distribution of stiff-
ness between the material fibers and the material planes. Stiffness distributors
specify the orthonormal basis of eigen-states ωK with accuracy to the rotation
in a physical space [25].

In conclusion, parameters describing some elastic continua can be subdivided
into three groups

(6 + 12) + 3 = 21.

1. The first group consists of 6 Kelvin moduli λI , . . . , λV I which have a di-
mension of the stress tensor.

2. The second group consists of dimensionless 12 stiffness distributors
ℵ1, . . . ,ℵ12,

3. The third group consists of three Euler angles φ1, φ2, φ3.
Therefore, one has

(1.6) 〈λI , . . . , λV I ; ℵ1, . . . ,ℵ12; φ1, φ2, φ3〉.

Two elastic bodies are made of the same material if values of 18 invariants, that
is λI , . . . , λV I and ℵ1, . . . ,ℵ12, are equal for both of them.

Knowing the Kelvin moduli λK and the corresponding elastic eigen-states
ωK , the tensors L and M can be represented in the form of their spectral
decompositions [17, 22, 28]:

L = λIωI ⊗ωI + . . . + λV IωV I ⊗ωV I ,(1.7)

M =
1
λI

ωI ⊗ωI + . . . +
1

λV I
ωV I ⊗ωV I .(1.8)
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Note that the following relations result from the above equations:

TrL = Lijij = λI + λII + . . . + λV I ,

L · L = LijklLijkl = λ2
I + λ2

II + . . . + λ2
V I ,

in view of which 1/6TrL is the average stiffness modulus, while
√

L · L is the
total stiffness (the norm of L). Moreover, as for any other basis in S, the identity
tensor IS is

(1.9) IS = ωI ⊗ωI + . . . + ωV I ⊗ωV I .

As a consequence of the spectral theorem, the space of symmetric second-
order tensors S has been decomposed into the sum of six one-dimensional pair-
wise orthogonal subspaces PK of eigen-states

S = PI ⊕ PII ⊕ . . .⊕ PV I .

Let us introduce the notion of projector. Projector is defined as a identity op-
erator for the subspace P of second-order tensors, that is, it is the IV-th order
tensor P which specifies the linear operation defined as follows:

P ·ω =

{
ω if ω ∈ P,

0 if otherwise.

Consider the identity operation for the subspace PK of eigen-states and find the
corresponding projector PK , called now the eigen-projector. Using (1.9) we find
(no summation over repeated indices!)

(1.10) PK = PK ◦ IS = PK ◦ (ωI ⊗ωI + . . . + ωV I ⊗ωV I)
= (PK ·ωK)⊗ωK = ωK ⊗ωK .

Accordingly for any II-nd order tensor $ ∈ S the following relation is true

PK ·$ = αωK ∈ PK .

Projectors PK and PL corresponding to two eigen-subspaces are orthogonal,
that is

PK ◦PL =

{
O if K 6= L,

PK if K = L,

and
PI + . . . + PV I = IS .
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The above conditions of orthogonality of projectors result from the orthogonality
of corresponding eigen-subspaces. Decompositions (1.7), (1.8) and orthogonal
projectors PK (1.10) have the above diadic form if the corresponding Kelvin
moduli are single, that is if λK 6= λL for all K 6= L. Only in such a case the
spectral decompositions (1.7), (1.8) are unique.

If the material enjoys some symmetry then the number of parameters de-
scribing this material decreases. The sequence of parameters (1.6) can be then
presented as follows:

(1.11) 〈λ1, . . . , λρ; ℵ1, . . . ,ℵt; φ1, . . . , φn〉 ,
where ρ ≤ 6, t ≤ 12 and n ≤ 3. Kelvin moduli can be then multiple and the
spectral theorem takes the form

(1.12) L = λ1P1 + ... + λρPρ, ρ ≤ 6

and
S = P1 ⊕ P2 ⊕ . . .⊕ Pρ, IS = P1 + ... + Pρ .

The dimension of the subspace Pk is equal to the multiplicity of the correspond-
ing Kelvin modulus λk. The decomposition (1.12) is unique. In order to show
how the orthogonal eigen-projector looks like in the case of multiple Kelvin mod-
uli, let us assume that λV = λV I in (1.7). In such a case, the subspace PV,V I

is two-dimensional and one can define in this subspace the basis {ωV , ωV I}.
Using (1.9) we find

PV,V I = PV,V I ◦ IS = PV,V I ◦ (ωI ⊗ωI + . . . + ωV I ⊗ωV I)

= (PV,V I ·ωV )⊗ωV + (PV,V I ·ωV I)⊗ωV I = ωV ⊗ωV + ωV I ⊗ωV I .

It can be easily verified that the form of eigen-projector does not depend on the
basis of eigen-states selected in the subspace PV,V I .

If one denotes the dimensions of eigen-subspaces P1, . . . ,Pρ by q1, . . . , qρ,
correspondingly then according to [22], the expression

(1.13) 〈q1 + q2 + . . . + qρ〉, q1 + q2 + . . . + qρ = 6

is called the I-st structural index of material, while the expression

(1.14) [ρ + t + n]

is the II-nd structural index. These expressions are material characteristics.
It should be noted that the symmetry of the tensor L, which is equivalent to

the symmetry of a linear elastic continuum, results from the properties of the IV-
th order symmetric Euclidean tensors or, to be more specific, from the linearity
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of Hooke’s law and the properties of 3-dimensional Euclidean space. Therefore,
the classification of the linear elastic materials in view of their symmetry has, in
general, nothing to do with the crystallography. Elastic anisotropy of crystals is
classified in the same way as elastic anisotropy of other bodies without crystal
structure. Consequently, some of the crystal structures have their counterparts
within the elastic symmetry classes, while some of them have not [11]. An exam-
ple of the latter case are crystals of hexagonal lattice symmetry. As far as they
have a 6-fold axis of symmetry, in view of Hermann-German theorem [25], in or-
der to account for all present symmetries, they must be described as elastically
transversely isotropic.

2. Kelvin moduli λI , . . . , λV I

The Kelvin moduli λI , . . . , λV I are obtained as roots of characteristic poly-
nomial, which has the form

(2.1) det(L− λIS) = λ6 + a1(L)λ5 + . . . + a5(L)λ + a6(L) = 0.

Determinant of a IV-th order tensor A is defined as follows:

(2.2) detA ≡ det(AKL) = det(νK ·A · νL),

where νK , (K = I, . . . , V I) is any orthonormal basis in S, while AKL is the
6× 6 matrix of representation of the tensor A in this basis (see Appendix). The
choice of a basis νK has no influence on the value of the coefficients ai(L) in the
Eq. (2.1); therefore, they are the invariants of L.

For the considered λ? the corresponding eigen-state ω? is derived from the
homogeneous system of 6 linear equations:

(2.3) L ·ω? = λ? =⇒ (L− λIS) ·ω? = 0

with constraint ω? · ω? = tr(ω?)2 = 1. If the basis νK = ωK , that is it
coincides with the basis of eigen-states, then the matrix LKL = ωK · L ·ωL is
diagonal.

3. Orthogonal projectors P1, . . . ,Pρ

Knowing Kelvin’s moduli λK , number ρ of which is different, one can in-
troduce some rule which orders them λ1, . . . , λρ. For example, one can number
the moduli by increasing (decreasing) values. After unique numbering of moduli,
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the corresponding orthogonal projectors Pk can be derived using the following
system of ρ tensorial equations of fourth-order [22]:

(3.1)

P1 + P2 + . . . + Pρ = IS ,

λ1P1 + λ2P2 + . . . + λρPρ = L,

...
. . .

...

λρ−1
1 P1 + λρ−1

2 P2 + . . . + λρ−1
ρ Pρ = Lρ−1,

where
Lk = L ◦ L ◦ . . . ◦ L︸ ︷︷ ︸

k times

.

Consequently, one obtains



P1

P2

...

Pρ




=




1 1 . . . 1

λ1 λ2 . . . λρ

...
...

. . .
...

λρ−1
1 λρ−1

2 . . . λρ−1
ρ




−1 


IS

L

...

Lρ−1




.

Inversion of the above matrix exists because its determinant (the Vandermonde
determinant) is equal to

∆ =
∏

ρ≥k 6=l≥1

(λk − λl)

and by definition λk 6= λl . One finds

Pk =
(L− λ1IS) ◦ . . . ◦ (L− λk−1IS) ◦ (L− λk+1IS) ◦ . . . ◦ (L− λρIS)

(λk − λ1) . . . (λk − λk−1)(λk − λk+1) . . . (λk − λρ)
.

Distributors ℵ1, . . . ,ℵ12 are parameters which enable one to specify, in a uni-
que way, the orthogonal projectors Pk in the selected basis. The form of these
functions, which would enable one to specify the projectors for all material sym-
metries, has not been proposed yet. Some proposal for orthotropic symmetry
has been derived in [15]. To this end the harmonic decomposition discussed
in [8, 26, 27] was utilized.

Using the relation (3.1)1 it can be shown that the following identity is true:

1 ·P1 · 1 + 1 ·P2 · 1 + . . . + 1 ·Pρ · 1 = 1 · IS · 1 = 3.

The above identity provides the following relation between the traces of the
eigen-states ωK , if ρ = 6:

(3.2) (trωI)2 + (trωII)2 + . . . + (trωV I)2 = 3.
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4. Symmetries of an anisotropic linear elastic material

4.1. Notation and symmetry conditions

In what follows, the following notation is used:
• Q – orthogonal group in 3-dimensional Euclidean space E3, the set of all

orthogonal tensors,
• Q+ – the group of rotations in E3, the set of all orthogonal tensors for

which detQ = 1, where Q+ ⊂ Q,
• Rφ

a – the orthogonal tensor describing the right-hand rotation around the
axis of direction a about the angle φ. For the rotation presented in Fig. 1
one obtains the following representation of Rφ

a in the basis {ei}

Rφ
a ∼




1 0 0

0 cosφ − sinφ

0 sinφ cosφ


 ,

while the corresponding orthogonal tensor in 6-dimensional space has the
following representation in poly-basis {aK} (see Appendix):

Rφ
a ∼




1 0 0 0 0 0
0 cosφ2 sinφ2 −√2 sin φ cosφ 0 0

0 sinφ2 cosφ2
√

2 sin φ cosφ 0 0

0
√

2 sin φ cosφ −√2 sinφ cosφ cos 2φ 0 0

0 0 0 0 cosφ sinφ

0 0 0 0 − sinφ cosφ




.

Hooke’s tensors are of even order, therefore one can restrict analysis only to
the rotation tensors because symmetry resulting from the mirror reflection
will be equivalent to the symmetry resulting from the rotation around the
appropriate axis through the angle π. Note that the representation of the
orthogonal tensor in six-dimensional space looses the information about
the determinant of the corresponding 3× 3 orthogonal matrix.

• Ia – the orthogonal tensor which describes the mirror reflection with re-
spect to the plane with the unit normal a = e1. For the mirror reflection
presented in Fig. 1 one obtains the following representation of Ia in {ei}:

Ia ∼




−1 0 0

0 1 0

0 0 1


 ,
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and the corresponding representation in 6-dimensional space is the same
as that for the rotation through the angle π around a = e1:

Ia ∼




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1




.

Fig. 1. Rotation and mirror reflection specified by the direction a.

Below, we explain the relation between the spectral decomposition of stiff-
ness (compliance) tensor and the well-known classification of linear elastic bodies
according to their material symmetry. As it was already discussed, if the ma-
terial enjoys some symmetry properties then the number of Kelvin moduli and
stiffness distributors decreases. The symmetry group QL of a stiffness tensor L
(a compliance tensor M) is defined as follows:

(4.1) QL = QM = {Q ∈ Q;Q ? L = L},

where Q is the orthogonal II-nd order tensor in 3-dimensional physical space. It
should be recalled that one has for Q

(4.2) QQT = QTQ = 1.

Symbol ? denotes the rotation operation for the IV-th order tensor defined in the
following way. Let {ei} be the selected orthonormal basis in E3, consequently

L = Lijklei ⊗ ej ⊗ ek ⊗ el
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and then

Q ? L = Lijkl(Qei)⊗ (Qej)⊗ (Qek)⊗ (Qel)
= LmnpqQimQjnQkpQlqei ⊗ ej ⊗ ek ⊗ el

where
Q = Qijei ⊗ ej .

The orthogonal tensor Q belongs to the symmetry group of L if the following
condition is true:

(4.3) Q ? L = L ⇔ LmnpqQimQjnQkpQlq = Lijkl.

Therefore, we have in general 21 scalar equations which impose some constraints
on the components of L for the considered Q. The classification of the linearly
elastic materials according to their symmetry includes the classical eight classes
of elastic symmetry [4, 6]. The full anisotropy (QL = {1, −1}) and the full
isotropy (QL = Q) are two extreme cases. Symmetry groups for some classes of
symmetry are contained within the symmetry group of other class. Correspond-
ing inclusion relations are schematically shown in Fig. 2.

Monoclinic

Orthotropy Trigonal

Tetragonal

Cubic Transversal

Isotropy

Anisotropy

Fig. 2. Scheme of relation between eight classes of elastic symmetry. Each arrow corresponds
to the additional symmetry conditions imposed on Hooke’s tensor.

Usually, the reduced form of the stiffness (compliance) tensor for the subse-
quent symmetry groups is derived using the relations (4.3). Then the spectral
decomposition of this reduced form is performed to specify the structural indices
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valid for the considered symmetry group. Below, we derive the form of a stiffness
tensor and the structural indices for the subsequent symmetry groups in a non-
standard way. Consider the external symmetry of the eigen-projector of L. Any
orthogonal tensor belonging to the symmetry group of Pk fulfills the condition

(4.4)
∧

Q∈QPk

Q ? Pk = Pk.

It can be shown that the symmetry group of the tensor L, QL is the common
set of symmetry groups QPk of all its projectors, namely

(4.5) QL = QP1 ∩QP2 ∩ . . . ∩QPρ.

In the components in the selected basis {ei}, relation (4.4) has the form

P (k)
mnpqQimQjnQkpQlq = P

(k)
ijkl.

If the subspace PK is one-dimensional then the symmetry condition (4.4),
together with (4.5), is equivalent to

∧

Q∈QL

Q ? (ωK ⊗ωK) = (QωKQT )⊗ (QωKQT ) = ωK ⊗ωK .

Consequently

(4.6)
∧

Q∈QL

QωKQT = ±ωK .

In components of ωK in the basis {ei}, the above equation is specified as

ωK
mnQimQjn = ±ωK

ij .

If the representation of a IV-th order tensor as a II-nd order tensor in 6-
dimensional space is used (see Appendix), then the orthogonal tensor in the
3-dimensional space can be replaced by a corresponding orthogonal tensor Q in
the 6-dimensional space, such that

Q ? L ⇔ Q?̂6L = LKL(QaK)⊗ (QaL)

and in components, for Q = QKLaK ⊗ aL, one has

(4.7) LKL = LMNQKMQLN .

In this paper, using the above conditions imposed on Pk or ωK , the specific
form of eigen-states and eigen-projectors, two structural indices, as well as the
stiffness tensor L will be derived for all 8 symmetry groups of linear elastic
material.
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4.2. Fully anisotropic material

The symmetry group of Hooke’s tensor is never empty. For full anisotropy,
that is for totally anisotropic material, a symmetry group is defined as

Qa
L = {1, −1}.

The symmetry conditions are fulfilled by any normalized set of six mutually
orthogonal symmetric II-nd order tensors

(4.8) ωK ∼




ωK
11 ωK

12 ωK
13

ωK
12 ωK

22 ωK
23

ωK
13 ωK

23 ωK
33


 , K = I, . . . , V I.

The specific form of them, that is the value of 12 stiffness distributors, depends
on the specific properties of the considered anisotropic material which have to
be established in experiments. If one of the eigenstates is purely hydrostatic,
namely

ω = ± 1√
3
1,

then material is called volumetrically isotropic [15]. Note that although the num-
ber of independent components is then reduced to 16, in general the material
may remain fully anisotropic.

Any material, which is not totally anisotropic is called a symmetric elastic
material [23]. Such material has at least one symmetry plane.

4.3. Material of monoclinic symmetry

Formonoclinic symmetry, symmetry of a prism with irregular basis, there
exists a single symmetry plane (see Fig. 3) and a symmetry group is the following:

(4.9) Qm
L = {1, −1, Ie1} ,

where Ie1 denotes the tensor describing the mirror reflection with respect to
the plane with unit normal e1. In the basis, in which e1 is specified, two angles
φ1 and φ2 are specified. Using the symmetry conditions (4.6) one obtains two
following matrix equations



−1 0 0

0 1 0

0 0 1







ωK
11 ωK

12 ωK
13

ωK
12 ωK

22 ωK
23

ωK
13 ωK

23 ωK
33







−1 0 0

0 1 0

0 0 1


 = ±




ωK
11 ωK

12 ωK
13

ωK
12 ωK

22 ωK
23

ωK
13 ωK

23 ωK
33



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which after performing the multiplications take the form



ωK
11 −ωK

12 −ωK
13

−ωK
12 ωK

22 ωK
23

−ωK
13 ωK

23 ωK
33


 =




−ωK
11 −ωK

12 −ωK
13

−ωK
12 −ωK

22 −ωK
23

−ωK
13 −ωK

23 −ωK
33




and 


ωK
11 −ωK

12 −ωK
13

−ωK
12 ωK

22 ωK
23

−ωK
13 ωK

23 ωK
33


 =




ωK
11 ωK

12 ωK
13

ωK
12 ωK

22 ωK
23

ωK
13 ωK

23 ωK
33


 .

a b

c

ap/2

a b

c

p/2p/2

a b

c

p/2p/2

a

a

c

p/2

p/2

e1

e2

e3

e1

e2

e3

e1

e2

e3

(a) (b)

(c)

Fig. 3. Schematic representation of monoclinic symmetry (a), orthotropy (b)
and tetragonal symmetry (c).

Eigen-states fulfilling the above relations are as follows (K = III, . . . , V I):

(4.10) ωI,II ∼




0 ωI,II
12 ωI,II

13

ωI,II
12 0 0

ωI,II
13 0 0


 , ωK ∼




ωK
11 0 0

0 ωK
22 ωK

23

0 ωK
23 ωK

33


 .
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Using orthonormality conditions of eigen-states ωI and ωII , the following form
of them is obtained

(4.11)

ωI ∼ 1√
2




0 sinφ cosφ

sinφ 0 0

cosφ 0 0


 ,

ωII ∼ 1√
2




0 cosφ − sinφ

cosφ 0 0

− sinφ 0 0


 .

It can be noted that after changing the basis by proper rotation around e1 about
φ3 = φ (that way we specify the third Euler angle), one arrives at

(4.12) ωI ∼ 1√
2




0 1 0

1 0 0

0 0 0


 , ωII ∼ 1√

2




0 0 1

0 0 0

1 0 0


 .

The eigen-states ωI and ωII , in the form of pure shears, are identical for any
material of monoclinic symmetry, provided a proper frame in the physical space
is used. This frame is defined by the unit normal e1 to the symmetry plane,
being the common direction of shearing for the above pure shears in the sense
discussed in [3], and two directions: e2, e3 which specify the unit normal to
the corresponding shearing planes as they were defined in [3]. The derived form
of eigen-states complies with the theorem formulated in [3] according to which
for any symmetric material, at least two eigen-states of the stiffness tensor are
pure shears. The specific form of remaining eigenstates ωK , (K = III, . . . , V I),
defined by 6 stiffness distributors, depends on the properties of the considered
material of monoclinic symmetry. Using (1.7) the representation of L in the poly-
basis {aK} composed of diads of the above selected unit vectors ei is derived as

(4.13) L ∼




L11 L12 L13 L14 0 0

L12 L22 L23 L24 0 0

L13 L23 L33 L34 0 0

L14 L24 L34 L44 0 0

0 0 0 0 L55 = λII 0

0 0 0 0 0 L66 = λI



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therefore it is specified by 12 independent components. The Kelvin moduli
λIII , . . . , λV I are obtained as eigenvalues of 4×4 upper left sub-matrix of (4.13).
An example of material of elastic monoclinic symmetry is the martensite phase,
the lower symmetry phase in CuZnAl shape memory alloy.

4.4. Orthotropic material

In the case of orthotropic material, that is the material possessing symme-
try of a prism with rectangular basis (see Fig. 3), the symmetry group includes
the elements

(4.14) Qo
L = {1, −1, Ie1 , Ie2} .

The symmetry conditions (4.6) can be imposed on the derived form of eigen-
states for the material of monoclinic symmetry as far as the symmetry group
of the latter material is included in the symmetry group of orthotropic material
(Qm

L ⊂ Qo
L, Fig. 2). Thus, any orthotropic material is the material of monoclinic

symmetry. Let us consider two groups of eigen-states obtained for material of
monoclinic symmetry. Imposing additional condition (related to the orthogonal
tensor Ie2) on the first group in (4.10), we find



1 0 0

0 −1 0

0 0 1







0 ωI,II
12 ωI,II

13

ωI,II
12 0 0

ωI,II
13 0 0







1 0 0

0 −1 0

0 0 1


 = ±




0 ωI,II
12 ωI,II

13

ωI,II
12 0 0

ωI,II
13 0 0




which after multiplications simplifies to the relations


0 −ωI,II
12 ωI,II

13

−ωI,II
12 0 0

ωI,II
13 0 0


 =




0 ±ωI,II
12 ±ωI,II

13

±ωI,II
12 0 0

±ωI,II
13 0 0


 .

They are identically true for the eigen-states (4.12), where the direction e2 agrees
with the unit normal to the shearing plane for one of these eigenstates.

Imposing additional condition on the second group of eigen-states in (4.10),
it is obtained


1 0 0

0 −1 0

0 0 1







ωK
11 0 0

0 ωK
22 ωK

23

0 ωK
23 ωK

33







1 0 0

0 −1 0

0 0 1


 = ±




ωK
11 0 0

0 ωK
22 ωK

23

0 ωK
23 ωK

33




and after multiplications, the following constraints are found



ωK
11 0 0

0 ωK
22 −ωK

23

0 −ωK
23 ωK

33


 =



±ωK

11 0 0

0 ±ωK
22 ±ωK

23

0 ±ωK
23 ±ωK

33



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which are true for the following forms of ω (K = IV, V, V I)

(4.15) ωIII ∼




0 0 0
0 0 ωIII

23

0 ωIII
23 0


 , ωK ∼




ωK
11 0 0
0 ωK

22 0
0 0 ωK

33


 .

After normalization we obtain the following eigen-states in the form of pure
shears [2] in the basis {ei} specified by three directions of orthotropy (this way
three Euler angles are specified):

(4.16)

ωI ∼ 1√
2




0 1 0

1 0 0

0 0 0


 ,

ωII ∼ 1√
2




0 0 1

0 0 0

1 0 0


 ,

ωIII ∼ 1√
2




0 0 0

0 0 1

0 1 0


 ,

and three subsequent eigen-states in the diagonal form in this basis, which after
utilizing orthonormality conditions we can present in the form [2]

ωIV ∼




cos θ1 0 0

0 sin θ1 cos θ2 0

0 0 sin θ1 sin θ2


 ,

ωV ∼




− cos θ3 sin θ1 0 0

0 cos θ1 cos θ2 cos θ3 +
− sin θ2 sin θ3

0

0 0 cos θ1 sin θ2 cos θ3 +
+ sin θ3 cos θ2




,

ωV I ∼




sin θ1 sin θ3 0 0

0 − sin θ3 cos θ1 cos θ2+
− cos θ3 sin θ2

0

0 0 − sin θ3 cos θ1 sin θ2+
+cos θ3 cos θ2




.
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For any orthotropic material there exist three uniquely defined (within a sign)
eigen-states in the form of pure shears, while the form of eigen-states ωIV,V,V I

is specified by three angles θ1, θ2, θ3 which themselves are the functions of
three stiffness distributors. They depend on the properties of the considered
material of orthotropic symmetry. In the paper [15] it was proposed to define
these distributors in the following way1)

(4.17) η1 = trh2
V I , η2 =

dethV I

(trωV I)3
, η3 =

tr(ω2
V IωV )

trωV
,

where hK are deviators of ωK . The above definition must be modified in the case
when η1 = 0 or two eigenvalues of ωV I are equal to each other correspondingly
in the form

(4.18) η∗3 = (dethV )2, η∗∗3 =
dethV

(trwV )3
.

The representation of L in poly-basis {aK} constructed with use of orthotropy
directions {ek} is

(4.19) L ∼




L11 L12 L13 0 0 0

L12 L22 L23 0 0 0

L13 L23 L33 0 0 0

0 0 0 L44 = λIII 0 0

0 0 0 0 L55 = λII 0

0 0 0 0 0 L66 = λI




therefore it is specified by 9 independent components. The Kelvin moduli
λIV , . . . , λV I are obtained as eigenvalues of 3×3 upper left sub-matrix of (4.19).
The orthotropic symmetry is characteristic for metal sheets with texture result-
ing from rolling process.

For the above two classes of symmetry one obtains one-dimensional eigen-
subspaces PK .

4.5. Material of trigonal symmetry

Material of trigonal symmetry (symmetry of a cube uniformly elongated
along one of its main diagonals, see Fig. 5, where the diagonal is coaxial with
the main symmetry axis e1) has the following symmetry group:

1)In [15] it was assumed that Kelvin moduli λK are ordered in view of increasing value of
the corresponding (trωK)2.
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(4.20) Q3t
L =

{
1, −1, R2π/3

e1 , Ie2

}
,

where R2π/3
e1 denotes the rotation around the axis e1 through the angle 2π/3.

It should be noted that the monoclinic symmetry group Qm
L ⊂ Q3t

L if the
direction e1 is replaced by e2. For the symmetric direction specified in this way
with respect to the basis {ei}, two groups of eigen-states in (4.10) have the
representations (K = III, . . . , V I)

(4.21) ωI,II ∼




0 ωI,II
12 0

ωI,II
12 0 ωI,II

23

0 ωI,II
23 0


 , ωK ∼




ωK
11 0 ωK

13

0 ωK
22 0

ωK
13 0 ωK

33


 .

Fulfilling the additional symmetry condition (4.6) related to the orthogonal
tensor R2π/3

e1 for the second group of eigen-states (4.21), we derive the constraints




1 0 0

0 −1
2

−
√

3
2

0
√

3
2

−1
2







ωK
11 0 ωK

13

0 ωK
22 0

ωK
13 0 ωK

33







1 0 0

0 −1
2

√
3

2

0 −
√

3
2

−1
2




= ±




ωK
11 0 ωK

13

0 ωK
22 0

ωK
13 0 ωK

33


,

which after multiplications take the form



ωK
11 −

√
3

2
ωK

13 −1
2
ωK

13

−
√

3
2

ωK
13

1
4
(ωK

22 + 3ωK
33)

√
3

4
(ωK

33 − ωK
22)

−1
2
ωK

13

√
3

4
(ωK

33 − ωK
22)

1
4
(3ωK

22 + ωK
33)




= ±




ωK
11 0 ωK

13

0 ωK
22 0

ωK
13 0 ωK

33


 .

The above relations can be fulfilled only by two linearly independent unit eigen-
states with the below representation in the basis {ei}2)

(4.22) ωV,V I ∼




ωV,V I
11 0 0

0 ωV,V I
22 0

0 0 ωV,V I
22


 .

2)As it can be noticed in Fig. 5, the direction e2 can be specified with the accuracy to the
rotation about 2π/3 around e1.
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They define two one-dimensional eigen-subspaces. After normalization and ap-
plication of orthogonality conditions, they take the form

(4.23)

ωV ∼ 1√
2




√
2 sin φ 0 0

0 − cosφ 0

0 0 − cosφ


 ,

ωV I ∼ 1√
2




√
2 cos φ 0 0

0 sinφ 0

0 0 sinφ


 .

In general, the above eigen-states are not pure shears.
Imposing the symmetry condition (4.6) on the first group of eigenstates (4.21)

we find only trivial solution ω = 0, which of course is unacceptable. Conse-
quently, the remaining eigen-subspaces must be more than one-dimensional and
their form will be found using the symmetry condition (4.4). Any IV-th order
tensor orthogonal to the eigen-projectors composed of eigen-states (4.23) has the
representation

P ∼




0 0 0 0 0 0

0 −P23 P23 P24 P25 P26

0 P23 −P23 −P24 −P25 −P26

0 P24 −P24 P44 P45 P46

0 P25 −P25 P45 P55 P56

0 P26 −P26 P46 P56 P66




.

The representation of a orthogonal tensor R2π/3
e1 in the six-dimensional space is

the following one

R2π/3
e1 ∼




1 0 0 0 0 0

0
1
4

3
4

√
6

4
0 0

0
3
4

1
4

−
√

6
4

0 0

0 −
√

6
4

√
6

4
−1

2
0 0

0 0 0 0 −1
2

√
3

2

0 0 0 0 −
√

3
2

−1
2




.
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If we perform the rotation operation for the tensor P using the relation (4.7),
then we find the following non-zero components of the rotated tensor R2π/3

e1 ?̂6P:

P̃22 =
1
8
(−2P23 − 2

√
6P24 + 3P44),(4.24)

P̃23 =
1
8
(2P23 + 2

√
6P24 − 3P44),(4.25)

P̃24 =
1
8
(−2

√
6P23 − 4P24 −

√
6P44),(4.26)

P̃25 =
1
8
(2P25 − 2

√
3P26 −

√
6P45 + 3

√
2P46),(4.27)

P̃26 =
1
8
(2
√

3P25 + 2P26 − 3
√

2P45 −
√

6P46),(4.28)

P̃33 =
1
8
(−2P23 − 2

√
6P24 + 3P44),(4.29)

P̃34 =
1
8
(2
√

6P23 + 4P24 +
√

6P44),(4.30)

P̃35 =
1
8
(−2P25 + 2

√
3P26 +

√
6P45 − 3

√
2P46),(4.31)

P̃36 =
1
8
(−2

√
3P25 − 2P26 + 3

√
2P45 +

√
6P46),(4.32)

P̃44 =
1
4
(−6P23 + 2

√
6P24 + P44),(4.33)

P̃45 =
1
4
(
√

6P25 − 3
√

2P26 + P45 −
√

3P46),(4.34)

P̃46 =
1
4
(3
√

2P25 +
√

6P26 +
√

3P45 + P46),(4.35)

P̃55 =
1
4
(P55 − 2

√
3P56 + 3P66),(4.36)

P̃56 =
1
4
(
√

3P55 − 2P56 −
√

3P66),(4.37)

P̃66 =
1
4
(3P55 + 2

√
3P56 + P66).(4.38)

After algebraic manipulations, setting P̂KL = PKL, the representations of two
projectors in the poly-basis {aI} are found, namely
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PK ∼




0 0 0 0 0 0

0 (ωK
23)

2 −(ωK
23)

2 0
√

2ωK
12ω

K
23 0

0 −(ωK
23)

2 (ωK
23)

2 0 −√2ωK
12ω

K
23 0

0 0 0 2(ωK
23)

2 0 2ωK
12ω

K
23

0
√

2ωK
12ω

K
23 −√2ωK

12ω
K
23 0 2(ωK

12)
2 0

0 0 0 2ωK
12ω

K
23 0 2(ωK

12)
2




.

They project into two two-dimensional subspaces PI,II and PIII,IV of deviatoric
tensors. Using the orthogonality and after normalization of the elements, we
arrive at the following representations of these projectors

PI,II ∼ 1
2




0 0 0 0 0 0

0 (sin ρ)2 −(sin ρ)2 0 −
√

2
2

sin 2ρ 0

0 −(sin ρ)2 (sin ρ)2 0
√

2
2

sin 2ρ 0

0 0 0 2(sin ρ)2 0 − sin 2ρ

0 −
√

2
2

sin 2ρ

√
2

2
sin 2ρ 0 2(cos ρ)2 0

0 0 0 − sin 2ρ 0 2(cos ρ)2




,(4.39)

PIII,IV ∼ 1
2




0 0 0 0 0 0

0 (cos ρ)2 −(cos ρ)2 0
√

2
2

sin 2ρ 0

0 −(cos ρ)2 (cos ρ)2 0 −
√

2
2

sin 2ρ 0

0 0 0 2(cos ρ)2 0 sin 2ρ

0
√

2
2

sin 2ρ −
√

2
2

sin 2ρ 0 2(sin ρ)2 0

0 0 0 sin 2ρ 0 2(sin ρ)2




.(4.40)

Any second-order tensor belonging to PI,II and PIII,IV , respectively, is devia-
toric and has the following representation in the basis {ei} (ω any second order
tensor):

(4.41) ωI,II =
PI,II ·ω
|PI,II ·ω| ∼

1√
2




0 cosϕ cos ρ sinϕ cos ρ

cosϕ cos ρ − sinϕ sin ρ − cosϕ sin ρ

sinϕ cos ρ − cosϕ sin ρ sinϕ sin ρ



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and

(4.42) ωIII,IV =
PIII,IV ·ω
|PIII,IV ·ω| ∼

1√
2




0 cosϕ sin ρ sinϕ sin ρ

cosϕ sin ρ sinϕ cos ρ cosϕ cos ρ

sinϕ sin ρ cosϕ cos ρ − sinϕ cos ρ


 ,

where ϕ ∈ 〈0, 2π〉. The bases in those sub-spaces can be composed of two ele-
ments: ωK(ϕ1) and ωK(ϕ2), where ϕ2 = ϕ1 + π/2. The simplest bases in PI,II

and PIII,IV is obtained setting φ1 = 0 and φ2 = π/2. Note that among infi-
nite number of elements (4.41) and (4.42), one can indicate in both cases three
which are pure shears. They are specified by angles ϕ being the solutions of two
trigonometric equations

det ωI,II = 0 ⇔ cos2 ρ sinϕ(sin ρ− cos2 ϕ(3 sin ρ + cos ρ)) = 0,

detωIII,IV = 0 ⇔ sin2 ρ sinϕ(cos2 ϕ(3 cos ρ + sin ρ)− cos ρ) = 0.

Therefore, for any elastic material of trigonal symmetry at least six of its eigen-
states are the pure shears [3]. Of course, not all of them are pairwise orthogonal
as far as some of them correspond to the same eigen-value (the same Kelvin
modulus).

The specific form of PI,II and PIII,IV depends on the angle ρ being the
function of one stiffness distributor. The value of this distributor is material
characteristic for trigonal symmetry. Similarly, the specific form of eigen-states
ωV and ωV I depends on the angle φ which is the function of the second stiffness
distributor (compare [25]). One can define this distributor as follows:

η2 =
dethV I

(trωV I)3
,

where hV I is deviator of ωV I .

The considered material of trigonal symmetry is defined by
1. 4 Kelvin moduli: λ1 = λI,II , λ2 = λIII,IV , both of multiplicity 2, and

λ3 = λV , λ4 = λV I of multiplicity 1.
2. Two stiffness distributors which specify angles ρ and φ.
3. 3 Euler angles which orient symmetry axis e1 and the symmetry plane

e2 with respect to laboratory.
The unique spectral decomposition takes the form

(4.43) L = λ1P1(ρ) + λ2P2(ρ) + λ3P3(φ) + λ4P4(φ),

where
P1(ρ) = PI,II(ρ), P2(ρ) = PIII,IV (ρ),

P3(φ) = ωV (φ)⊗ωV (φ), P4(φ) = ωV I(φ)⊗ωV I(φ).
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Using (4.43) the stiffness tensor L for the material of trigonal symmetry in
the poly-basis aK composed of diads of the basis ei, has the representation

(4.44) L ∼




L11 L12 L12 0 0 0

L12 L22 L23 0 L25 0

L12 L23 L22 0 −L25 0

0 0 0 L22 − L23 0
√

2L25

0 L25 −L25 0 L55 0

0 0 0
√

2L25 0 L55




therefore it is specified by 6 independent components. It can be shown that the
Kelvin moduli λV = λ3 and λV I = λ4 are obtained as eigenvalues of the following
2× 2 matrix

(4.45)
1
3

[
L11 + 2(2L12 + L23 + L33)

√
2(L11 + L12 − (L22 + L23))√

2(L11 + L12 − (L22 + L23)) 2L11 − 4L12 + L23 + L22

]
,

while the Kelvin λI,II = λ1 and λIII,IV = λ2 of multiplicity 2 can be derived as
eigenvalues of the following 2× 2 matrix:

(4.46)

[
L22 − L23

√
2L25√

2L25 L55

]
.

Single crystal of aluminum oxide Al2O3, ceramic material, has trigonal sym-
metry.

4.6. Material of tetragonal symmetry

Material of tetragonal symmetry (symmetry of a prism of square basis,
see Fig. 3) is characterized by the following symmetry group

(4.47) Q4t
L =

{
1, −1, Ie1 , Ie2 , Rπ/2

e1

}
.

Similarly like in the case of trigonal symmetry it is impossible to fulfill the sym-
metry conditions (4.6) by 6 mutually orthogonal eigen-states. Using the results
for otrhotropic material, it can be checked that the additional condition of sym-
metry imposed by Rπ/2

e1 is fulfilled3) only by four eigen-tensors. Two of them are
pure shears which have the following representations in basis {ei}:

3)The eigen-states of the material of tetragonal symmetry can be derived by imposing the
additional symmetry condition on the eigen-states of orthotropic material because Qo

L ⊂ Q4t
L ,

Fig. 2.
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(4.48) ωIII ∼ 1√
2




0 0 0

0 0 1

0 1 0


 , ωIV ∼ 1√

2




0 0 0

0 1 0

0 0 −1


 ,

while other two eigen-states have the form

(4.49) ωV,V I ∼




ωV,V I
11 0 0

0 ωV,V I
22 0

0 0 ωV,V I
22


 .

They define four one-dimensional subspaces PK ,K = III, IV, V, V I. Moreover,
from the symmetry conditions (4.4) we obtain the following projectorPI,II which
projects into two-dimensional subspace PI,II of pure shears with common shear
direction. Its representation in the orthonormal poly-basis {aI} composed of
{ei ⊗ ej} (see Appendix) is as follows:

(4.50) PI,II ∼




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1




.

Any unit element of this two-dimensional subspace can be written in the form

(4.51) ωI,II ∼ 1√
2




0 sinϕ cosϕ

sinϕ 0 0

cosϕ 0 0


 , ϕ ∈ 〈0, 2π〉.

An orthonormal basis in this subspace is composed of two tensors ωI,II(ϕ1) and
ωI,II(ϕ2), such that ϕ2 = ϕ1 + π/2.

For any material of tetragonal symmetry we have obtained two uniquely
specified (within a sign) eigen-states ωIII and ωIV as well as the uniquely
defined projector PI,II . The specific form of ωV and ωV I depends on the value
of one stiffness distributor which is the material characteristic for the considered
material. Using the result of [15], this distributor can be defined as

(4.52) η = η2 =
dethV I

(trωV I)3
.
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It should be noted that for the material of tetragonal symmetry the direction
e1 is uniquely defined, while the direction e2 can be specified only with accuracy
to the angle π/4.

The considered elastic material of tetragonal symmetry is specified by
1. 5 Kelvin moduli: λ1 = λI,II of multiplicity 2, λ2 = λIII , λ3 = λIV

λ4 = λV and λ5 = λV I of multiplicity 1.
2. One stiffness distributor η which specifies angle φ.
3. 3 Euler angles which orient symmetry axis e1 and the symmetry plane

e2 with respect to laboratory.
The unique spectral decomposition takes the form

(4.53) L = λ1P1 + λ2P2 + λ3P3 + λ4P4(φ) + λ5P5(φ)

where

P1 = PI,II , P2 = ωIII ⊗ωIII , P3 = ωIV ⊗ωIV

and
P4(φ) = ωV (φ)⊗ωV (φ) , P5(φ) = ωV I(φ)⊗ωV I(φ).

The representation of the stiffness tensor in poly-basis aK for the material of
tetragonal symmetry has the form similar to orthotropic material with additional
relations

(4.54) L13 = L12, L33 = L22, L66 = L55;

therefore, it is specified by 6 independent components. The Kelvin moduli depend
on LKL as follows:

(4.55) λI,II = λ1 = L55, λIII = λ2 = λ44, λIV = λ3 = L22 − L23

and λV = λ4 and λV I = λ5 are found as eigenvalues of matrix (4.45). The
stiffness distributor η is specified by components of L as follows

(4.56) η =
1

27
√

2
L12

L11 − λV

,

where LKL denote components of matrix (4.45), while λV is taken as a minimum
(a maximum) of its eigenvalues if L11 > L22 (L11 < L22). The latter specification
ensures that (trωV I)2 > (trωV )2.

As an example of material of tetragonal symmetry, the γ-TiAl intermetallic
is analyzed in Subsec. 4.10. Tetragonal symmetry has also a single crystal of
martensitic phase of ferromagnetic shape memory alloy NiMnGa.
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4.7. Transversely isotropic material

Material of transversal isotropy (cylindrical symmetry presented in Fig. 4)
has the following symmetry group (note that Q4t

L ⊂ Qt
L):

(4.57) Qt
L =

{
1, −1, Ie1 , Ie2 , Rφ

e1

}
,

where the orthogonal tensor Rφ
e1 describes the rotation around the axis e1

through any angle φ. The symmetry condition (4.6) for this rotation tensor is
fullfilled by two eigen-states (4.49) valid for tetragonal symmetry, which describe
two one-dimensional subspaces PV and PV I . Furthermore, the symmetry condi-
tion (4.4) is fullfilled for projector PI,II specified by (4.50) and another projector
PIII,IV , both projecting into two 2-dimensional subspaces of pure shears. The
projector PIII,IV has the representation

(4.58) PIII,IV ∼ 1
2




0 0 0 0 0 0

0 1 −1 0 0 0

0 −1 1 0 0 0

0 0 0 2 0 0

0 0 0 0 0 0

0 0 0 0 0 0




e2
e3

e2
e1

e3

e1

e2 e3

(a)

(b)

Fig. 4. Schematic representation of transversely isotropic material (a)
and isotropic material (b).



172 K. KOWALCZYK–GAJEWSKA, J. OSTROWSKA–MACIEJEWSKA

written in the poly-basis {aI}. Any unit element of the two-dimensional subspace
PIII,IV can be specified in the form

(4.59) ωIII,IV ∼ 1√
2




0 0 0

0 cosψ sinψ

0 sinψ − cosψ


 , ψ ∈ 〈0, 2π〉.

Orthonormal basis in this subspace is composed of two tensors ωIII,IV (ψ1) and
ωIII,IV (ψ2), such that ψ2 = ψ1 + π/2.

It should be underlined that the representation of the eigen-states ωV,V I and
the projectors PI,II and PIII,IV is the same in any basis in which the direction
e1 is coaxial with the material symmetry direction, therefore in order to specify
the orientation of material sample with respect to the laboratory it is sufficient
to specify two Euler angles φ1 and φ2.

For any transversely isotropic material one obtains two uniquely specified
eigen-projectors PI,II and PIII,IV . The specific form of two eigen-states ωV

and ωV I , similarly as for the material of tetragonal symmetry depends on the
stiffness distributor (4.52), the value of which is the material characteristic for
the analyzed material (compare [12]).

Note that we can obtain transversely isotropic material considering also the
material of trigonal symmetry if we set the angle ρ = 0. In such a case the
projector P1 = PI,II project into the space plane deviators (4.59) (they are the
pure shears with common shearing plane e1) while the projector P2 = PIII,IV

project into the space of pure shears (4.51) with common shearing direction e1.

The considered transversely isotropic material is defined by
1. 4 Kelvin moduli: λ1 = λI,II , λ2 = λIII,IV , both of multiplicity 2, and

λ3 = λV , λ4 = λV I of multiplicity 1.
2. One stiffness distributor η which specifies angle φ.
3. 2 Euler angles which orient symmetry axis e1 with respect to laboratory.

The unique spectral decomposition takes the form

(4.60) L = λ1P1 + λ2P2 + λ3P3(φ) + λ4P4(φ)

where P1 = Ptrig
1 (0) and P2 = Ptrig

2 (0) while

P3(φ) = ωV (φ)⊗ωV (φ), P4(φ) = ωV I(φ)⊗ωV I(φ)

The representation of the stiffness tensor for the material of transversal
isotropy in poly-basis aK has the representation similar to orthotropic mate-
rial with relations (4.54), valid for the tetragonal symmetry and additionally
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(4.61) L44 = L22 − L12,

therefore, it is specified by 5 independent components. Kelvin moduli λK and
stiffness distributor η are found as for the material of tetragonal symmetry,
Eqs. (4.55)–(4.56), where in view of relation (4.61) one has λIII = λIV .

There are many engineering materials which can be modelled as transversely
isotropic. The classical example is the composite with the reinforcement in the
form of elongated aligned fibers [5]. Moreover, as it was already signalled in
the introduction, all materials for which the single crystal has the hexagonal
symmetry, in view of their elastic anisotropy are transversely isotropic. Examples
of such metals are analyzed in Subsec. 4.10.

4.8. Material of cubic symmetry

Material of cubic symmetry (symmetry of a cube, Fig. 5) has the following
symmetry group (Q4t

L ⊂ Qc
L):

(4.62) Qk
L =

{
1, −1, Ie1 , Rkπ/2

e1 , Rkπ/2
e2

}
.

The group of trigonal symmetry is also the subset of the cubic symmetry group,
however, the symmetry axis is then coaxial with one of the main diagonals of
a cube span by the vectors ei.

2p/3

e1

e2

e3

c

Fig. 5. Schematic representation of a material of cubic symmetry. Note that a crystal
elongated along the main diagonal c would have trigonal symmetry with the main axis

of symmetry coaxial with c.
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From the symmetry condition (4.6) one eigen-state is obtained

(4.63) ωV I ∼ 1√
3




1 0 0
0 1 0
0 0 1


 ,

which, as it is easy to note, describes one-dimensional subspace of hydrostatic
tensors. From the symmetry conditions (4.4) we obtain two eigen-projectors
(compare [19]). A projector PI,II,III (again in poly-basis {aI})

(4.64) PI,II,III ∼




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




projects into the 3-dimensional deviatoric subspace PI,II,III . Any unit element
(not necessarily pure shear) of this subspace can be represented as follows:

(4.65) ωI,II,III ∼ 1√
2




0 sinϕ cosψ sinϕ sinψ

sinϕ cosψ 0 cosϕ

sinϕ sinψ cosϕ 0


 ,

where ψ ∈ 〈0, 2π〉 and ϕ ∈ 〈0, π〉. The second projector PIV,V has the form

(4.66) PIV,V ∼ 1
3




2 −1 −1 0 0 0

−1 2 −1 0 0 0

−1 −1 2 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




and projects into two-dimensional deviatoric subspace PIV,V . Any unit element
of this subspace can be represented as follows:

(4.67) ωIV,V ∼
√

2√
3




cos θ 0 0

0 cos
(

θ +
2π

3

)
0

0 0 cos
(

θ − 2π

3

)




,
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where θ ∈ 〈0, 2π〉. Orthonormal basis in this subspace can be composed of any
two tensors ωIV,V (θ1) and ωIV,V (θ2) for which θ2 = θ1 + π/2.

For any material of cubic symmetry one obtains two uniquely defined pro-
jectors PI,II,III and PIV,V as well as one uniquely specified (within a sign)
eigen-state ωV I . The decomposition of the space S into three mutually orthog-
onal eigen-subspaces is identical for any material of cubic symmetry (there are
no stiffness distributors). Material of trigonal symmetry reduces to the material
of cubic symmetry if we set

φ = φ0, ρ = ρ0, λtrig
1 = λtrig

3 = λcube
1

and tanφ0 = tan ρ0 =
√

2. Note that in this case the stiffness distributor η2 = 0.

The considered material of cubic symmetry is specified by
1. 3 Kelvin moduli: λ1 = λI,II,III of multiplicity 3, λ2 = λIV,V of multi-

plicity 2 and λ3 = λV I of multiplicity 1.
2. 0 stiffness distributors.
3. 3 Euler angles which orient symmetry axes ei with respect to laboratory.

The unique spectral decomposition takes the form

(4.68) L = λ1P1 + λ2P2 + λ3P3,

where
P1 = IS −K, P2 = K− IP , P3 = IP =

1
3
1⊗ 1

and K =
3∑

i=1
ei ⊗ ei ⊗ ei ⊗ ei.

The representation of the stiffness tensor for the material of cubic symmetry
has the form similar to an orthotropic material with additional relations between
components, namely

(4.69) L23 = L13 = L12, L33 = L22 = L11, L66 = L55 = L44,

where
λV I = λ3 = L11 + 2L12, λIV,V = λ2 = L11 − L12

and
λI,II,III = λ1 = L44,

therefore, it is specified by 3 independent components. Single crystals of Cu or Al
are of cubic symmetry. Austenite phase, high-symmetry phase in shape memory
alloys, e.g. NiTi, CuZnAl, NiMnGa, usually exhibit cubic symmetry.



176 K. KOWALCZYK–GAJEWSKA, J. OSTROWSKA–MACIEJEWSKA

4.9. Isotropic material

As it was already stated in Subsec. 4.1, the symmetry group of such material
is the whole orthogonal group Q. For isotropic material (Fig. 4) fulfillment
of condition (4.6) leads to the hydrostatic eigen-state (4.63), while symmetry
condition (4.4) leads to the projector being the sum of projectors (4.64) and
(4.66) derived for the cubic symmetry, namely

(4.70) Pd = PI,II,III + PIV,V = I− 1
3
1⊗ 1.

This projector projects the II-nd order tensor into the 5-dimensional subspace
of deviators. Its representation in the poly-basis {aI} composed of diads of basis
vectors of any orthonormal basis {ei} is the same and has the form

(4.71) Pd ∼ 1
3




2 −1 −1 0 0 0

−1 2 −1 0 0 0

−1 −1 2 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3




.

The considered isotropic material is specified by
1. 2 Kelvin moduli: λ1 = λI,II,III,IV,V of multiplicity 5 and λ2 = λV I of

multiplicity 1.
2. 0 stiffness distributors.
3. 0 Euler angles (they are not needed because all material directions are

equivalent).
The unique spectral decomposition takes the form

(4.72) L = λ1P1 + λ2P2,

where
P1 = Pd = IS − IP , P2 = IP =

1
3
1⊗ 1.

The representation of the stiffness tensor for the isotropic material is obtained
from the stiffness tensor for cubic symmetry with additional relation

(4.73) L44 = L11 − L12 = λI,II,III,IV,V = λ1;

therefore, it is specified by 2 independent components.
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In Table 1 I and II structural index is provided for all 8 symmetry groups.
In [14] the structural indices have been derived for the volumetrically isotropic
materials (that is with the so-called Burzyński constraint) for all elastic sym-
metry groups. For such materials, the hydrostatic tensor (4.63) is one of the
eigen-states. It results in reduction of the number of stiffness distributors. Note
that for such materials the elasticity tensor is coaxial with the isotropic elasticity
tensor.

Table 1. I and II-structural index for all symmetry classes of linear elastic
materials.

Symmetry group I structural index II structural index
Number

of parameters

full anisotropy 〈1 + 1 + 1 + 1 + 1 + 1〉 [6 + 12 + 3] 21

monoclinic symmetry
(symmetry of a prism
with irregular basis)

〈(1 + 1 + 1 + 1) + 1 + 1〉 [6 + 6 + 3] 15

orthotropy
(symmetry of a prism

with a rectangular basis)
〈(1 + 1 + 1) + 1 + 1 + 1〉 [6 + 3 + 3] 12

trigonal symmetry
(symmetry of

an elongated cube)
〈(1 + 1) + (2 + 2)〉 [4 + 2 + 3] 9

tetragonal symmetry
(symmetry of a prism
with a square basis)

〈(1 + 1) + 1 + 1 + 2〉 [5 + 1 + 3] 9

transversal symmetry
(cylindrical)

〈(1 + 1) + 2 + 2〉 [4 + 1 + 2] 7

cubic symmetry
(symmetry of a cube)

〈1 + 2 + 3〉 [3 + 0 + 3] 6

isotropy 〈1 + 5〉 [2 + 0 + 0] 2

4.10. Examples

We apply the derived formulae for assessment of intensity of an elastic aniso-
tropy of single crystals of selected metals and alloys. The intensity of anisotropy
is here intuitively meant as a departure of the material behaviour from the
isotropic one, i.e. strong variation of elastic properties depending on the direction
in which they are measured. More information concerning this issue can be found
e.g. in [18, 20, 24]. It should be underlined that in general, the intensity of an
anisotropy is not equivalent to the notion of low or high symmetry of material.
Material of high symmetry (e.g. cubic) can exhibit strong anisotropy, e.g. strong
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variation of directional Young modulus [19] and vice versa: the anisotropy of
material of low symmetry can be weak.

In Table 2 the independent components of the elasticity tensor for single crys-
tals of selected materials are collected. The hcp materials (Mg, Zn, Zr, Ti metals
and α2-Ti3Al intermetallic) exhibit the hexagonal lattice symmetry, therefore,
the stiffness and compliance tensors have the form equivalent to the transversal
isotropy case with 5 independent components in anisotropy axes, Subsec. 4.7.
In the case of crystal of tetragonal symmetry (γ-TiAl intermetallic) one has 6
independent components, Subsec. 4.6. High symmetry metals such as copper and
aluminum are fcc materials of cubic symmetry with three independent compo-
nents of L.

Table 2. Elastic constants [GPa] of single crystals for selected metals
and alloys of high specific stiffness and some fcc materials

(axis 1 is the main symmetry axis).

Material L2222 L2233 L1122 L1111 L1212 L3232

Mg [1] 59.3 25.7 21.4 61.5 16.4

Zn [1] 163.7 36.4 53.0 63.5 38.8

Zr [30] 143.5 72.5 65.4 164.9 32.1

Ti [29, 31] 163.9 91.3 68.9 181.6 47.2

α2-Ti3Al [31, 21] 175 88.7 62.3 220 62.6

γ-TiAl[21] 183 74.1 74.4 178 105 78.4

Cu [1] 171.0 122.0 69.1

Al [1] 186 157 42

In Table 3 we provide the invariants resulting from spectral decomposition
of the corresponding elasticity tensors for these materials [13] (relation between
Lijkl and LKL components is specified in the Appendix by (A.2)). The following
conclusions result from the analysis of this table:

• All analyzed metals and alloys, with exception of Zn, are close to be a vol-
umetrically isotropic materials (ξ is close to zero). Note that Cu and Al,
being cubic materials, are volumetrically isotropic exactly.

• In view of above property, the intensity of elastic anisotropy4) can be as-
sessed comparing the Kelvin moduli λI , λII , ..., λV , or more specifically
their properly defined ratios, e.g λK/λmax where λmax = max{λI , . . . , λV }.
For example, one observes that elastic anisotropy of Mg or Al crystals
is not strong and it is strong for Zn or Cu. Note that introduction of
such indicators of the intensity of the elastic anisotropy generalizes the

4)Note that if ξ = 0 and λI = λII = ... = λV , the material is isotropic.



REVIEW ON SPECTRAL DECOMPOSITION OF HOOKE’S TENSOR ... 179

anisotropy factor introduced for cubic crystals by Zener [32]: A = (L1111−
L1122)/(2L1212). As it could be easily verified, this factor is the ratio of de-
viatoric Kelvin moduli of cubic crystal, namely A = λcub

2 /λcub
1 .

Table 3. Kelvin moduli λK [GPa], a stiffness distributor ξ3 =
√

2η (Eq. (4.52))
and Φ = arctan(3ξ) obtained by spectral decomposition of the local elasticity

tensor for single crystals of selected metals and alloys [13].

Material λV I λV λIV λIII λII = λI ξ Φ [o]

Mg 105.7 40.8 33.6 32.8 −0.0051 −0.87
Zn 233.2 30.4 127.3 77.6 −0.0674 −11.43
Zr 286.4 94.5 71.0 64.2 0.0117 2.01

Ti 322.6 114.2 72.6 94.4 −0.0035 −0.61
α2-Ti3Al 332.6 151.1 86.4 125.2 0.0161 2.77

γ-TiAl 330.0 105.1 108.9 156.8 210 −0.0033 −0.56
Cu 415.0 49.0 138.2 0 0

Al 228.9 46.5 56.6 0 0

5. Conclusions

In the paper, the spectral theorem for the elasticity tensor has been thor-
oughly discussed. The main aim of the work was the clarification of the issue
of invariance of the spectral decomposition. Therefore, the forms of the decom-
position for all elastic symmetry groups have been derived in an original way
by imposing the symmetry conditions upon the orthogonal projectors, instead
of the stiffness tensor itself. Thanks to that, the uniqueness of the orthogonal
projectors for the considered Hooke’s tensor in contrast to the non-uniqueness of
eigen-states has been demonstrated. For completeness of the review, the number
of independent eigenvalues (Kelvin moduli) and the corresponding orthogonal
projectors have been explicitly outlined for each elastic symmetry class. Finally,
the spectral decomposition of the stiffness tensor has been derived for single
crystals of the selected metals and alloys.
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Appendix

The space S of symmetric second-order tensors possesses all the properties of
the six-dimensional Euclidean space with the scalar product defined as follows:

∧

a,b∈S
a · b = tr(ab) = aijbij ,

where aij , bij , i, j = 1, 2, 3 are components of tensors a and b in some or-
thonormal basis {ei} in the three-dimensional physical space. Therefore, any
second-order tensor has all the properties of the vector in the six-dimensional
Euclidean space.

Due to this property of S it is possible to select in S a subset of six mutually
orthogonal and normalized tensors {aK}, K = I, . . . , V I which constitute the
basis. One of the possible bases is the following orthonormal subset of basis diads
{ei ⊗ ej} of the form:

aI = e1 ⊗ e1 aIV =
1√
2
(e2 ⊗ e3 + e3 ⊗ e2),

aII = e2 ⊗ e2, aV =
1√
2
(e1 ⊗ e3 + e3 ⊗ e1),

aIII = e3 ⊗ e3, aV I =
1√
2
(e2 ⊗ e1 + e1 ⊗ e2).

A basis in the six-dimensional space is called a poly-basis. In the above poly-
basis, any symmetric tensor of the second order is specified in the following way:

a = aijei ⊗ ej = aKaK , K = I, . . . , V I, where a · b = aKbK

and relations between representations aij and aK are given by

(A.1)
aI = a11, aII = a22, aIII = a33,

aIV =
√

2a23, aV =
√

2a13, aV I =
√

2a12.

Consequently, the linear projection from the space S into S treated as the six-
dimensional Euclidean space is described by the second-order tensor belonging to
tensorial product S ⊗S. This reasoning brings us to conclusion that the fourth-
order tensor A that represents this projection in the three-dimensional physical
space has all the properties of the second-order tensor in the six-dimensional
Euclidean space. Therefore, one can write

A = Aijklei ⊗ ej ⊗ ek ⊗ el = AKLaK ⊗ aL.
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The set of all basis diads {aI ⊗ aJ} is the basis in the space S ⊗S. Components
AKL depend on components Aijkl of the IV -th order tensor A in the basis {ei}
in the physical space, in the following way:

(A.2) [AKL] =




A1111 A1122 A1133

√
2A1123

√
2A1113

√
2A1112

A2211 A2222 A2233

√
2A2223

√
2A2213

√
2A2212

A3311 A3322 A3333

√
2A3323

√
2A3313

√
2A3312

√
2A2311

√
2A2322

√
2A2333 2A2323 2A2313 2A2312

√
2A1311

√
2A1322

√
2A1333 2A1323 2A1313 2A1312

√
2A1211

√
2A1222

√
2A1233 2A1223 2A1213 2A1212




.

The following products can be obtained in two alternative, but fully equiva-
lent ways (a,b ∈ S; A,B,C ∈ S ⊗ S):

a · b = aijbij = aKbK ,

b = A · a ⇔ bij = Aijklakl or bK = AKLaL,

D = A ◦B ⇔ Dijkl = AijmnBmnkl or DKL = AKMBML,

where aij , bij , Aijkl, Bijkl, Dijlk and aK , bK , AKL, BKL, DKL are related by
Eqs. (A.1) and (A.2).

It should be stressed that, due to the fact that the tensor A represents linear
projection between spaces of the symmetric second-order tensors, one obtains
Aijkl = Ajikl = Aijlk. Note that in the case of the stiffness tensor L and the
compliance tensor M, additionally one has to do with diagonal symmetry, AKL =
ALK (Aijkl = Aklij).
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