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The spectral decomposition of elasticity tensor for all symmetry groups of a linearly elastic
material is reviewed. In the paper it has been derived in non-standard way by imposing the
symmetry conditions upon the orthogonal projectors instead of the stiffness tensor itself. The
numbers of independent Kelvin moduli and stiffness distributors are provided. The correspond-
ing representation of the elasticity tensor is specified.
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1. INTRODUCTION

This work is devoted to the review on the spectral decomposition of the elas-
ticity tensor (Hooke’s tensor). Possibility of application of the spectral theorem
within this context was first noticed by Lord Kelvin (W. THOMPSON) in 1856
[10]. Then the idea was forgotten and rediscovered by RYCHLEWSKI in 1983 [22]
and independently by MEHRABADI and COWIN in 1990 [7]. The consequences of
the theorem have been thoroughly explored by the above researchers and their
co-workers, leading to many inspiring results, i.e. the spectral form of elastic-
ity tensor was derived for all elastic symmetry classes |2, 6, 25|, the role of pure
shears was analyzed [3], the extremum of elastic energy was found for the selected
sets of stress states [19], the properties of biological materials were identified |7].
After that the idea has found numerous applications, especially when dealing
with anisotropic materials. Now, this invariant decomposition of the elasticity
tensors is widely known, though, still some aspects of it remain not fully un-
derstood. The main goal of this paper is to clarify the issue of invariance of the
decomposition, mainly the crucial notion of orthogonal projector introduced by
RYCHLEWSKI |22] with respect to the notion of an eigen-state which is preferably
used in the papers by COWIN and co-workers, e.g. [6]. Furthermore the spectral
theorem is applied for elastic material of each symmetry class. The novelty of
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the present work is the derivation of the form of the stiffness tensor for the
subsequent elastic symmetry groups by imposing the symmetry conditions upon
the orthogonal projectors instead of the stiffness tensor itself. We think that the
present paper will be useful for all who would like to apply the spectral theorem
in their fields of research.

Linear elastic material (classical elastic body) is considered for which the
small strain tensor & depends on the stress tensor o according to Hooke’s law:

(1.1) e=M-0 or o=L-g¢, MoL=1I",

€ij = Mijrionr  or 045 = Lijricr,  MijmnLmnkl = 5(5ik5jl + 0idjn) 5

where M is a compliance tensor and L is a stiffness tensor. The above law is
valid for the stress states restricted by the limit Mises condition

c-H-0<1, oijHijriogp < 1,

where H is the limit tensor. Theory of elasticity of anisotropic bodies is presented
in detail e.g. in [9, 16]. In this paper we deal only with the properties of the
stiffness tensor resulting from its spectral decomposition, without referring to
any boundary value problem.

Hooke’s tensors M, L are linear operators which project the space S of sym-
metric II-nd order tensors into itself. Hooke’s tensors are defined as positive-
definite IV-th order Euclidean tensors with the following internal symmetries,
namely

Aijrt = Ajit = Aijik = At (A —L,M).

Because of the above internal symmetries, in any Cartesian basis Hooke’s tensor
is, in general, specified by 21 independent components M;jx; and Ly,p,s. These
components change when the basis in physical space is transformed, therefore
they are not material constants. The compliance and stiffness tensors are also
used in quadratic forms specifying the energy functional

(1.2) 20=0-M-o=¢-L-¢.

Unfortunately, the complete set of the invariants for Hooke’s tensor, which
uniquely describe such tensor with an accuracy to the rigid rotation of the con-
sidered body, is not known. Because there are 21 independent components of
Hooke’s tensor, while the orientation of a sample with respect to the laboratory
is specified by 3 parameters (i.e. Euler angles), an irreducible functional basis
of orthogonal invariants for L (M, H) consists of 21—3 = 18 invariants. Con-
ventional approach does not provide the form of such basis for the whole set of
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elastic continua. However, some results can be derived when the material enjoys
some external symmetries.

Note that for the tensor of even order, the following eigen-problem is well-
posed. Using the general theory of linear operators one finds that the conditions

(1.3) L -w=\w, M-w:%w
specify eigenvalues and eigen-elements of these operators. Eigen-elements corre-
sponding to different eigenvalues are always pairwise orthogonal. The condition
(1.3) is also the necessary condition for the elastic energy (1.2) to reach an ex-
tremum value over the unit sphere (that is for - 0 = 1).

In general, the tensor L has no more than six real different eigenvalues Ay,
AT, ..., Ayr to which one can relate six mutually orthogonal unit eigen-elements
wj, Wiy, ..., Wyr. These normalized eigen-elements are called elastic eigen-
states. They are specified with accuracy to a sign and constitute an orthonormal
basis in the space S of the II-nd order tensors

(14) wK-széKL, K,L:[,,VI

Eigenvalues A, Arg, ..., Ay specify the material stiffness in response to the defor-
mations € = ew g of direction of W g, where w g are the elastic eigen-states. Ax
are called stiffness moduli or Kelvin moduli [22, 25|, and they are non-negative.
This is the only constraint imposed on elastic constants by thermodynamics. For
any deformation € = ew, where w is an eigen-state, Hooke’s law takes the form
of the proportionality rule

o= \e,

where A is the Kelvin modulus corresponding to w. The resulting form of the
elastic energy for the elastic eigen-states has been specified already by Kelvin
[10] as follows:

E-S-82)\16%-{—)\[16%4-...4-/\\/]6%/[, exg = &€ Wk

and
E=ewrt+ewir+...+teyryr.

Each sequence
(1.5) ()\[,...,)\V[;w[,...,w\/[),

consisting of six Kelvin moduli Ax > 0 and six elastic eigen-states w g specifies
an elastic material which is theoretically admissible.
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In order to derive 6 eigen-states wx (symmetric second-order tensors) it
is sufficient to specify 15 quantities. Conditions (1.4) of orthonormality of the
eigen-states provide 21 additional conditions

6 6
(1)+<2>—6+15_21,

which reduce the number of independent quantities from 36 (6 x 6) to 15
(36—21 = 15). Consequently, the variety of elastic continua is locally described
in a continuous way by a set of 6415 = 21 parameters.

Out of the 15 parameters describing eigen-states one can separate three which
are not invariants. They orient the stiffness tensor L with respect to a reference
frame (a laboratory). These three parameters can be defined as three Euler an-
gles @1, ¢2, ¢3. Remaining 12 parameters are dimensionless material constants
— invariants and common invariants of eigen-states (eigen-tensors) Ny [15]. They
are common for the stiffness tensor L and compliance tensor M and they are
called stiffness distributors as far as they characterize the distribution of stiff-
ness between the material fibers and the material planes. Stiffness distributors
specify the orthonormal basis of eigen-states w g with accuracy to the rotation
in a physical space [25].

In conclusion, parameters describing some elastic continua can be subdivided
into three groups

(6 +12) +3 =21.

1. The first group consists of 6 Kelvin moduli Ay, ..., Ay; which have a di-

mension of the stress tensor.

2. The second group consists of dimensionless 12 stiffness distributors

Ni,..., N9,
3. The third group consists of three Euler angles ¢1, ¢2, ¢3.

Therefore, one has

(16) <)‘I7°"a)\VI; Nla"'aN:l?; ¢1)¢2)¢3>‘

Two elastic bodies are made of the same material if values of 18 invariants, that
is Ar,..., Ayr and Ny, ... Nys, are equal for both of them.

Knowing the Kelvin moduli A\ and the corresponding elastic eigen-states
Wp, the tensors L and M can be represented in the form of their spectral
decompositions [17, 22, 28]:

(1.7) L = \jwr@wr+...+ A\syrwyr ® wyr,

1 1
(1.8) M= —w;QWr+...+ —wWyr Wyy.
A1 Avr
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Note that the following relations result from the above equations:
TrL = Lij;j = A\r + Air + ... + Avr,
L -L=LijjuLiju=A+XN+...+ A},

in view of which 1/6TrL is the average stiffness modulus, while VL - L is the
total stiffness (the norm of L). Moreover, as for any other basis in S, the identity
tensor 19 is

(1.9) I[S:w1®w1+...+wv1®wv].

As a consequence of the spectral theorem, the space of symmetric second-
order tensors S has been decomposed into the sum of six one-dimensional pair-
wise orthogonal subspaces Pg of eigen-states

S=Pr®Pir®d...»Pys.

Let us introduce the notion of projector. Projector is defined as a identity op-
erator for the subspace P of second-order tensors, that is, it is the IV-th order
tensor P which specifies the linear operation defined as follows:

w if w e P,
P-w=
0 if otherwise.

Consider the identity operation for the subspace Py of eigen-states and find the
corresponding projector P g, called now the eigen-projector. Using (1.9) we find
(no summation over repeated indices!)

(1.10) Pg :PKO]IS:PKO((U[®(U]+...+CUV]®LUV[)
= (Pr W) dWg = WK ® Wk.
Accordingly for any II-nd order tensor @ € S the following relation is true
Py ©=awg € Pgk.

Projectors Px and Pj corresponding to two eigen-subspaces are orthogonal,
that is
O if K#IL,

PKOPL:
Py if K=1,

and
P]+...+PV[:]IS.
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The above conditions of orthogonality of projectors result from the orthogonality
of corresponding eigen-subspaces. Decompositions (1.7), (1.8) and orthogonal
projectors Px (1.10) have the above diadic form if the corresponding Kelvin
moduli are single, that is if Ax # A for all K # L. Only in such a case the
spectral decompositions (1.7), (1.8) are unique.

If the material enjoys some symmetry then the number of parameters de-
scribing this material decreases. The sequence of parameters (1.6) can be then
presented as follows:

(111) <)‘17"'7)‘p; Nl,...,Nt; ¢17--‘7¢n>7

where p < 6, t < 12 and n < 3. Kelvin moduli can be then multiple and the
spectral theorem takes the form

(1.12) L=MP +..+AP,  p<6

and
S=PioP®..0P, =P +..+P,.

The dimension of the subspace Py, is equal to the multiplicity of the correspond-
ing Kelvin modulus A\x. The decomposition (1.12) is unique. In order to show
how the orthogonal eigen-projector looks like in the case of multiple Kelvin mod-
uli, let us assume that A\ = Ay in (1.7). In such a case, the subspace Py y
is two-dimensional and one can define in this subspace the basis {wy, wy;}.
Using (1.9) we find

Pyvi=Pyyrol® =Pyyro(wr®@ wr+... + Wyr @ wyy)
= Pyyr-wy)@wy + (Pyyr- wyr) @ wyr = wy @ Wy + Wy @ Wyy.

It can be easily verified that the form of eigen-projector does not depend on the
basis of eigen-states selected in the subspace Py y .

If one denotes the dimensions of eigen-subspaces P1,...,P, by q1,...,qp,
correspondingly then according to [22], the expression

(1.13) (r+ag+...+q), q+ae@+...+q=>6
is called the I-st structural index of material, while the expression
(1.14) lp+t+n

is the II-nd structural index. These expressions are material characteristics.

It should be noted that the symmetry of the tensor L, which is equivalent to
the symmetry of a linear elastic continuum, results from the properties of the I'V-
th order symmetric Euclidean tensors or, to be more specific, from the linearity
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of Hooke’s law and the properties of 3-dimensional Euclidean space. Therefore,
the classification of the linear elastic materials in view of their symmetry has, in
general, nothing to do with the crystallography. Elastic anisotropy of crystals is
classified in the same way as elastic anisotropy of other bodies without crystal
structure. Consequently, some of the crystal structures have their counterparts
within the elastic symmetry classes, while some of them have not [11]. An exam-
ple of the latter case are crystals of hexagonal lattice symmetry. As far as they
have a 6-fold axis of symmetry, in view of Hermann-German theorem [25], in or-
der to account for all present symmetries, they must be described as elastically
transversely isotropic.

2. KEIVIN MODULI Aj,...,Ayr

The Kelvin moduli A, ..., Ay are obtained as roots of characteristic poly-
nomial, which has the form

(2.1) det(L — AI®) = A 4 a1 (L)X° + ... + a5 (L)X + ag(L) = 0.
Determinant of a IV-th order tensor A is defined as follows:
(2.2) detAEdet(AKL) :det(vK -A~VL),

where v, (K = I,...,VI) is any orthonormal basis in S, while Ay is the
6 x 6 matrix of representation of the tensor A in this basis (see Appendix). The
choice of a basis Vi has no influence on the value of the coefficients a;(L) in the
Eq. (2.1); therefore, they are the invariants of L.

For the considered A\* the corresponding eigen-state w* is derived from the
homogeneous system of 6 linear equations:

(2.3) L-w' =)= (L-\%. w=0
with constraint w* - w* = tr(w*)? = 1. If the basis vk = wg, that is it

coincides with the basis of eigen-states, then the matrix Lg; = Wg - L - wyp is
diagonal.

3. ORTHOGONAL PROJECTORS Pq,...,P,

Knowing Kelvin’s moduli Ag, number p of which is different, one can in-
troduce some rule which orders them Aq,...,\,. For example, one can number
the moduli by increasing (decreasing) values. After unique numbering of moduli,
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the corresponding orthogonal projectors Py can be derived using the following
system of p tensorial equations of fourth-order [22]:

P,+Py+...+P, = I
AP+ Py —I—...—l—)\pPp = L,
(3.1)
r—lp rlp reip = et
)\1 1+)\2 2++)\p P 9
where

L =LoLo...oL.
—_—

k times
Consequently, one obtains
P71 [ 1 1 .. 1 1718 T
P, A1 A2 A L
| P, | PP Vot D Vi | Lot

Inversion of the above matrix exists because its determinant (the Vandermonde
determinant) is equal to
A= I =N
p>k#I>1
and by definition Ax # A; . One finds

p _ (L- MI%) oo (L — A\ qI%) o (L — M1 I¥) 0. ..o (L — A I9)
’ (M = A) - ke = Mem) ke = Mrn) - (e — Ap) '

Distributors Xy, ..., N5 are parameters which enable one to specify, in a uni-
que way, the orthogonal projectors Py in the selected basis. The form of these
functions, which would enable one to specify the projectors for all material sym-
metries, has not been proposed yet. Some proposal for orthotropic symmetry
has been derived in [15]. To this end the harmonic decomposition discussed
in [8, 26, 27| was utilized.

Using the relation (3.1); it can be shown that the following identity is true:

1-P-1+1-Py-1+...+1.P,-1=1.1".1=3.

The above identity provides the following relation between the traces of the
eigen-states wg, if p = 6:

(3.2) (trw[)2 + (ter)Q + ...+ (ter])2 = 3.
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4. SYMMETRIES OF AN ANISOTROPIC LINEAR ELASTIC MATERIAL

4.1. Notation and symmetry conditions

In what follows, the following notation is used:

e Q — orthogonal group in 3-dimensional Euclidean space E3, the set of all
orthogonal tensors,

e Ot — the group of rotations in E3, the set of all orthogonal tensors for
which det Q = 1, where QT C Q,

e RS - the orthogonal tensor describing the right-hand rotation around the
axis of direction a about the angle ¢. For the rotation presented in Fig. 1
one obtains the following representation of R, in the basis {e;}

1 0 0
ng 0 cos¢p —sing |,
0 sing cos¢

while the corresponding orthogonal tensor in 6-dimensional space has the
following representation in poly-basis {ax} (see Appendix):

1 0 0 0 0 0
0 cos ¢? sin ¢? —v/2sin ¢ cos ¢ 0 0
R 0 sin ¢? cos ¢? V/2sin ¢ cos ¢ 0 0
a™ | V2singcos¢ —+/2sin ¢ cos ¢ cos 2¢ 0 0
0 0 0 0 cos¢ sing@
| 0 0 0 0 —sing cos¢ |

Hooke’s tensors are of even order, therefore one can restrict analysis only to
the rotation tensors because symmetry resulting from the mirror reflection
will be equivalent to the symmetry resulting from the rotation around the
appropriate axis through the angle w. Note that the representation of the
orthogonal tensor in six-dimensional space looses the information about
the determinant of the corresponding 3 x 3 orthogonal matrix.

e I, — the orthogonal tensor which describes the mirror reflection with re-
spect to the plane with the unit normal a = e;. For the mirror reflection
presented in Fig. 1 one obtains the following representation of I, in {e;}:

-1 0 0
L.~| 0 1 0],
0 0 1
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and the corresponding representation in 6-dimensional space is the same
as that for the rotation through the angle 7 around a = ey:

10 0 0 0 0 7
0100 0 0
: 0010 0 0
1o o o1 0 o
0000 -1 0
o 0o 0 0 0 -1 |
el=a el=a
e
e2 e2

Fic. 1. Rotation and mirror reflection specified by the direction a.

Below, we explain the relation between the spectral decomposition of stiff-
ness (compliance) tensor and the well-known classification of linear elastic bodies
according to their material symmetry. As it was already discussed, if the ma-
terial enjoys some symmetry properties then the number of Kelvin moduli and
stiffness distributors decreases. The symmetry group Qy, of a stiffness tensor L
(a compliance tensor M) is defined as follows:

(4.1) QL= 0m={QeQ;Q+L=1},

where Q is the orthogonal II-nd order tensor in 3-dimensional physical space. It
should be recalled that one has for Q

(4.2) QQ' =Q’Q=1.

Symbol x denotes the rotation operation for the IV-th order tensor defined in the
following way. Let {e;} be the selected orthonormal basis in E?, consequently

L=Ljne®e Qe Qe
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and then

Q+L = Liju(Qei) ® (Qey) ® (Qer) ® (Qey)
= LmnquimanQkalqei b2y €; Ve e

where

Q = Qije; ®e;.
The orthogonal tensor Q belongs to the symmetry group of L if the following
condition is true:

(4.3) Q *L=L<+ LmnquimanQkalq = Lijkl-

Therefore, we have in general 21 scalar equations which impose some constraints
on the components of L for the considered Q. The classification of the linearly
elastic materials according to their symmetry includes the classical eight classes
of elastic symmetry [4, 6]. The full anisotropy (Qr = {1, —1}) and the full
isotropy (Qy, = Q) are two extreme cases. Symmetry groups for some classes of
symmetry are contained within the symmetry group of other class. Correspond-
ing inclusion relations are schematically shown in Fig. 2.

Anisotropy

F1G. 2. Scheme of relation between eight classes of elastic symmetry. Each arrow corresponds
to the additional symmetry conditions imposed on Hooke’s tensor.

Usually, the reduced form of the stiffness (compliance) tensor for the subse-
quent symmetry groups is derived using the relations (4.3). Then the spectral
decomposition of this reduced form is performed to specify the structural indices
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valid for the considered symmetry group. Below, we derive the form of a stiffness
tensor and the structural indices for the subsequent symmetry groups in a non-
standard way. Consider the external symmetry of the eigen-projector of L. Any
orthogonal tensor belonging to the symmetry group of Py, fulfills the condition

(4.4) /\ Q«*P, =P,.
QeQpyk

It can be shown that the symmetry group of the tensor L, Qy, is the common
set of symmetry groups Opy, of all its projectors, namely

(4.5) OL=9p1NQp2N...NAp,.
In the components in the selected basis {e;}, relation (4.4) has the form
k
Pr(nkr)quQimanQkalq = Rg;gl

If the subspace Pk is one-dimensional then the symmetry condition (4.4),
together with (4.5), is equivalent to

A Qx(wk®wk)=(QwxkQ") ® (QwxQ") = wk ® wk.
QeQy
Consequently
(4.6) A Qwx QT = twg.
QeQyL

In components of wg in the basis {e;}, the above equation is specified as
K K
waniman = iwij .

If the representation of a IV-th order tensor as a II-nd order tensor in 6-
dimensional space is used (see Appendix), then the orthogonal tensor in the
3-dimensional space can be replaced by a corresponding orthogonal tensor Q in
the 6-dimensional space, such that

Q+L < QL = Lg(Qak) ® (Qar)

and in components, for Q = Qxrax ® ay, one has

(4.7) Lir, = LunQrmQrn.

In this paper, using the above conditions imposed on P} or w g, the specific
form of eigen-states and eigen-projectors, two structural indices, as well as the
stiffness tensor L will be derived for all 8 symmetry groups of linear elastic
material.
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4.2. Fully anisotropic material

The symmetry group of Hooke’s tensor is never empty. For full anisotropy,
that is for totally anisotropic material, a symmetry group is defined as

Qr ={1, -1}.

The symmetry conditions are fulfilled by any normalized set of six mutually
orthogonal symmetric II-nd order tensors

K K K
Wi Wiz Wi3

(4.8) wr ~ | W Wl Wi K=1,...VI

K K K
Wiz Wiz  Ws3
The specific form of them, that is the value of 12 stiffness distributors, depends
on the specific properties of the considered anisotropic material which have to
be established in experiments. If one of the eigenstates is purely hydrostatic,
namely
1
w=+—21,
V3
then material is called volumetrically isotropic [15]. Note that although the num-
ber of independent components is then reduced to 16, in general the material
may remain fully anisotropic.
Any material, which is not totally anisotropic is called a symmetric elastic
material [23]. Such material has at least one symmetry plane.

4.8. Material of monoclinic symmetry

For monoclinic symmetry, symmetry of a prism with irregular basis, there
exists a single symmetry plane (see Fig. 3) and a symmetry group is the following:

(4.9) =11, -1, I},

where I, denotes the tensor describing the mirror reflection with respect to
the plane with unit normal e;. In the basis, in which e; is specified, two angles
¢1 and ¢ are specified. Using the symmetry conditions (4.6) one obtains two
following matrix equations

K K K K K K
-1 0 O wi] Wiy Wwis -1 0 0 wi] Wiy Wi
K K K _ K K K
0 1 0 Wiy Wiy Wwas 0 1 0| ==%|wy wy wy
K K K K K
0 0 1 Wiy Wiy Wiy 0O 0 1 Wiy Wiy Wiy
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which after performing the multiplications take the form

Wi —wiy  —wi —wii  —wfy  —wfy
—wiy  wy wl | = | el —wly —wi
—wly  wly W —wfy  —wf —wi
and
wff  —wfy —wfy wii Wiy wff
Wi wzlg W2I§> = wfg Wzlg ng
—wff Wl Wi wif Wiy wi

(c)

F1a. 3. Schematic representation of monoclinic symmetry (a), orthotropy (b)
and tetragonal symmetry (c).

a

Eigen-states fulfilling the above relations are as follows (K = I11,...,VI):

IJI  III K
0 Wiz W13 wip O 0
IIT K K
(4.10) wr i~ | wi 0 0 ) Wg ~ 0 wyy wos

LIT K K
wij 0 0 0wy wi
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Using orthonormality conditions of eigen-states w; and wyy, the following form
of them is obtained

0 sing cos¢
Ww;~—|sing 0 0 ,
| cosg 0 0
(4.11)
0 cos¢p —sing
wir~—| cos¢ 0 0

| —sing 0 0

It can be noted that after changing the basis by proper rotation around e; about
¢3 = ¢ (that way we specify the third Euler angle), one arrives at

010 0 01

1 1

(4.12) w;~—1_10 01, wip~—10 0 0
V2 V2

00 0 100

The eigen-states w and wyy, in the form of pure shears, are identical for any
material of monoclinic symmetry, provided a proper frame in the physical space
is used. This frame is defined by the unit normal e; to the symmetry plane,
being the common direction of shearing for the above pure shears in the sense
discussed in [3], and two directions: e, es which specify the unit normal to
the corresponding shearing planes as they were defined in [3]. The derived form
of eigen-states complies with the theorem formulated in [3| according to which
for any symmetric material, at least two eigen-states of the stiffness tensor are
pure shears. The specific form of remaining eigenstates wg, (K = II1,...,VI),
defined by 6 stiffness distributors, depends on the properties of the considered
material of monoclinic symmetry. Using (1.7) the representation of L in the poly-
basis {ax } composed of diads of the above selected unit vectors e; is derived as

[ L1 L1z L1z Lia
L1y Lo Log Lo
Lys Loz L33 L3
Liy Loa L3y Las

0 0 0 0 Lss = A
0 0 0 0 0 Les = A1

0
0
0
(4.13) L~
0

o o o o O
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therefore it is specified by 12 independent components. The Kelvin moduli
AIIl, - -, Ay are obtained as eigenvalues of 4 x 4 upper left sub-matrix of (4.13).
An example of material of elastic monoclinic symmetry is the martensite phase,
the lower symmetry phase in CuZnAl shape memory alloy.

4.4. Orthotropic material

In the case of orthotropic material, that is the material possessing symme-
try of a prism with rectangular basis (see Fig. 3), the symmetry group includes
the elements

(414) Qi:{l, _15 1917 Iez}‘

The symmetry conditions (4.6) can be imposed on the derived form of eigen-
states for the material of monoclinic symmetry as far as the symmetry group
of the latter material is included in the symmetry group of orthotropic material
(Qf* C 9Qf, Fig. 2). Thus, any orthotropic material is the material of monoclinic
symmetry. Let us consider two groups of eigen-states obtained for material of
monoclinic symmetry. Imposing additional condition (related to the orthogonal
tensor Ie,) on the first group in (4.10), we find

1 0 0 0 wh’ W 0 o0 0wt Wb
0 -1 0| 0o o0 0 -1 0|==x|wy’ 0 0
0 0 1] |wh” o 0 0 0 1 wiyt 0 0
which after multiplications simplifies to the relations
R I I
—wh 0 0 |=]=ul" 0 0
why! 0 0 +wl' 0 0

They are identically true for the eigen-states (4.12), where the direction ey agrees
with the unit normal to the shearing plane for one of these eigenstates.

Imposing additional condition on the second group of eigen-states in (4.10),
it is obtained

1 0 0wl 0 0 1 0 0 wE o0 0
0 -1 0 0 wf w110 -1 0|=%]| 0 w
0 0 1 0 wi w110 0 1 0 wi Wi
and after multiplications, the following constraints are found
wl 0 0 +wf 0 0
0 wl —wi|= 0 4wk +wl

K K K K
0 —wyy wiy 0 Twyy Twsy
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which are true for the following forms of w (K = IV, V, V)
K

0 O 0 wi; O 0
(4.15) Wirrr ~ 0 0 w%l s Wg ~ 0 wg 0
0 wil 0 0 0 wh

After normalization we obtain the following eigen-states in the form of pure
shears 2] in the basis {e;} specified by three directions of orthotropy (this way
three Euler angles are specified):

Sl

(4.16) Wiy~

Sl

1

7 0

1

and three subsequent eigen-states in the diagonal form in this basis, which after
utilizing orthonormality conditions we can present in the form [2]

wrrr ~

[ cos 6, 0 0
Wiy ~ 0 sin 01 cos 6 0 ,
i 0 0 sin 91 sin 92
[ — cos 63 sin 61 0 0 ]
0 cos 01 cos 0y cos O3 + 0
Wy ~ — sin 09 sin 05 )
0 0 cos 01 sin 0 cos O3 +
i + sin 63 cos O
[ sin 91 sin 93 0 0 i
0 — sin #3 cos 64 cos B2+ 0
Wyr ~ — cos 03 sin O
0 0 — sin #3 cos 64 sin O5+
i + cos 03 cos Oy
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For any orthotropic material there exist three uniquely defined (within a sign)
eigen-states in the form of pure shears, while the form of eigen-states wy,vv s
is specified by three angles 6y, 0, 63 which themselves are the functions of
three stiffness distributors. They depend on the properties of the considered
material of orthotropic symmetry. In the paper [15]| it was proposed to define
these distributors in the following way?)

deth tr(w? ;w
(4.17) m = trh%/l, n2 = ﬁa n3 = (trgv‘/)
where hx are deviators of w k. The above definition must be modified in the case
when 71 = 0 or two eigenvalues of Wy are equal to each other correspondingly
in the form

det hy

4.18 ¥ = (det hy)? ol S
( ) n3 = (dethy), UE] (trwy )3

The representation of L in poly-basis {ax } constructed with use of orthotropy
directions {e} is

[ Li1 Li2 L3 0 0 0 7
Lo Loo Loag 0 0 0
L3 Loz L33 0 0 0
(4.19) L~
0 0 0 Lys = A111 0 0
0O 0 © 0 Lss = A1 0
L O 0 0 0 0 Les = A1 |

therefore it is specified by 9 independent components. The Kelvin moduli
AIv,- .., Ay are obtained as eigenvalues of 3 x 3 upper left sub-matrix of (4.19).
The orthotropic symmetry is characteristic for metal sheets with texture result-
ing from rolling process.

For the above two classes of symmetry one obtains one-dimensional eigen-
subspaces Pk .

4.5. Material of trigonal symmetry

Material of trigonal symmetry (symmetry of a cube uniformly elongated
along one of its main diagonals, see Fig. 5, where the diagonal is coaxial with
the main symmetry axis e1) has the following symmetry group:

DIn [15] it was assumed that Kelvin moduli Ax are ordered in view of increasing value of
the corresponding (trw )2
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(420) Q%t:{]w _17 R(2371T/37 162}7

where Rg?/ ? denotes the rotation around the axis e; through the angle 27/3.

It should be noted that the monoclinic symmetry group QF* C Q3t if the
direction e; is replaced by es. For the symmetric direction specified in this way
with respect to the basis {e;}, two groups of eigen-states in (4.10) have the
representations (K = I11,...,V1I)

1,11 K K
0 Wi 0 wiip 0 wiy
1,11 1,11
(4.21) Wy~ | wij 0 Wy , Wi ~ 0 wQIg 0
1,11 K K
0wy 0 wiy 0 wsy

Fulfilling the additional symmetry condition (4.6) related to the orthogonal

tensor Rgf/ ? for the second group of eigen-states (4.21), we derive the constraints
1 0 0 ] [1 0 0 ]
wﬁ 0 w{g wﬁ 0 w{g
0 L V3 . 0 L V3 .
0 @ 1 wiy 0 wig 0 fﬁ 1 wiy 0 wij
L 2 2 L 2 2
which after multiplications take the form
[ K V3 L K ]
w ——w ——w
11 9 “13 9¥13 wﬁ 0 w{g
V3 1 V3 _ K
_7‘*’{% Z(wzig + 3wi) T(wzgg —wyy) | =E | 0 wn 0
K K
1 V3 1 wiz 0 wsy
—wag T(W:aKs — wi) 1(3%[% +wiy)

The above relations can be fulfilled only by two linearly independent unit eigen-
states with the below representation in the basis {e;}?

wiVT 0 0

(4.22) Wy~ 0 w;/é‘/] 0
V\VI

0 0 Woyg

2 As it can be noticed in Fig. 5, the direction ez can be specified with the accuracy to the
rotation about 27/3 around e;.
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They define two one-dimensional eigen-subspaces. After normalization and ap-
plication of orthogonality conditions, they take the form

[ V2sing 0 0
1
Wy ~ ﬁ 0 —cos ¢ 0 )
i 0 0 —cos ¢
(4.23) )
V2cosp 0 0
1
Wy ~ ﬁ 0 Sinqb 0
i 0 0 sin ¢

In general, the above eigen-states are not pure shears.

Imposing the symmetry condition (4.6) on the first group of eigenstates (4.21)
we find only trivial solution w = 0, which of course is unacceptable. Conse-
quently, the remaining eigen-subspaces must be more than one-dimensional and
their form will be found using the symmetry condition (4.4). Any IV-th order
tensor orthogonal to the eigen-projectors composed of eigen-states (4.23) has the
representation

0 0 0 0 0 0
0 =P Py P P Py
P 0 Py —P3 —Pu —Ps —Po
0 Py —Pu Pu Pis P
0 P —Ps Pis  Pss  DPs
L0 Py —Px P Pss  DPes |

/3

The representation of a orthogonal tensor Rgl

the following one

in the six-dimensional space is

1 0 0 o0 0 0
13 G
o L 3 V8
1 1 4
1
o 3 1L _v6 o
o3 1 1 1
B R S L
1 1 5
1 V3
o 0o 0o o0 —- \Qf
V3 1
o o o o Y2 _Z
I 5 3]
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If we perform the rotation operation for the tensor P using the relation (4.7),

then we find the following non-zero components of the rotated tensor Rg?/ o

1

(4.24) Py = o(~2Pxs — 2V6Py + 3Py),

(4.25) Py = é(zpm +2V6 Py — 3Pu),

(4.26) Py = é(—Néng — 4Py — V6Pu),

(4.27) Pys = é(zpﬁ — 2V3Ps — V6Ps5 + 3V2Py),
(4.28) Py = é(2\/§P25 +2Psg — 3V2Py5 — V6Pyg),
(4.29) Py3 = é(—szg — 2v/6P24 + 3Py),

(4.30) Py = é(2\/6P23 + 4Py + V6 Pu),

(4.31) Pys = é(—2P25 +2v3Py + V6Py5 — 3V2Pyg),
(4.32) Py = é(—2\/§Pz5 — 2Py + 3V2Py5 + V6 Pyg),
(4.33) Py = %(—6P23 +2V6 P2y + Pua),

(4.34) Py = i(\/éP% — 3V2Pys + Pys — V3Pyg),
(4.35) Py = %(3\/51325 + V6P + V3Pys + Pig),
(4.36) Pss = %(Ps)s — 2V/3Ps + 3Pss),

(4.37) Py = %(\/§P55 — 2P56 — V/3Pgg),

(4.38) Peg = %(31355 + 2v/3Psg + Peg).

After algebraic manipulations, setting Py = Pk, the representations of two
projectors in the poly-basis {a;} are found, namely
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0 0 0 0 0 0
0 (wg)? ()’ 0 V2wihwdy 0
b0 SRR WEP 0 VRBWE o
0 0 0 2(wk)? 0 2wE Wk
0 Vowhwl —V2wEwlk 0 2(wis)? 0
| 0 0 0 2w Wil 0 2(wh)? |

They project into two two-dimensional subspaces Py r; and Pryy v of deviatoric
tensors. Using the orthogonality and after normalization of the elements, we
arrive at the following representations of these projectors

[0 0 0 0 0 0
2
0 (sinp)? —(sinp)? 0 —\2[ sin 2p 0
2
110 —(sinp)? (sinp)? 0 £ sin 2p 0
(4.39) P[’[[ ~ 5 2 ,
0 0 0 2(sin p)? 0 —sin2p
2 2
0 —\g sin 2p \gsin2p 0 2(cos p)? 0
|0 0 0 —sin2p 0 2(cos p)? |
[0 0 0 0 0 0
2
0 (cosp)? —(cosp)? 0 \2[ sin2p 0
V2
1] 0 —(cosp)? cos p)? 0 ——sin2 0
(440) PIIIJV ~ 5 ( p) ( p) 2 p
0 0 0 2(cos p)? 0 sin2p
2 2
0 \Qfsin2p ng sin2p 0 2(sin p)? 0
L 0 0 0 sin 2p 0 2(sin p)? |

Any second-order tensor belonging to Pr rr and Prrr,rv, respectively, is devia-
toric and has the following representation in the basis {e;} (w any second order
tensor):

0 cospcosp singcosp
Pri-w

441) wy = %0
(4.41) PP w] T V2

cospcosp —singsinp —cosysinp

sinpcosp —coswsinp singsinp
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and

0 cospsinp sinpsinp
Prrv-w 1

———— ~ — | cospsinp sinpcosp cospcosp |,
Prrv-w| 2

(4.42) (D[]],[V:
sinpsinp cospcosp —sinpcosp

where ¢ € (0,27). The bases in those sub-spaces can be composed of two ele-
ments: Wk (1) and W (p2), where @2 = 1 + /2. The simplest bases in Pr 11
and Prrr v is obtained setting ¢1 = 0 and ¢ = m/2. Note that among infi-
nite number of elements (4.41) and (4.42), one can indicate in both cases three
which are pure shears. They are specified by angles ¢ being the solutions of two
trigonometric equations

det wy ;1 = 0 < cos? psin p(sin p — cos? (3sin p + cos p)) = 0,
detwrrrrv =0& sin? psin p(cos? (3 cos p + sin p) — cos p) = 0.

Therefore, for any elastic material of trigonal symmetry at least six of its eigen-
states are the pure shears [3]. Of course, not all of them are pairwise orthogonal
as far as some of them correspond to the same eigen-value (the same Kelvin
modulus).

The specific form of P rr and Prrr v depends on the angle p being the
function of one stiffness distributor. The value of this distributor is material
characteristic for trigonal symmetry. Similarly, the specific form of eigen-states
wy and wy depends on the angle ¢ which is the function of the second stiffness
distributor (compare [25]). One can define this distributor as follows:

_ det hy
2= (’CI“(.L)V[):37

where hy is deviator of wy/ ;.

The considered material of trigonal symmetry is defined by
1. 4 Kelvin moduli: Ay = A7 17, A2 = Arr7,1v, both of multiplicity 2, and
A3 = Ay, Ay = Ay of multiplicity 1.
2. Two stiffness distributors which specify angles p and ¢.

3. 3 Euler angles which orient symmetry axis e; and the symmetry plane
ey with respect to laboratory.

The unique spectral decomposition takes the form
(4.43) L = MP1(p) + A2Pa(p) + AsP3(¢) + MPu(9),

where

Pi(p) =Pr1i(p), Py(p) = Prirrv(p),
P3(¢) = wy(¢) @ wy(9), Pa(¢) = wyi(¢) ® wyr(e).
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Using (4.43) the stiffness tensor L for the material of trigonal symmetry in
the poly-basis ax composed of diads of the basis e;, has the representation

L1 Lz Lia 0 0 0
Lo Lo Lo3 0 Los 0
Lo Loz Lo 0 —Los 0
(4.44) L~
0 0 0 Lyp—Lass 0 2L
0 L25 —L25 0 L55 0
L0 0 0 V2Las 0 Lss |

therefore it is specified by 6 independent components. It can be shown that the
Kelvin moduli Ay, = A3 and Ay = A4 are obtained as eigenvalues of the following
2 X 2 matrix

Li1 +2(2L12 + Las + Ls3) V2(L11 + L1g — (La2 + Lag))

(4.45)
V2(L11 + Lyg — (Lag + Lag)) 2L11 — 4Ly + Loz + Loo

1
3

while the Kelvin A7 ;7 = A1 and Ar77, v = A2 of multiplicity 2 can be derived as
eigenvalues of the following 2 x 2 matrix:

Loy — Loz /2Los
V2Los Lss

Single crystal of aluminum oxide AlsOg, ceramic material, has trigonal sym-
metry.

(4.46)

4.6. Material of tetragonal symmetry

Material of tetragonal symmetry (symmetry of a prism of square basis,
see Fig. 3) is characterized by the following symmetry group

(4.47) off = {1, -1, I,, I,, RY*}.

Similarly like in the case of trigonal symmetry it is impossible to fulfill the sym-
metry conditions (4.6) by 6 mutually orthogonal eigen-states. Using the results
for otrhotropic material, it can be checked that the additional condition of sym-
metry imposed by R;f{ % is fulfilled® only by four eigen-tensors. Two of them are
pure shears which have the following representations in basis {e;}:

3)The eigen-states of the material of tetragonal symmetry can be derived by imposing the
additional symmetry condition on the eigen-states of orthotropic material because Q% C Qf,
Fig. 2.
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000 00 0
1 1
4.48 wipr~—100 1], ww~—F72|01 0|,
() III\/§ IV\/é
010 00 -1

while other two eigen-states have the form

w3V 0 0

(4.49) wyyr~| 0wyl 0
V,VI

0 0 wys

They define four one-dimensional subspaces Pg, K = II1,1IV,V,VI. Moreover,
from the symmetry conditions (4.4) we obtain the following projector P rr which
projects into two-dimensional subspace Py of pure shears with common shear
direction. Its representation in the orthonormal poly-basis {a;} composed of
{e; ® e;} (see Appendix) is as follows:

(4.50) P~

o O o o o o
o O o o o O
o O o o o o

oS O o o O
o = O O O O
= o O O o O

0

Any unit element of this two-dimensional subspace can be written in the form
0 siny cosp
1 .
(4.51) wrir~—=|sing 0 0 , @ € (0,2m).

V2
cosp 0 0

An orthonormal basis in this subspace is composed of two tensors wr r7(¢1) and
wy r7(p2), such that po = @1 4+ 7/2.

For any material of tetragonal symmetry we have obtained two uniquely
specified (within a sign) eigen-states wj;; and wjry as well as the uniquely
defined projector Py ;. The specific form of wy and wy depends on the value
of one stiffness distributor which is the material characteristic for the considered
material. Using the result of [15], this distributor can be defined as

det hy
4.52 =y = ]
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It should be noted that for the material of tetragonal symmetry the direction
e is uniquely defined, while the direction ey can be specified only with accuracy
to the angle 7/4.

The considered elastic material of tetragonal symmetry is specified by
1. 5 Kelvin moduli: )\1 = )\[7[] of multiplicity 2, )\2 = )\[[], )\3 = )\IV
Ay = Ay and A5 = Ay of multiplicity 1.
2. One stiffness distributor 7 which specifies angle ¢.

3. 3 Euler angles which orient symmetry axis e; and the symmetry plane
ey with respect to laboratory.

The unique spectral decomposition takes the form

(4.53) L = M Py + APs + AP3 + MP4(¢) + AsP5(6)
where

Py =Prir, Py =wir @ wir, P;=wr@wry
and

Py(¢) = wy(¢) @ wy(d),  Ps(¢) = wyi(¢) @ wyi(g).

The representation of the stiffness tensor in poly-basis ax for the material of
tetragonal symmetry has the form similar to orthotropic material with additional
relations

(4.54) Liz = Lo, L3z = Loo, Lgg = Lss;

therefore, it is specified by 6 independent components. The Kelvin moduli depend
on Lk as follows:

(4.55)  Argr = A1 = Lss, AIIr = A2 = Ay, Arv = A3 = Lag — La3

and \y = Ay and Ay; = A5 are found as eigenvalues of matrix (4.45). The
stiffness distributor 7 is specified by components of L as follows

1 Ly
27vV2 L1 — v

where Ly, denote components of matrix (4.45), while Ay is taken as a minimum
(a maximum) of its eigenvalues if L11 > Loa (L11 < Lag). The latter specification
ensures that (trwy7)? > (trawy )2

As an example of material of tetragonal symmetry, the v-TiAl intermetallic
is analyzed in Subsec. 4.10. Tetragonal symmetry has also a single crystal of
martensitic phase of ferromagnetic shape memory alloy NiMnGa.

(4.56) n
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4.7. Transversely isotropic material

Material of transversal isotropy (cylindrical symmetry presented in Fig. 4)
has the following symmetry group (note that Q‘]{t c ob):

(457) Qi = {15 _17 Ie1a 1627 Rgl}v

where the orthogonal tensor Rgl describes the rotation around the axis e
through any angle ¢. The symmetry condition (4.6) for this rotation tensor is
fullfilled by two eigen-states (4.49) valid for tetragonal symmetry, which describe
two one-dimensional subspaces Py and Py . Furthermore, the symmetry condi-
tion (4.4) is fullfilled for projector Pr rr specified by (4.50) and another projector
Prr1,1v, both projecting into two 2-dimensional subspaces of pure shears. The
projector Py rv has the representation

"0 0 0 0 0 07
01 -1 00 0
110 =1 1 00 0

(458) PIII,IV ~
210 0 0 200
0 0 0 000
0 0 0 00 0]

Fic. 4. Schematic representation of transversely isotropic material (a)
and isotropic material (b).
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written in the poly-basis {a;}. Any unit element of the two-dimensional subspace
Prir,rv can be specified in the form

0 0 0
1 .
(4.59) Wrrr v ~ ﬁ 0 cosvy siny |, Y € (0, 2m).
0 siny —cosy

Orthonormal basis in this subspace is composed of two tensors wyrr v (¢1) and
w[][J\/(i/)Q), such that wQ = 1ﬂ1 + 7T/2.

It should be underlined that the representation of the eigen-states wy,y and
the projectors Py and Py v is the same in any basis in which the direction
e is coaxial with the material symmetry direction, therefore in order to specify
the orientation of material sample with respect to the laboratory it is sufficient
to specify two Euler angles ¢1 and ¢s.

For any transversely isotropic material one obtains two uniquely specified
eigen-projectors Py and Pyrv. The specific form of two eigen-states wy
and wy, similarly as for the material of tetragonal symmetry depends on the
stiffness distributor (4.52), the value of which is the material characteristic for
the analyzed material (compare [12]).

Note that we can obtain transversely isotropic material considering also the
material of trigonal symmetry if we set the angle p = 0. In such a case the
projector Py = Py 7 project into the space plane deviators (4.59) (they are the
pure shears with common shearing plane e;) while the projector Py = Py 1y
project into the space of pure shears (4.51) with common shearing direction e;.

The considered transversely isotropic material is defined by
1. 4 Kelvin moduli: )\1 = AI,II; AQ = )\[1[7[\/, both of multiplicity 2, and
A3 = Ay, Ay = Ayr of multiplicity 1.
2. One stiffness distributor 7 which specifies angle ¢.
3. 2 Euler angles which orient symmetry axis e; with respect to laboratory.
The unique spectral decomposition takes the form

(4.60) L = MP1 + AoP2 + A3P3(¢) + AaPu(0)

where P; = P{"8(0) and Py = PY"8(0) while

P3(¢) = wy(¢) @ wy(9),  Pi(d) = wvi(9) @ wyr(e)

The representation of the stiffness tensor for the material of transversal
isotropy in poly-basis ax has the representation similar to orthotropic mate-
rial with relations (4.54), valid for the tetragonal symmetry and additionally
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(4.61) Lyg = Log — Lq2,

therefore, it is specified by 5 independent components. Kelvin moduli Ax and
stiffness distributor n are found as for the material of tetragonal symmetry,
Eqgs. (4.55)—(4.56), where in view of relation (4.61) one has A\r;r = Ary.

There are many engineering materials which can be modelled as transversely
isotropic. The classical example is the composite with the reinforcement in the
form of elongated aligned fibers [5]. Moreover, as it was already signalled in
the introduction, all materials for which the single crystal has the hexagonal
symmetry, in view of their elastic anisotropy are transversely isotropic. Examples
of such metals are analyzed in Subsec. 4.10.

4.8. Material of cubic symmetry
Material of cubic symmetry (symmetry of a cube, Fig. 5) has the following
symmetry group (Qff C Qf):
(4.62) of = {1, -1, L, R, R}

The group of trigonal symmetry is also the subset of the cubic symmetry group,
however, the symmetry axis is then coaxial with one of the main diagonals of
a cube span by the vectors e;.

PN

ATTAN
VARV

Fia. 5. Schematic representation of a material of cubic symmetry. Note that a crystal
elongated along the main diagonal ¢ would have trigonal symmetry with the main axis
of symmetry coaxial with c.
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From the symmetry condition (4.6) one eigen-state is obtained

C[roo
(4.63) wWN7§O 1 0],
00 1

which, as it is easy to note, describes one-dimensional subspace of hydrostatic
tensors. From the symmetry conditions (4.4) we obtain two eigen-projectors
(compare [19]). A projector Py 17177 (again in poly-basis {ar})

0 0 07
0

(4.64) Priromr~

o O o o O
o O o o O
o O o o O

0
0
1
0

= o O O

0
0
0

000001

projects into the 3-dimensional deviatoric subspace Py 17 rr7. Any unit element
(not necessarily pure shear) of this subspace can be represented as follows:

. 0 sincosy sinpsiny
(4.65) Wy I~ 7 sin ¢ cos 1 0 cos ,
sin @ sin Y COS 0

where ¢ € (0,27) and ¢ € (0, 7). The second projector Py has the form

T2 -1 -1 00 07
1 2 —-100 0
11-1 =1 2 000

(4.66) Py~ =
310 0 0 00 0
0 0 0 00 0
L0 0 0 00 0.

and projects into two-dimensional deviatoric subspace Pryy. Any unit element
of this subspace can be represented as follows:

[ cos 6 0 0
4.67 w ~ e cos | 0+ — 0 7
(4.67) wv e~ 3
21
0 0 CoS (9 — 3>
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where 6 € (0,27). Orthonormal basis in this subspace can be composed of any
two tensors wry v (#1) and wryy () for which 0y = 61 + /2.

For any material of cubic symmetry one obtains two uniquely defined pro-
jectors Py rrrrr and Pryy as well as one uniquely specified (within a sign)
eigen-state wy ;. The decomposition of the space S into three mutually orthog-
onal eigen-subspaces is identical for any material of cubic symmetry (there are
no stiffness distributors). Material of trigonal symmetry reduces to the material
of cubic symmetry if we set

¢=0"%  p=p" A=A = A

and tan ¢ = tan p° = /2. Note that in this case the stiffness distributor 1, = 0.

The considered material of cubic symmetry is specified by
1. 3 Kelvin moduli: A\{ = )\[’[[7[[[ of multiplicity 3, Ay = )\IV,V of multi-
plicity 2 and A3 = Ay of multiplicity 1.
2. 0 stiffness distributors.
3. 3 Euler angles which orient symmetry axes e; with respect to laboratory.
The unique spectral decomposition takes the form

(4.68) L = MPy1 + P2 + A3Ps,
where

1
P, =I°-K, Py =K —Ip, P3:]IPZ§1®1

3
and K=>e;,®e ®e; Re;.
i=1

The representation of the stiffness tensor for the material of cubic symmetry
has the form similar to an orthotropic material with additional relations between
components, namely

(4.69) Loz = L13 = Lqo, L33 = Log = L1, Les = Ls5 = Lua,
where
Avi = A3 = Li1 + 2L, Arviy = A2 = Li1 — L2
and
Arnarr = M = Laga,

therefore, it is specified by 3 independent components. Single crystals of Cu or Al
are of cubic symmetry. Austenite phase, high-symmetry phase in shape memory
alloys, e.g. NiTi, CuZnAl, NiMnGa, usually exhibit cubic symmetry.
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4.9. Isotropic material

As it was already stated in Subsec. 4.1, the symmetry group of such material
is the whole orthogonal group Q. For isotropic material (Fig. 4) fulfillment
of condition (4.6) leads to the hydrostatic eigen-state (4.63), while symmetry
condition (4.4) leads to the projector being the sum of projectors (4.64) and
(4.66) derived for the cubic symmetry, namely

1
(4.70) P,=Prir+Prvy=1- 51 ® 1.

This projector projects the II-nd order tensor into the 5-dimensional subspace
of deviators. Its representation in the poly-basis {a;} composed of diads of basis
vectors of any orthonormal basis {e;} is the same and has the form

T2 -1 -1 0 0 07

-1 2 —-1000

) Pdwl -1 -1 2 000
3/l 0 0 0 300

0 0 0 030

L0 0 0 0 0 3.

The considered isotropic material is specified by
1. 2 Kelvin moduli: Ay = A7 7,7r7,7v,v of multiplicity 5 and Ay = Ay of
multiplicity 1.
2. 0 stiffness distributors.
3. 0 Euler angles (they are not needed because all material directions are
equivalent).
The unique spectral decomposition takes the form

(472) L =M\P;+ \Py,

where 1
P, =P,=1°—1p, P2:]1p:§1®1.

The representation of the stiffness tensor for the isotropic material is obtained
from the stiffness tensor for cubic symmetry with additional relation

(4.73) Ly = L1y — L2 = Ap g 111,0viv = At

therefore, it is specified by 2 independent components.
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In Table 1 I and II structural index is provided for all 8 symmetry groups.
In [14] the structural indices have been derived for the volumetrically isotropic
materials (that is with the so-called Burzynski constraint) for all elastic sym-
metry groups. For such materials, the hydrostatic tensor (4.63) is one of the
eigen-states. It results in reduction of the number of stiffness distributors. Note
that for such materials the elasticity tensor is coaxial with the isotropic elasticity
tensor.

Table 1. I and II-structural index for all symmetry classes of linear elastic

materials.
. . Numb
Symmetry group I structural index IT structural index mber
of parameters
full anisotropy 1+1+1+141+1) 6+ 12+ 3] 21

monoclinic symmetry
(symmetry of a prism (I4+14+1+1)+14+1) [6 + 6 + 3] 15
with irregular basis)

orthotropy
(symmetry of a prism (1+1+1)+14+1+1) [6 4 3+ 3] 12
with a rectangular basis)

trigonal symmetry
(symmetry of (14+1)+(2+2)) 442+ 3] 9
an elongated cube)

tetragonal symmetry
(symmetry of a prism (I+D)+1+1+42) [5+ 1+ 3] 9
with a square basis)

transversal symmetry

14+1)+2+2 4+1+2 7
(cylindrical) ( : : : :
cubic symmetry (1+2+3) [3+0+3] 6
(symmetry of a cube)
isotropy (1+5) [2+0+0] 2

4.10. Ezxzamples

We apply the derived formulae for assessment of intensity of an elastic aniso-
tropy of single crystals of selected metals and alloys. The intensity of anisotropy
is here intuitively meant as a departure of the material behaviour from the
isotropic one, i.e. strong variation of elastic properties depending on the direction
in which they are measured. More information concerning this issue can be found
e.g. in [18, 20, 24|. It should be underlined that in general, the intensity of an
anisotropy is not equivalent to the notion of low or high symmetry of material.
Material of high symmetry (e.g. cubic) can exhibit strong anisotropy, e.g. strong
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variation of directional Young modulus [19] and vice versa: the anisotropy of
material of low symmetry can be weak.

In Table 2 the independent components of the elasticity tensor for single crys-
tals of selected materials are collected. The hep materials (Mg, Zn, Zr, Ti metals
and «ay-TigAl intermetallic) exhibit the hexagonal lattice symmetry, therefore,
the stiffness and compliance tensors have the form equivalent to the transversal
isotropy case with 5 independent components in anisotropy axes, Subsec. 4.7.
In the case of crystal of tetragonal symmetry (7-TiAl intermetallic) one has 6
independent components, Subsec. 4.6. High symmetry metals such as copper and
aluminum are fcc materials of cubic symmetry with three independent compo-
nents of L.

Table 2. Elastic constants [GPa] of single crystals for selected metals
and alloys of high specific stiffness and some fcc materials
(axis 1 is the main symmetry axis).

Material L2222 L2233 L1122 Lllll L1212 L3232
Mg [1] 59.3 25.7 21.4 61.5 16.4

Zn [1] 163.7 36.4 53.0 63.5 38.8

Zr [30] 143.5 72.5 65.4 164.9 32.1

Ti [29, 31] 163.9 91.3 68.9 181.6 47.2

as-TizAl [31, 21] | 175 88.7 62.3 220 62.6
~v-TiAl[21] 183 74.1 74.4 178 105 78.4
Cu [1] 171.0 | 122.0 69.1

Al1] 186 157 42

In Table 3 we provide the invariants resulting from spectral decomposition
of the corresponding elasticity tensors for these materials [13] (relation between
Liji and Lg g, components is specified in the Appendix by (A.2)). The following
conclusions result from the analysis of this table:

e All analyzed metals and alloys, with exception of Zn, are close to be a vol-
umetrically isotropic materials (£ is close to zero). Note that Cu and Al,
being cubic materials, are volumetrically isotropic exactly.

e In view of above property, the intensity of elastic anisotropy® can be as-
sessed comparing the Kelvin moduli A7, Azz, ..., Ay, or more specifically
their properly defined ratios, e.g A /Amax where Apax = max{Az, ..., Ay }.
For example, one observes that elastic anisotropy of Mg or Al crystals
is not strong and it is strong for Zn or Cu. Note that introduction of
such indicators of the intensity of the elastic anisotropy generalizes the

Y Note that if & =0and A\; = A\;1 = ... = Ay, the material is isotropic.
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anisotropy factor introduced for cubic crystals by ZENER [32]: A = (L1111 —
L1122)/(2L1212). As it could be easily verified, this factor is the ratio of de-

viatoric Kelvin moduli of cubic crystal, namely A = AS™ /AP,

Table 3. Kelvin moduli \x [GPa], a stiffness distributor ¢* = /2y (Eq. (4.52))
and @ = arctan(3¢) obtained by spectral decomposition of the local elasticity

tensor for single crystals of selected metals and alloys [13].

Material | Avs Av Av | i | = ¢ ® [
Mg 1057 | 40.8 33.6 32.8 —0.0051 | —0.87
Zn 2332 | 304 127.3 77.6 —0.0674 | —11.43
Zr 286.4 | 945 71.0 64.2 0.0117 2.01
Ti 322.6 | 114.2 72.6 94.4 ~0.0035 | —0.61
as-TisAl | 3326 | 1511 86.4 125.2 0.0161 2.77
~-TiAl 330.0 | 1051 | 108.9 | 156.8 210 —0.0033 | —0.56
Cu 415.0 49.0 138.2 0 0

Al 228.9 46.5 56.6 0 0

5. CONCLUSIONS

In the paper, the spectral theorem for the elasticity tensor has been thor-
oughly discussed. The main aim of the work was the clarification of the issue
of invariance of the spectral decomposition. Therefore, the forms of the decom-
position for all elastic symmetry groups have been derived in an original way
by imposing the symmetry conditions upon the orthogonal projectors, instead
of the stiffness tensor itself. Thanks to that, the uniqueness of the orthogonal
projectors for the considered Hooke’s tensor in contrast to the non-uniqueness of
eigen-states has been demonstrated. For completeness of the review, the number
of independent eigenvalues (Kelvin moduli) and the corresponding orthogonal
projectors have been explicitly outlined for each elastic symmetry class. Finally,
the spectral decomposition of the stiffness tensor has been derived for single
crystals of the selected metals and alloys.

ACKNOWLEDGMENT
The work was partly supported by the Ministry of Science and Higher Edu-

cation of Poland in the framework of the research projects N N501 068135
(K. Kowalczyk-Gajewska) and N N501 121536 (J. Ostrowska—Maciejewska).



180 K. KOWALCZYK-GAJEWSKA, J. OSTROWSKA -MACIEJEWSKA
APPENDIX

The space S of symmetric second-order tensors possesses all the properties of
the six-dimensional Euclidean space with the scalar product defined as follows:

/\ a-b= tr(ab) = aijbij,
a,beS

where a;j, b;j, 1,7 = 1,2,3 are components of tensors a and b in some or-
thonormal basis {e;} in the three-dimensional physical space. Therefore, any
second-order tensor has all the properties of the vector in the six-dimensional
Euclidean space.

Due to this property of S it is possible to select in § a subset of six mutually
orthogonal and normalized tensors {ax}, K = I,...,VI which constitute the
basis. One of the possible bases is the following orthonormal subset of basis diads
{ei ® e;} of the form:

1
aj=e; ®e; aIV:ﬁ(e2®e3—l—e3®e2),
1
arr = ez ® ey, av:ﬁ(e1®e3+e3®e1),
arrr = e3 @ es, ayr = E(ez ®e; + e ®ey).

A basis in the six-dimensional space is called a poly-basis. In the above poly-
basis, any symmetric tensor of the second order is specified in the following way:

a=a;e; ®e; = akag, K=1,...,VI, where a-b=agbg
and relations between representations a;; and ax are given by

ar = aii, ary = a2, arrr = ass,

(A1)
ary = \/5&23, ay = \/§CL13, ayr = \/§CL12.

Consequently, the linear projection from the space S into S treated as the six-
dimensional Euclidean space is described by the second-order tensor belonging to
tensorial product & ® §. This reasoning brings us to conclusion that the fourth-
order tensor A that represents this projection in the three-dimensional physical
space has all the properties of the second-order tensor in the six-dimensional
Euclidean space. Therefore, one can write

A=Ajuei®ej Qe ®e = Agrag @ar.
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The set of all basis diads {a; ® a;} is the basis in the space S ® S. Components
Ak, depend on components A;j; of the IV-th order tensor A in the basis {e;}
in the physical space, in the following way:
A Anse Auss V24113 V2A111s V2A1e |
Agor1 Assoe Asazs V2Az3 V2A213 V2A9010
Asz11 Aszzs Assss  V2Assas V243313 V2As310
V242311 V2Ag300 V2Az333 2Azs03  2As313 2Ass1a
V2A1311 V2A1300 V2A1333 2A1303 241313 241310
| V241211 V241220 V2A133 2A1203 241213 241912 |

(A2) [AkL] =

The following products can be obtained in two alternative, but fully equiva-
lent ways (a,b € S; A,;B,CeS®S):

a-b= aijbij = CLKbK,
b:A-a@bij :Aijklakl or bK :AKLCLL,
D=AoB & Djju = AijmnBmnkt or Dk =AxmBur,

where Qg , bij, Aijk’l; Bijkh Dijlk and aK, bK, AKL, BKL7 DKL are related by
Egs. (A.1) and (A.2).

It should be stressed that, due to the fact that the tensor A represents linear
projection between spaces of the symmetric second-order tensors, one obtains
Aijii = Ajitn = Ayjii- Note that in the case of the stiffness tensor L and the
compliance tensor M, additionally one has to do with diagonal symmetry, Axr =

Ak (Aiji = Agiij)-
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