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FLOWS IN CONVERGING SLITS AND PIPES
AS FLOWS WITH DOMINATING EXTENSIONS

S, ZAHORSKT (WARSZAWA) -

*The concept of plane and axi-symmetric ﬂows with dominating extensions (cf. [1. 2]} is
applied to moderately converging flows in slits and pipes. it is shown that many properties
of the flows considered essentially depend on the extensional v1scosﬂy function as well as
its derivative with respect to the extension rate.

1. INTRODUCTION

In our recent papers [1, 2] the concepts of plane and axi-symmetric
flows with dominating extensions (the so-called FDE approximations) were
extensively developed. In the. subsequent papers [3, 4] some applications
of the above flows were presented for ~viscoclastic flows between two
rotating cylinders as well as for viscoelastic boundary layers in stagnation
point flows.

: In the present contribution another application of flows with dominating

- extensions, i.e. the flows in converging plane slits and converging circular
~ pipes frequently met in many practical situation is discussed in greater
. detail. To this end it is assumed that certain regions of plane slits and
. circular pipes are moderately converging to apply consequently thin-layer
- approximations, on the one hand, and to consider dominating extensional
_effects, on the other (cf:[S5, 6]) By assumption of the model considered
the straight parts of plane slits and circular pipes exhibit no extensional
effects and can be related to the correspondmg P01seu1]1e flows of purely
viscous fluids. :

2 FLOWS WITH DOMINATING EXTENSIONS *

“All' the essential details concerned with the concept of plane and axi-
ymmetric flows with dominating extensions can be found elsewhere [1, 2]
" the present, we repeat’ only some fundamental relations necessary for
understanding further considerations. '
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Let us consider plane velocity fields in the following form:

u*(x, y) = gx+u(x,y),

21
@1 v¥(x,y) = —qy+r(x,)),

where ¢ denotes some extension gradient, and u, v are additional velocity
components in the system of Cartesian coordinates (x,y). We assume,
moreover, that the flow considered. is realised in“a thin layer of fluid,
ie. the characteristic dimension [ in the x-direction is much greater than the
Jayer thickness h, and ¢ =/l < 1. It ‘may happen for small vorticity flows
that the diagonal terms of the corresponding velocity gradient are more
meaningful as compared with the remaining terms (cf. [1, 2]).

The flows with dominating extensions (FDE) can be defined as such
thin-layer flows for which the constitutive equations valid for purely exten-
sional flows of an incompressible simple fluid, viz. (cf [2]). .

(22) T=-pl+f; Ay +,Af, trA =0, T4

where p is a hydrostatic pressure, A; — the first Rivlin—Ericksen kinematic
tensor (cf. [7]), and the material functions f;, B, depend on the invariants:
tr A}, tr A}, may be used in a form lincarly perturbed with respect to
_gradients of the additional velocity field. '

= Introducing the above constitutive equations into the equations of dynamic
equilibrium and retaining the highest order terms with respect to g, we arrive
at the following governing equation (cf. [13): .

J-o

AT ap o (wY, , u
23 -]+
( _) oy [2_ dg . 0x <8y) : ﬁl. ay*
where ﬁ1 {g) can be called ‘the ‘extensional  viscosity function. Looking for
an’approximate solution of Eq. (2.3) in the form: B :

ey a =G wb)—a,

where .‘w(y)--is.é functibn.'of y énly, we see that any. i.sdl‘uti.(')n' of thé.
simplified equation: ' '

Oh”'”"m#wn%%wwécﬂmm'

satisfies Eq. (2.3) for dp*/dx = C (a+x), where p* = —T?2 ie. for a parabolic
dependence of pressure p* on x. For other functions p* we can also
use Eq. (2.5) assuming that C weakly depends on x treated. as a par-
ameter. _ o L o o
In the casc of axi-symmetric fiows the velocity field is assumed in the
form: - :
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26) w*(y, x) = gx+u(y, x),

) 1 1
v (y, x) = —5 qy+}—u (¥, x),

where ¢ denotes some extension gradient, and u, v are additional velocity
‘components in the system of cylmdr1cal coordinates (y, ¥, x). 'If, moreovet,
‘the characteristic dimension ! in the x-direction is much greater than the
radius h, and ¢ = h/l <1, we arrive at the following governing equation
instead of Eq. (2.3): -

' dp a { ow\? aw |
en gl3la ) (%) 5
where _

(2.8) B@=bi 1B q.

can also be called the extensional viscosity function {cf. [2]).
Looking for an approximate solution of Eq. (2.7) in the form (2.4),
we have instead of Eq. {2.5)

29) . (y)+(%€——ﬁz) W2(y) = C = const.

Any solution of thesabove equation satisfies Eq 2.7) for dp*jdx = C (x+x),
i.e. for a- parabolic dependence of Ppressure p* on x; otherwise C depends
‘on x as a parameter

The nonlinear Eq. (2.5} as well as Eq. (2.9) are special Riccati equations
for w and can easily be solved for the appropriate boundary conditions,
. In what follows we shall require that for Eq. (2.5):

- (210) - u*(y=+h=0 or w(xh=
6u

.(2.11) ;0= 0=0 or W(0)=0

and similar conditions for Eq. (2.9).

3. VISCOELASTIC FLOWS IN CONVERGING ?LANE SLITS

. Let us consider a moderately converging region in a plane slif shown!
in Fig. 1. The thickness of a slit changes from 2k, to 2hs, while x,
- and x, characterize positions of the cross-sections at which the- flows
- considered become purely viscous Poiseuille flows, The latter quantjties are
etermmed at the end of this Section. ‘
The solution of Eq. (2.5) satisfying the boundary conditions (2 11), (2 12)
eads to
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FiG. 1.

2
3.1 u* = a-;x [ln cOoS /y%zv —In cos y] for >0,

— _ .
(3.2) u¥ = a;x [ln ch_| —y%i-—ln ch —y] for . y<0,

where

g _AC,,  HAQ
(33) “hd T TR T tharn

h as well as 'y depend on x and Q denotes the constant volume discharge.

H stands for a number parameter defined throughout the relation:

S 'dp*
dx

HB (@) Q

G34)
( ) 2h3 >

=Clatx)=—

and more precisely determined a little further.
In the case of purely viscous fluids (f; = fo = const), we have, instead
of Egs. (3.1), (3.2), :

(3.5) u* = (a+x) o (2 —h) = ! (dp )(2 hz)',.

ﬂ 28, .
where
: ' = J%_;-
(3‘6) S . Cr = 243 (a+x)’

thus for' Newtonian fluids H = 3. ' '

For slight variability of the extensional viscosity functlon B1 (q), ie. for
reasonably small values of A and k2 Egs. (3.1), (3.2) expanded into a series
with respect to y lead to ' -
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* HQ v ¥ 4
o ekl 200
Bu”;"

and
_ _HO
B lyesn 2K (” )

Thus for Newtonian {fluids we obtain

_ 30 v
(3.9) b= E(l 7?2)'

The continuity of flow (constant volume discharge) expressed by integration
of Egs. (3.1) or (3.2) over the slit thickdess 2h, viz. -

(3.8)

2 -
(3.10) Q=2 a—;x “:ln cos \/y% —~In cos:\/}_z] dy = const,
results in the following relations:

(3.11) —%—=—|iincos\/j_:+—\/17L(\/§):l f;:»r >0,

(3.12) %=|:lnch«/—y—\/1__y f,(f—v;)] for y<0,

where

.(313) L= —[Icoszdz, L(x)=|Inchzdz,
, 0 0

denote the Lobachevsky and the modified Lobachevsky functions, respectively.
The graphs of these functions have been presented in the paper [1].
According to EBgs. (3.11), (3.12) the volume discharge can also be

expressed as

4 H TS | '
(3.14) = ——-——Vhlilncos\/;+——ﬂL(\/§)} for y=0,
37 Vr

4

H ' 1 - ’
(3.15) :AVh[inch —y— = L(,/—y)] for y<0, -
3 v .v‘_.-y

~where V denotes the maximum velocity at the axis. 'qu small values of the
parameter y we vrrive at
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vy, !
(3.16) - H=3(1+?+...) ,

independently of the sign of y. The diagram of H (y) calculated from exact
Egs. (3.11), (3.12), simplified Eq. (3 16) and other approximate relations are
~shown in Fig. 2.

45
Hiy) o
: -
401 ot
- 35
e - — — — — — —— — — —
251
H=3(1s15 y] "
201 H=3(t-Ygy). -
H=3(1-Y5y)
15 EXACT
0
‘Fig. 2.

The unknown parameter & can be determined under the assumption that
constant C (cf Eq. (2.5)) is exactly the same at the beginning and the
end of a slit, ie. for x=0 and x= —1 as well (Fig. 1). This assumptlon
means that ‘

(3.17) o apm )y L _ () 1
I dx Jo.oa \ dx J_; a--1

and we have finally

hO 3 I:[1 —1
(3.18) "’:'1[1_(}71) E)_] ,

or as consequence of the above formula:,
h\? . 4
(319) -  n= (,7‘) o o
0,

where ‘the corresponding subscripts 0 and ‘1 refer to various guantities
defined at the ends of a slit. :
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Since, on the other hand, at x = X and x = —~(I+x;) the corresponding:
| pressure gradients (driving forces) for viscoelastic and purely viscous fluids
must be the same, it results from Eq. (3.4) that -

Bo

(3.20) | H1 =350

fwhere B, = f1 (0) |

The so far unknown quantities x, and “x; (Fig. 1) can be determined’
on the basis of the requirement that the corresponding ‘maximum velocities
(at the axis) for viscoelastic and purely viscous fluids are exactly the same.
Thus we have from Egs. (3.1), (3.2) and (3.9) '

s 04 1
321 D xp= —a—— ,
_( ) ° 4 ho Incos/yo
: L L34 1
(3.22) I+x = <
o . 4 hi In CoS /71

Similar expressions valid for small valies of y can' be written in the
following form:

623 0T I G-HY)
AH?Q
(3.24) Xy +l=0a— 120, G—H,) "

Knowledge of the extension gradient g, although not involved explicitly
in the above formulae, is essential for proper determination of the extensional
viscosity function f(g). This gradient can be determined as the difference
in the axial velocities at both ends of the converging reglon of a slit.
Thus we obtain

50 [6+y0 ho 6+y1:,

3.25 -
(3:25) T BT 54y By S

and for small values of y, approximately,

| 30 ho
(3.26) q_4_hoz(1 hi)

At the end of the present considerations we intend to clarify the procedure
of eventual numerical calculations. First, knowing the gradient g, we can
determine the corresponding values of the extensional viscosity function f (g).
Next, the values of the parameters H, and H; result from Eq. (3.20).
On the basis of Egs. (3.21)+3.24) the quantities X, and x; can be calculated.
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Lef'us also remind that the parameters H,, H, are directly related to y,,
71 by Egs. (3.11), (3.12) or (3.16). - . . :

4. VISCOELASTIC FLOWS TN CONVERGING CIRCULAR PIPES

Let as consider a moderately converging region of a circular pipe shown
in Fig. 1. The radius of a pipe: changes from h; to ho, while x, and x,
characterize positions of the cross-sections at, which the flows. considered
become purely viscous Poiseuille flows. _ o o
The solution of Eq. (2.9), satisfying the boundary cbhd_itions of the type
(2.10), {2.11), can be written again in the form (3.1), (3.2) with

_1{dp . AC ., HAQ
“1) A‘?(‘d;{“ 2)’ T T W

where @ denotes the constant volume discharge. H stands again for a number
-parameter defined in the following way: :

: dp* __Hpl@Q

In the case of a purély viscous fluid (f = B, = const) we. have again
Eq. (3.5) with

_ 40

H

@3 N T

thus for Newtonian fluids H=4. . . . . . P

For slight variability of the extensional viscosity function f(g), ie. for
reasonably small values of 4 and/or y, Eqgs. (3.1), (3.2) expanded into a series
with respect to y lead to

. HOQ N, (,
@9 3 HW[(l_F)+€(1_k4)+__,],

fand e

4.5 L - - 1 aal N
“3) Ty LT T ( +3)
Thus for Newtonian fluids we obtain :
4.6) _ . ub= R—hz‘( _ﬁ)

The continuity of  flow (constant volume discharge), ie. integration of
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Egs. (3.1) or (3.2) over the area of pipe cross-section with the radius h, viz.

h

- 2
47 Q= a-:lx J‘[ln cos \/y % —1n cos ﬁ:l 2ny dy = const,

o}

gives

(4.8) % = —[In cos \/}7+% K (ﬁ):l for >0,
(4.9) % = [ln ch —y—% K (\/jqj):l fqr y<0,

where

x x

(4.10) K(x)=—[ zlncoszdz, K(x)=|zlnchzdz,
b : 0

can be catled modified Lobachevsky functioﬁs of the second kind (cf. Eq. (3.13)).
According to Egs. (4.8), (4.9), the volume discharge can also be expressed as

| { H 2
(4.11) Q:—?TVﬂ:hz[lncos yhl——;K(\/;)] for y=>0,-

_ H : )
(4.12) Q:%yVnhzl:lnch«/—y—mi—K(N/—y)] for y<0,

where V denotes the maximum velocity at the axis. For small values of the
parameter y, we arrive at

2 - -1
(4.13) H=4(1 +g ) ,

independently of the sign of y. The illustrative diagrams of H (y) are shown
in Fig. 3. '

The unknown quantities a, Hy, Hy, xo and x; can be determined in
a way similar to that discussed in Sect. 3. The parameter a also résults
from Eq. (3.18). Instead of Eq. (3.20) we obtamn from Eq. (4.4):

' Bo
4.14 : Hy=H,=4 .
“14) o= Hi=% 50
The distances xo and x; -can be calculated either from
204 1

(4.15) . XoT — )
: : 7 In cos /7o
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Hab 0+ 2y)'
H:M?J/Si}}
= 2
H=4[1-%4v] .
04 08 12 16 20
v
Fig. 3. S |
204

o .
416 I+x, =a+ s
( ! ) o mht  In cos \/y

or, for small values of y, from

AHZQ -
1 (4.17) Xo = ] (4Q*Ho) —-a,
' : AL @
(4.18) X+l =a—

6mhi (4—H,)

Defining the extension gradient g in a way similar to that presented
¢ in Sect. 3, we arrive at ' : : SENTE R

b _ 30 6y B3 6+?1] :
@19 1= whi | [9+2y0 hi 942y, |

- and for smalil values of y, approximately at

30 'h%)
(4.29) ey (l hi)

The possible procedufe of numerical calculations is exactly the same as
that mentioned in the previous section. To this end, however, some. infgr- :
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mation on the dependence of B, and fi, on the extension gradient g is.
necessary.

5. FINAL REMARKS

On the basis of the considerations presentcd we can formulate the
following remarks:

1} Flows in converging regions of plane slits and circular pipes can be
treated as flows with dominating extensions. This approach seems to be
especially useful for the case of moderately converging slits and pipes.

2} The method proposed is very sensitive for non-vanishing values of the
extension gradients; in the regions of straight slits or pipes the flows are
viscometric and the fluid behaves like a purely viscous one.

3) The regions in which viscoelastic (related to the extensional viscosity)
effects are important are usually longer than the corresponding converging
parts of lits and pipes. This is in agreement with general experimental
observations (cf. [5]). ' L

4) Tt results from Egs. (3.7), (3.8) and (4.4), (45) that for an increasing
~ extensional viscosity the velocity profiles in converging regions of slits and
pipes are remarkably “flattened” as compared with those for purely viscous
. fluids; a decreasing extensional viscosity exerts quite opposite effect.

5) The flows considered depend not only on the extensional .viscosity
functions themselves, but also on the corresponding rates of increase or
decrease, ie. on their derivatives with respect to the extension gradients.
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STRESZCZENIE

PRZEPLYWY W ZBIEZNYCH SZCZELINACH I RURACH
JAKO PRZEPLYWY Z DOMINUJACYMI ROZCIAGANIAMI

Koncepcja plaskich i osiowo-symetrycznych przeplywow z dominvjacymi rozciaganiami
{por. [1, 2]} zostala zastosowana do umiarkowanie zbieznych przeplywéw w o szezelinach
i rurach. Pokazano, e liczne wiasnodci rozwazanych przeplywéw istotnie zaleza zaréwno
od funkcji lepkodei na rozciaganic jak i jej pochodnej wrzgledem szybkodcei rozciagania.

" PesoMme

TEYEHUA B CXOOANMXCAH H.[IEJII)AX W TPYBAX KAK TEUEHMA ..

C ,[[OMHHHPYIO[IH/IMH PACTﬂ)KEHHHMH

Kontienius nﬁockﬁx H"ocecuM'eT'pHmmx TEYCHHH C ,i;oMﬂthymmﬂMn pacrkeHAAMu
(ep. [1, 2] TPAMEASHa K YMEPEHHO CXOJHIMMCH TEUCHHAM B O§ibaX H prGax Iloka-
3aH0, YTO MHOTHE CBOMCTRA DACCMATPUBAEMEIX TEUEHHH cymcCTBe HAS 3aBUCAT TAK OT hyaRTIHE

BABKOCTH - H&  PACTAXCHHUES, . KAK. 1. 0T 'CC HpOIdE}BO,[[HOH GO OTHOICHHIO K . CKOPOCTH
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