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The purpose of this paper is to present the theoretical and numerical background
adopted in the course of -the development of the computer program TEMAS (Thermo-
-Mechanical Analfysis of Structures). The paper demonstrates the effectiveness of the finite
element analysis in predicting the behaviour of inelastic materials subjected to mechanical
and thermal Joadings. A number of computational examples dlustrate the paper. '

I. InTrODUCTION

In this paper the computer-oriented approach to problems of isothermal
elasto-plasticity is extended to cover thermo- elasto—plastlc‘ materials [1—35].
This is done by assuming that material properties are temperature—dependent
Every effort is exerted to preserve the classical structure of finite element
equations describing inelastic materials, which assures efficient computer
implementation of the theory. The resulting incremental equanons contain
additional terms attributable to nonisothermal conditions and can easily
be used to modify any existing finite element program'des:gned for the
analysis of inelastic materials under isothermal constramts

. The decoupled thermé-mechanical formulation is consndered only and it
is based upon the assumption that no mechanical terrps enter the heat
‘conduction equation. The temperature distribution is assumed to be known
in the region considered — otherwise the solution to the corresponding Fourier
- problem can be obtained by using computer programs described in [6],
for instance. In Sect. 2 we briefly review the governing| equations of the
theory of thermo-elasto-plasticity. For the sake of generahty a combined
isotropic-kinematic hardening rule is employed. In Sect. 3 we discuss details
of numerical implementation. The Newton-Raphson 1terat10n scheme coupled
with the radial return algorithm tailored to accommodate thermal effects
are used as the basic numerical concepts. Section 4 contains a number of”
numerical illustrations.
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The formulation presented in the paper is meant |to be used for
infinitesimal deformation analysis only. However, the generalization to cover
finite deformation effects can easily be accomplished along %he lines suggested
in [5], for instance. In fact, the coding of the program is based on such

a peneral theory, and the follow-up paper presenting detailj of our numerical
experience with finite deformation thermo-plasticity is to be publishcd shortly.

2. HiGH-TEMPERATURE INELASTIC ANALYSIS

- The purpose of this section is, first, to give a short review of the
equations governing the thermo-elastic-plastic flow so as to faciliate later
both the presentation of a numerical algorithm and the discussion of
examplary analyses of structures which will follow in Sects. 3 and 4.

The notation and derivation of successive equations will be commented
upon in a more extensive way only at these places at which issues not
already standardized in the recent literature will appear.

We assume the linear clastic constitutive law to hold for the elastic
“strain contribution &&? to the total strain g, so that

21) 0y = Cim (EklﬂGg;n_ﬁg?); Lj,k,1=1,2,3,
where o, stress tensor, Cg, — tensor of clastic moduli, &f” — plastic

.strain tensor, &% — thermal strain tensor. A
We further assume that the thermal strain &0 may depend. in any
complex way on temperature & : :

(2.2) P = ay @)
The time derivative of Eq. (2.2) gives
(2.3) P =0,0)0,

: - day :
with the coefficients Zﬁzfj = ;éf assumed to be known.

In order to characterize the plastic strain we assume the yield condition -
m the form

Q4 floy.0)=F(oy)—0, 0= % ofyof —0y = 50, = 0,

in which the tensile yield stress o, is a known function of its two

_ . . . 1 . .
arguments & is the stress intensity, of; = iy O O Is the stress deviator
and §®) is the equivalent (or effectivc) plastic strain. The associated flow
- tule reads _
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af 3 o? 3 . [3
'(PI):iﬁ——-—-zi-—iz/’L —_ ..:T(Pl) —_— 1.,
(25) &ij agij 2 o, . 9 1 & 5 i,
where:
3 of . : * :
;= 5 . unit normal to. the yield surface (2.4) in the stress space,
; .

. 2 . . . . , .
gl = /-3_ oD gD — plastic strain rate intensity (or rate of effective

plastic strain), _
In Eq. (2.5) the relation 1= " has been used, which directly results
from substituting Eq. (2.5) into the definition of &
The consistency condition which assures that the stress point remains
on the yield surface during plastic flow reads: '

af _ lilg

ij

gleh _a&

a0 0=0.

g = const

(= const

The isothermic hardening ‘parameter &= & (5®), ) is defined as

oo
@7 g ¢= oEtey @ = const
o oo 3 el :
By using the identity P M Eq. (2.6) may be transformed to yield
. ij y
(2.8) ' &—ée“@t %50,
' o o0 ’
or '
do oo, df
@9) ST @ e
Defining the non-isothermic hardening modulus as
g
* deo
(2.10) E-—or
we arrive at
' % do, do
210 C= T

It is often convenient to use other hardening moduli defined as

2 * 7o
(2.12) . h=Z8 h=704,

and then the flow rule (2.5) becomes
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1
(2.}.3) 8.371) = e (nm d'kl) n”

h
Noting that

#* 2 o, do
(2.14) h=h+ 3 86 Jaten
Eq. (2.13) may be transformed to the form
. 1 ) /21 fa,

(2.15) S(E?J)=W(nk1 Gpr) i — 3 h 0 0 nyj.
The first part on the RHS of Eq. (2.15) corresponds to the isothermic
process (f = 0) whereas the second part is the correction due to thermal
effects.

The rate form of the constitutive equation (2.1 is

(2.16) b1y = Cijer (e — 58P — 04 (0)0)1-0,,
with
(217) (;k'u = Cijkl (Ekl . sk[ '—_akf (B))

The term given by Eq. (2.17) indicates that we do not exclude the possibility:
of aCf:ounting for temperature variations of elastic material constants. By
substituting Eq. (2.15) into Eq. (2.17), we obtain’

1 12 1 do,
218) &, —Cum|:3k1 h(nmnamn)nkl+ ENN 9”}:1 akIB:I+g-ij‘_

The standard derivation of the incremental constitutive law leads to the
final relationship

‘ Ciona Co 1 *
{219) .= C, ijst Test - prkl Tpr fg 61 9 +G_ Aoy |,
2] il h+nmn Cmnw " \SkL T YR ) ij ij

where . —

2 1 aO' y * .
_ [2 1 0% 5
(220) e npr Cprst nst 3 h 69 ) O'Pl’ npr + "ii %

Ji-:ci. n
i Jat Pt B P Crnn g 3 h oo

Using the explicit form of the elastic constitutive tensor, Eqs (2.17), (2,19)
and {2.20) simplify to the form .

2Gn;,; 2Gny, % ok
WJ(kl o )"‘O'ij“'“ Tijs

Q21) &= [CW

(222) O- = [/15 5;(1 + G (51]( 511 + 5:1 61?()] (Skl _'5}(1; - yp (6))3
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(2.23) [2 doy
O' H,
. 3 86 [ 9

o= 20n; Y

In order to geheralize the above results to the case of a mixed isotropic-
-kinematic hardéning, we consider the following yield condition:

(2.24) f=Floy,oy)—0, (&, 9) = \/; Th OG0y =G —0, = 0;

where now the stress intensity & is formed from the components of &}
which is the deviator of the tensor &;=0,,—a,;, «; representing the
translation of the yield surface in the stress space (the so-called back
stress). Introducing the concept of a mixed hardening by considering the
stress rate as being composed. of two parts corresponding to the isotropic
and kinematic hardening, respectively,

(2.25) Coy= 60468 = foyt(L—P) oy,  Pel0,1].

B being the material parameter which determines the proportion of each
particular hardening type, we mploy the consistency condition f = 0 in the
form of the two following equations:

of 4 O
doy Oy M

i ij

=0,
Mo
(226}

of o 05 . 00
do, WG g 00

ti

The standard derivations lead now to the evolution equations for the
back stress

(2.27y - %—(1 ﬁ) he‘:ﬁ”,
and for the yield hmlt cf Eq (2.10)

% .
(2.28) - . G, = pEE,

The replacing in Egs. (2.180—2.20) of the stress o;; by o;;—ay;, together
with Eqgs. (2.27) and (2:28) completes the theory of associated non-isothermal
plastic flow with isotropic-kinematic hardening provided appropriate loading-
-unloading conditions are employed. These have the form

elastic process:

or

(2.29) g = O'y and nij O'—lj_ 3" aﬂy 9 ‘~<-‘ O

?
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plastic process:

— ' ! | 2 o
(2.30) G =0y and nijaij—/?’ 66;9 >0..

(2 do,
The expression ny c'r,.j— T 59

loying the so-called trial rate of stress glven by
(2.31) . G(tr) Cukr (Bkz”"akz 9)

Using the relation

| 1 .
2.3 Copa b=t ) = Gyt Cogu o s

which, when multiplied by Cijk, EXpTresses smlply thc addltmty of strain’
rate contributions, we obtain . :

(2.33) iy Gy = hy CW (B — 31(1 0) m’ﬁm,
or . -
(2.34) fyy Oy = ny; 60 __mi___%

i B+np, Cpg g

In view of Eq. (2.34), the condition of local plastic “loading”z takes the
form . '

h / 2
. —_——p Y - L o0 f g =0
(2.35) Ftn, C nu a1y — 3 66‘ 0 > or: g . oy

prst

The reason for takmg the definition of elastic and plastic procésses' in
the form (2.29), (2.30) is that the, theory becomes directly applicable to
softening and no attention needs to be pald to the sign of the actual

hardening parameters. We aiso note that for h< 0 ‘and ﬁ>0 a stopping
criterion needs to be introduced to ensure that the actual yield limit does
not become negative.

&
3. FINITE ELEMENT EQUATIONS AND INTEGRATION OF THERMO ELAS'HC PLASTIC h
CONSTITUTIVE LAW

Without going into details of already standardized derivation, [3, 5], we shall
now consider the fundamental equations describing the continuing equilibrium.
of a discretized system in the form

(3.1 . Kpi=R
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Equation (3.1) represents a system of N simultancous ordinary differential
equations of the first order with N unknown functions r=r(f), N being
the total number of degrees of freedom. The structure is assumed to be
subjected to a slowly varying load R = R (z).

The build-up of the tangent stiffness matrix K, is a standard issue in
the finite element methodology and refers directly to the rate form of the
material constitutive law (2.19).

The system (3.1) has to be solved with appropriate initial corditions
of the form

(3.2) Cr(0)=F,.

Any kind of numerical integration scheme known in the vast literature
can be employed to solve Egs. (3.1) and (3.2).

In this study for instance, the full Newton—Raphson iterative scheme was
adopted as described in [3, 5]

The only aspect of the procedure which requires additional comments
in this paper is the integration of the constitutive law which is the central
issue in the algorithm.

To construct the integration algonthm for the material model at hand,
we may make use of Egs. (2.21)—223), (227)—(2.30), (2.35). The widely
accepted and effective algorithm for integration of isothermal elastic-plastic
constitutive laws is known as the radial return scheme, [5, 7]. It is based
on the idea that the normal vector at the subsequent iteration is approximated
in terms of the stress 6®° which is defined as
(33) GipP = ol —ay.
The generalization of the algorithm valid in the thermo-elastic-plastic case
goes as follows, (parameter s=1,2, .., numbers iterations at a given load
level).

Step 1. Obtain the s-th approximation to incremental strain Aef by
solving Eq. (3.1) for the s-th correction to Ar and using the explicit
relation between generalized nodal displacements » and elemental strains ;.

Step 2. Calculate the (s+1)-th approximation to the trial stress increment
s S *
AO-(W}( +1)_ ,“ (Agi(d)"“ak: g)

STEP 3. Calculate the trlal stresses

O.(tr)(s+ 1) - o.(tr){s)_l_Ao.(n W5+ 1)
"(ﬂ MWs+1) _ o-(ﬂ’)(s"' 1) ch)’

STEP 4 Calculate the dcvmtorlc part of GG+
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1

6%}?}D(s+ 1) Eg;r}(s+ 1)_? 6_—}({]:-)(31”1)5“'
Step 5. Calculate the product of a7P¢* D by itself
A= 0—.5.?')1)(.5'+ 13 &%r)l)(s+ 1)‘
Step 6. Check the yield condition:
o 3
if 5 A< o then o{§tV = glnistD)
()
*

¥y
ot D = o (elastic process)

{(s+1) _
O'y =4a

go to step 1

if 714 > ol)? then go to step 7 (plastic process). N

Step 7. Calculate the approximation to the unit normia_}: -

B 3 a.s.tjr)D(s-!- 1)
nij = 3 mﬁg}g) .

Ster 8. Calculate the effective plastic strain increment?:- _

1
+¢

=(pl =)D (s +1
A = (o'g-’) (s )—a‘g,s)).

Step 9. Update
afit 1) = oW+ _2GAE®D .,

oD = g4 BEAEPD,
2 _
0'55'§+.1) = ‘xgj)*‘? (1—p) EA5WD 35,

S(igl](s+1) — ag-’”m + AgPD Pijs

glebs+1) g(pl){S)_FAg(pI[

4. NUMERICAL ILLUSTRATIONS

As the first example we consider an axisymmetric cylinder of an infinite
length loaded by a uniform internal pressure and a ring of concentrated
forces (), subjected to a temperature difference A8 between the inside and
outside cylinder surfaces (Fig. 1 and 2). The linear distribution of tempera-
ture across the cylinder thickness is assumed. The material is assumed to
be elastic-ideally plastic with E = 208000 [MPa], v =03, ¢, = 235 [MPa],
and o
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Fi6. 1. Infinitely long cylinder subjected to concentrated force P, pressure p and tempera-
ture A8,
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Fig. 2. Discretization mesh.

(4.1) | e = 0405,

with the thermal expansion coefficient o == 0.00002.

The yield limit 5, is first assumed to be 1nsen81t1ve to temperature.
The loading program conmsts of applying the forces Q in one step without
exceeding the yield condition and a gradual proport1onal increase in p
and 48 (Fig. 3). Radial displacements at selected nodes are shown in Fig. 4
for load steps 6, 8 and 12.
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Fra. 3. History of loading,
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Fig. 4. Radial displacements at the boundary.

Figure 5 shows the circumferential strains: total, plastic and thermal,
and accumulated effective plastic strain during the deformatlon process at
element no. 1, integration point D.

~ Assuming the variation' of the y1eId limit stress with temperature accordmg
to an apprommate formula

x10?
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o, s
Element 1
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2 4 & §. . W 2
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Fig. 5. Circumferential strains ‘ai elem. 1 for femperature-independent yield limit.
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Fic. 7. Effective stresses at subsequent’ steps.
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FiG. 8. Plane stress problem subjected to temperature variation.
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Fig. 10. Vertical displacement at the boundary after steps 2, 4 and 7.

' 2
4.2) 7 ’ G, = 0y Iﬁ(gé%) ),

. We may observe changes in circumferential total strains at element 1 int.
point D for o, = const and o, =, (f), Fig. 6.

Changes in stress intensity & at elements 1, 6 and 12 during the

~ loading process are shown in Fig. 7. The yield limit is first achieved in

- the element 1 whereas the element 12 remains elasnc up to the 10th
load step.
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As the second example, a plane stress problem shown in Figs. 8 and 9
is taken. The material is the same as in the previous case but two
different moduli are considered: E; =0 and E4 =033 E. The loading is
assumed to consist of a uniform temperature field with the nodal temperatures
increasing from 20°C to 240°C with the step of 20°C (46 =load step
number * 20°C).

Uy [mm]

o1
008

0.06
a4
00z

Horizontal displ.

A ‘ B

Fig. 11. Horizontal displacement at the boundary after steps 2, 4 ‘and 7.

The vertical and horizontal displacements at the boundary C-D for the -
load 2, 4 and 7 are shown in Figs. 10 and 11, respectively. ‘
Figures 12 and 13 illustrate changes in stress intensity for two plate
elements (integration point A) located at the upper boundary. For- the
“no hardening” case (Fig. 12) the element 5 does not go plastic, whereas
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Fig, 12..Effective stresses for no hardening material.’
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Fic. 14. Plastic zones development for no hardening material.
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FiG. 15. Plastic zones development for hardening material.

the hardening material implies completely different stress distributions, -
(Fig. 13), with plasticity in the clement 5 as well. The development of
plastic zones is shown in Figs. 14 (no hardening) and 15 (hardening).

5. CONCLUSIONS

_ The paper describes an effective numerical algorithm for the analysis
of a variety of complex thermo-elasto-plastic problems. The computer program
“based upon the algorithm has been shown to yield effective solutions to
selected benchmark problems. Some simplifying assumptions have been intro-
duced for the sake of presentation compactness — accounting for more
general material characteristics is computationally straightforward. The work
is being continued towards the analysis of viscoplastic materials under
dynamic loadings.
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STRESZCZENIE

NUMERYCZNA ANALIZA ZAGADNIEN TERMO-SPREZYSTO-PLASTYCZNYCH

W pracy zaprezentowano teorelyczne i numeryczne podstawy programu termomecha-
nicznej analizy konstrukcji TEMAS. Przedstawiono efektywna metodg analizy konstrukcii
przy wykorzystaniu elermentéw skoficzonych z uwrzglednieniem niesprezystego zachowania sig
.materialu pod obcigZeniem termicznym. i mechanicznym. Zamieszczono, réwniez przyklady
obliczen. ; : : :

Pearome

UUCITEHHBIN AHAJINA3 TEPMOVIIPYTOMJIACTHYECKUX 3AJ1AY

B paBoTe NpencTAaRieHsl TCOPETHICCKHE H HMHCISHHBIC OCHOBLL IIPOrpAMME TepMOMEXa-
miveckoro amammsa komcrpykmuit TEMAC. [peacrasnes >OHEKTHBHBIA METON AHANH3A
KOHCTPYKIGHi, NIPH HCONH30BAHWH KOHEWHBIX OJEMEHTIOB C yueTOM HEYIPYTOTO HOBEASHHA
MaTepHAIA-TIOJ] TEPMIUUCCKHM W MEXAHMUCCKMM HATPYMEMMIOM. TloMeTEHBl TOXKE TPUMEPHT
DPACYETOB.
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