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The shape of end heads of a pressure vessel is usually torispherical. Buckling of this head is
one of the most important points for designing of pressure vessels. This subject has been studied
extensively since last years. In this field, the experimental methods are expensive and need a lot
of time. In addition, because of lack of accuracy in the producing procedure, sometimes two
models with identical geometry show different buckling behavior. Hence the use of finite element
method in analyzing of buckling behavior of heads has a lot of benefits. In this dissertation,
the finite element method has been used. Firstly with nonlinear buckling analysis, the effects
of geometrical parameters such as thickness, knuckle radius and diameter of cylindrical part,
on the buckling of heads have been studied, then the buckling behavior of different kinds of
heads with identical geometry have been analyzed. For the nonlinear analysis we used the Arc
Length method which can control the load level, the length of the displacement increment and
the maximum displacement. The most important characteristic of this method is its ability to
converge, even when the behavior is highly nonlinear. From the verification performed with
the European Convention for Constructional Steelwork (ECCS) code, it has been confirmed
that the nonlinear buckling analysis could assure accurate results for the buckling strength.
In the case of internal pressure, it has been shown that initial imperfection had no effect
on the pre-buckling behavior and buckling pressure of head; it just affects the post-buckling
behavior.

1. INTRODUCTION

The theories of thin-walled structures applied on the pressure vessel were re-
viewed by TENG et al. [1]. Their results concerning linear and non-linear theories
of thin-walled shells of revolution for numerical evaluation of buckling have been
presented.

Regarding to existence of non-continuous stress distribution in cylinder-head
intersection, the choice of head considering the geometrical limitation and pro-
duction facilities is the most important point in designing of a pressure vessel.
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Torispherical heads are used commonly in pressure vessels because of their sim-
ple manufacturing and good strength in high pressure conditions (Fig. 1). The
buckling strength is one of the most important points in the design of pressure
vessel [2]. Internal pressurization is often an important loading condition for
pressure vessels. Finite element method is often used in the buckling analysis of
pressure vessels due to its capability.
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Fia. 1. Geometry of torispherical head. a) 2D-view with parameters and boundary
conditions, b) view a the half-crown.

The hydrostatic buckling of shells under different boundary conditions (B.C.)
has been investigated using the energy method [3]. Results have shown that in
shells with medium height under different B.C., buckling load is obtained by
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applying a scalar coefficient to the buckling load of the pin-ended case, but this
method is not applicable to the long shells, for which the circumferential waves
occurred from buckling are higher than 3.

TENG et al. [4] have introduced a numerical model, aided by the method
of eigenmode-affine, in the non-linear analysis of elastic shells. As the shells
are sensitive to the initial geometric imperfections, predicting of their buckling
resistance would be precise if those imperfections were taken into account.

In the torispherical heads, by increasing the ratio of knuckle radius per vessel
diameter (r/D), dimension of the spherical part decreases. Thus, the spherical
part as a part of the head becomes weaker and in a defined r/D, a notable fall
in buckling resistance occurs [5].

European recommendation ECCS [6] introduced several experimental rela-
tions for design of spherical shells. In a recent analysis, WANDERLICH |[7] analyzed
the buckling behavior of spherical shells under external pressure.

Here we will discuss the buckling load and influence of different parameters
on it. We will try to suggest some propositions for limitation of buckling.

2. NUMERICAL SIMULATION METHODS

Buckling analysis can be carried out by numerical methods such as eigen-
value buckling analysis or non-linear buckling analysis, using the finite element
approach. Eigenvalue buckling analysis predicts the theoretical buckling strength
(the bifurcation point) of an ideal linear elastic structure. Bifurcation buckling
refers to the unbounded growth of a new deformation pattern. Imperfection and
material non-linearities can not be included in this analysis. Thus, the buckling
strength obtained by eigenvalue buckling analysis may differ from that of a real
structure and often yields unconservative results. Therefore, care is needed when
using this method in actual evaluation of buckling strength.

Non-linear buckling analysis, including geometric and material non-linearities,
is usually the more accurate approach and is therefore recommended for design
or evaluation of actual structures. There are two methods for obtaining buck-
ling strength by means of non-linear buckling analysis. One basic approach is
to constantly increase the applied loads until the solution begins to diverge,
which can be obtained by means of the load-controlled buckling analysis. Us-
ing this approach, a simple static analysis will be done, with large deflection
extended to a point where the structure reaches its limit load. Another ap-
proach is to constantly increase the displacement to obtain the snap-through
buckling curve shown in Fig. 2. Increasing of the displacement can be obtained
from displacement-controlled buckling analysis. In non-linear buckling analysis,
a sufficiently small load or displacement increment should be used to obtain the
expected buckling strength.
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3. MODELING

Non-linear finite element method with large deflection analysis was performed
using the commercial Ansys software. A three-dimensional finite element model
was generated using Ansys 9.0 as shown in Fig. 3. To studying the buckling of
pressure vessel with torispherical head, we modeled the intersection of cylinder-
head. The influence of welding and forming on a material property were ne-
glected while the effect of welding can be accounted for by modifying the yield
stresses. The length of the cylinder was kept at 4\ (A is the linear elastic merid-
ional bending half-wave length given by 2.44v/Rt), to ensure that the boundary
effects at the far end of the cylinder do not interfere with the behavior of the in-
tersection [9]. The model was meshed by means of SHELL93 element. SHELL93
is particularly well-suited to model curved shells. The element has six degrees
of freedom at each node: translations in the nodal z, y, and z-directions and
rotations about the nodal z, y and z-axes. The element has the properties of
plasticity, stress stiffening, large deflection and large strain capabilities. The ma-
terial of the intersections was assumed to have typical properties of steel: an
elastic modulus of 1.9 x 10° MPa; Poisson’s ratio of 0.26, and yield stress of
206 MPa, and exhibits an elastic-perfectly plastic behavior.

For modeling of the geometrical imperfections in ANSYS package, we applied
them in the form of initial deformations on the model [8, 10, 11]. For this reason,
first we analyzed the model by using the linear method of buckling and then,
by using the “Update Geom” order, we assumed the values of the magnification
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Fic. 3. Finite element model before buckling.

factor. In fact, by the resulting displacement of different buckling resolutions,

a new model with geometrical imperfection was obtained. This factor of geo-

metrical imperfection, which is in fact a deviation from the perfect model or
the initial deformation, was presented by Wy. The buckled model is illustrated

in Fig. 4.

Fic. 4. Finite element model after buckling.
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4. CHOICE OF THE RESOLVING METHOD

For the solution of a nonlinear problem, the choice of solution method and
load step (referred to as the time step in the ANSYS software), is very impor-
tant. It should take into account the anticipated structural behavior and the
characteristics of the specific solution method.

Prior to carrying out a nonlinear buckling analysis, it is often beneficial to
undertake a linear (eigenvalue) buckling analysis, in order to obtain some appre-
ciation of the buckling behavior. It may also help to identify those regions in the
model that will first exhibit nonlinear response, and at what load levels these
nonlinearities will develop.

There are several methods available in ANSYS for the solution of the non-
linear buckling equations. They include the Newton—Raphson and Arc Length
methods. For geometrically nonlinear analysis, the Newton—-Raphson method has
been shown to be one of the best methods available. The most important charac-
teristic of this method is its ability to converge even when the behavior is highly
nonlinear. The method we start with is also extremely accurate and generally
converges quite rapidly, provided a realistic initial estimate of the displacement
vector. With this method it is also possible to control the solution error and
estimate the rate of convergence, since for any particular load step, the itera-
tions continue until the specified solution error is achieved. Preliminary ANSY'S
FE analyses of the columns, in which compression loads were applied, showed
that the Newton—Raphson method converged quite rapidly. For the nonlinear
buckling analysis, coarse time steps may be used in the pre-buckling regime,
but fine steps are required close to the buckling load and in the post-buckling
regime. Different time steps may be used in the pre- and post-buckling regimes
through the multiple ‘load steps’ option within ANSYS. However, it is not easy
to choose the appropriate maximum load level in load-controlled analysis using
the Newton—Raphson method.

Moreover, the Newton—Raphson method fails when a snap-through occurs.
The Arc Length method does not have this drawback and allows one to control
the load level, the length of the displacement increment and the maximum dis-
placement. Therefore, in the nonlinear buckling analyses, the Arc Length method
was used [12].

5. DETERMINATION OF THE BUCKLING PRESSURE
The Southwell plot technique is usually an effective approach in determining

of the buckling load of the corresponding perfect structure [11]. This method
was also adopted in this study, but unfortunately, it was not found to be ap-
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plicable to our problem. The reason is probably that in our research, the load-
displacement curves did not have generally the rectangular hyperbolic nature,
which is basically necessary for application of the Southwell method. In our
study we used a similar method as Theng‘s study on the cone-cylinder inter-
section [9]. In this approach, the curves of load-displacement for nodes in one
circumferential path near the cylinder-head intersection were plotted. In the ini-
tial stage of loading, the curves for all nodes were similar, indicating a dominantly
axi-symmetric behavior. As the pressure reached a certain value, the curves of
nodes at different locations started to diverge from each other. The divergence
of these curves is an indication of the growth of non-symmetric buckling defor-
mations. The load corresponding to the divergence point is the critical buckling

load (Fig. 5).
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Fia. 5. Determination of buckling pressure (curve of load-radial displacement
for torispherical head; t/L = 0.002, /L = 0.06).
6. PARAMETRIC STUDY

The geometry of torispherical head was introduced with the ¢/L, L/D and
r /L parameters, in which ¢ is the thickness of vessel which has identical values in
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heads and cylindrical part, L is the radius of spherical section, r is the knuckle
radius and D is the diameter of cylindrical section. The common heads used
for pressure vessels which have radii of sphere equal to diameter of the cylinder
(L/D =1). Our study was limited to heads with

t/L <500 and r/L > 0.06.
The result was compared with the design rules given in European Convention

for Constructional Steelwork (ECCS) [6]. The ECCS rules are based on buckling
of the knuckle and the limit pressure is as given in Eq. (6.1):

1900 ( 0.825
p_ 120(5)
(6.1) L D

B ()

where ¢ = 1.0 for crown and segment steel heads and ¢ = 1.6 for cold-spun steel
heads.

By verification performed with the ECCS code, as Table 1, Fig. 6 and Fig. 7
illustrate, it was confirmed that the nonlinear buckling analysis could assure
accurate results for buckling strength. The discrepancy between the numerical
analysis (FE) and ECCS [6] correspond to the geometrical imperfection and
residual stress, which were taken into account by the ECCS code and not by
the FE.

Table 1. Buckling pressure of vessel with torispherical head (L/D = 1).

t/L r/L Pansys (MPa) Prccs (MPa) Error %

0.002 0.06 0.20872 0.179 16
0.08 0.22807 0.276 9
0.1 0.34149 0.332 2.8
0.14 0.43883 0.438 0.09
0.17 0.48337 0.514 5.9
0.2 0.542663 0.588 7

0.003 0.06 0.397296 0.400 0.67
0.08 0.46551 0.507 8
0.1 0.53235 0.610 12.7
0.14 0.8196 0.805 1.7
0.17 0.95637 0.944 1.2
0.2 1.058 1.08 1.9
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Fia. 6. Curve of critical pressure versus r/L (t/L = 0.002).
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Fia. 7. Curve of critical pressure versus r/L (t/L = 0.003).

6.1. Influence of knuckle radius on buckling pressure

In the internal pressure vessels, due to the existence of circumferential tensile
stresses in both the cylindrical and spherical parts, the intersection is deformed
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Fia. 8. Circumferential membrane stress in intersection [13].

to the internal side. Thus, both of the spherical and cylindrical parts near the
intersection, as illustrated in Fig. 8, was subjected to circumferential compressive
stresses, and so the buckling deflection occurred in both of them.

Figure 9 shows the buckling modes predicted by finite element analysis for
the sphere-cylinder intersection with ¢/L = 0.002 and r/L = 0.06. These defor-
mations are periodic around the circumference.

AN

after deformation
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F1a. 9. Buckling modes.
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The growths of buckles can now be clearly seen in Fig. 10. The number of
periodic waves on the ring can be counted from this plot to be 39. It should be
noted that this counted number is only a rough indication, as the buckling waves
are not so uniform.
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F1c. 10. Influence of knuckle radius (¢/L = 0.002 and /L = 0.06).

Numerical results for all the points of intersection between the head and cylin-
der have shown clearly that the post-buckling behavior of internally pressurized
sphere—cylinder intersections is stable (Fig. 10).

The curves of Fig. 11 show the influence of knuckle radius on the pressure
buckling with different thicknesses. In the analysis, the value of the radius of
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Fi1c. 11. Influence of the knuckle radius on the buckling behavior of the torispherical head.
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spherical part (L) was kept constant (L = 0.5 m). When varying the ratio r/L,
only the knuckle radius (r) was varied. We observe that for all the thicknesses,
increasing of a radius leads to increasing of the buckling pressure. So the knuckle
radius is an influential parameter for increasing of buckling resistance.

6.2. Influence of the thickness on the buckling pressure

Figure 12 illustrates the influence of ¢/ L on the buckling pressure for different
ratios of r/L. Increasing of ¢/L leads to increasing of the buckling pressure. The
rate of increase, compared to increasing resulting from the ratio /L, is higher.
The slope of the curves of Fig. 12 as compared to those of the Fig. 11 shows it.
Thus the buckling pressure is more sensitive to the thickness.
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Fia. 12. Influence of ¢t/L on the buckling pressure of the torispherical head.

6.3. Influence of the radius of the spherical part on the pressure buckling

In torispherical heads, usually the radius of sphere is the same as the cylinder
(L/D = 1). Buckling of this kind of heads is discussed empirically. For the heads
with different radii mentioned, result of FE for different ratios of L/D is shown
in Fig. 13. The curve shows that by increasing of the radius of the spherical part,
the buckling pressure decreases. So by decreasing of the curvature of the crown,
the buckling pressure of the vessel decreases. In the same way, buckling pressure
of the vessels with a plate head is much lower than of the vessels with a clear
spherical head.
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Fia. 13. Curve of the buckling pressure versus L/D for torispherical head.

While these observations may suggest that the direct use of bifurcation loads
in design may be somewhat unconservative, a closer examination of the results
has revealed that for many of these intersections, the plastic limit load of Eq. (8.1)
is lower than the one-third stiffness load, or both the one-third and half-stiffness
loads. This indicates that the strengths of these intersections are controlled by
the plastic limit load, and the fact that the bifurcation load exceeds the stiffness-
based buckling loads is not of a real concern. The direct use of the bifurcation
loads in design is therefore generally safe.

7. CHOICE OF THE EQUIVALENT GEOMETRIC IMPERFECTIONS

For a numerical buckling analysis it is essential, that well comparable and
most general applicable equivalent imperfections should be used. To achieve this,
the shape and the amplitude of the applied equivalent geometric imperfections
have to reflect the effect of the really existing initial imperfections. But currently,
there are no sufficient guidelines for the imperfection parameters of a numerical
analysis. In [5] it is only stated, that the pattern of the equivalent geometric
imperfection shall be chosen in such a form which leads to the most unfavor-
able effect in the buckling behavior of the shell. The ‘worst’ imperfection is
not specified in detail and presently, no practically verified theory exists, which
could indicate it. If the instability problem is caused by geometrical nonlinearity
and the prebuckling behavior is almost linear, the eigenmode-affine imperfec-
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tion patterns, which are derived from the classical linear eigenvalues analysis,
are applicable. Besides the fact that these imperfections are unrealistic, we use
eigen-affine imperfection in our study.

8. RESULTS AND DISCUSSION

8.1. Analysis of development of the circumferential wrinkles

Due to the buckling, circumferential wrinkles are developed. The number and
amplitude of theses wrinkles increase by increasing of the internal pressure. The
number and amplitude of the developed wrinkles are a criterion to evaluate the
buckling resistance [14]. Creation and development of wrinkles could be followed
by a curve of radial displacement versus the distance in a circumferential path,
in the vicinity of intersection of the cylinder and head of the vessel (Fig. 14).
Although by accounting of the number of wrinkles in this curve, the number of
circumferential wrinkles in the head could be obtained.
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Fia. 14. Development of buckling wrinkle /L = 0.06 and ¢/L = 0.002.

8.2. Comparison of buckling pressure with limit pressure

The limit pressure of the vessel (Pr) with torispherical head is computed
using Eq. (8.1) [15] derived by SHIELD and DRUCKER [16]:
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in which Pgp is the limit pressure (psi), Psp = Pr,, Fy is the yield stress (ksi).

Figure 15 shows the critical buckling pressure (P,,.) versus the pressure ob-
tained from Eq. (8.1). The curve shows that the buckling pressure is most often
higher than the limit pressure. It means that the limit pressure is more criti-
cal than the buckling pressure. Thus for the vessels with torispherical head, the
buckling pressure as a design criterion will not be sufficient.
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FiGg. 15. Curve of buckling pressure versus limit pressure.

8.8. Influence of initial geometrical imperfection on buckling behavior

The analysis of imperfection sensitivity was performed with the initial im-
perfection values of Wy/t = 1, Wy/t = 0.2 and Wy /t = 0.5. The perfect model
had ¢/L = 0.002 and r/L = 0.06. The buckling loads of all imperfect models,
as illustrated in Fig. 16, were equal to the buckling load of the perfect model
and had P, = 0.2087 MPa. But the post-buckling behavior of imperfect models
was different from post-buckling of the perfect model. The nearly perfect model
(Wo = 0.2) had the same value as the buckling load and the post-buckling
behavior was such a perfect model. For the most imperfect model (W, = 1),
the post-buckling behavior had the most important deviation from the perfect
model.
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Fic. 16. Influence of imperfections on the buckling behavior.

The buckling pressure of all imperfect models being 0.208 MPa, we can con-

clude that imperfections do not influence the critical buckling pressure and pre-
buckling behavior of the vessel. Only the post-buckling behavior is influenced
by imperfections. Thus the buckling behavior of pressure vessels with torispher-
ical head, because of their stable behavior, is not sensitive to initial geometrical
imperfections.

9. CONCLUSION

The non-linear FE analysis brings the numerical results in vicinity of the
experimental ones. Scatters are generally due to the geometrical imperfec-
tions and residual stresses in a vessel.

Buckling pressure is influenced by the thickness and height of the vessel.
Larger thickness and height lead to a better buckling resistance.

The influence of knuckle radius in decreasing of the compression stresses
and also increasing of the buckling pressure is evident.

In the case of uniform internal pressure, the initial geometrical imperfec-
tions have a small influence on the pre-buckling behavior and buckling load
of torispherical heads. Their influence is considerable on its post-buckling
behavior.

Using of the buckling pressure criterion in design of torispherical heads
would be conservative.
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