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PLASTIC DESIGN OF A PRESSURE VESSEL

CHENG LI, XU BING-YE and HWANG KEHCHIH (BELING)

The limit loads are given for various collapse mechanisms of a pressure vessel consisting .
of a cylindrical shell and hemispherical drumheads, Boundaries of different collapse mechanisms
are determined in a parameter space encompassing the applicable range of vessel geometries.
Limit loads corresponding to the neighboring collapse mechanisms remain continuous across
these boundaries. These results shed some light on the plastic design and failurc assessment -
in pressure vessel techmology.

1. INTRODUCTION

A cylindrical vessel closed by hemispherical caps represents one of the
structural configurations frequently encountered in engineering. Nevertheless,
an analytical solution covering all applicable parameter ranges ‘has not been
achieved as yet, Satisfaction of the continuity conditions between the spherical
and cylindrical portions of the structure, as well as the complications intro-.
duced by four geometric parameters, make an exact analysis of the problem
difficult. Such a situation gives a strong impetus to the development of
a simplified plastic design methodology based on limit analysis. In plastic
limit analysis, an appropriate complete solution (standing for the solution
which is identically assessed from both the lower and upper bound approaches)
is frequently needed to provide consistent data on the plastic design of
composite vessel structures.

Certain progress has been achieved in the present paper on the basis
of the results given by the authors in Ref. [1]. These recent results make
possible a convenient application of plastic design methodology in the afore-
mentioned type of pressure vessels. By means of a simplified version of
the two-moment limited-interaction yield condition, complete solutions are
found for the whole applicable range of cylinder-hemispherical caps geo-
metries. Information on the boundaries between adjacent collapse mechanisms
are included. All results are written in analvtical form and illustrated by
graphs; they shed some light on the plastic design and failure mode
assessments in pressure vessel technology.
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2. COLLAPSE MECHANISMS AND YIELD CONDITIONS

Four geometric parameters, i.e., thickness of hemispherical cap, T, common

- radius of cylindrical and hemispherical shells, R; cylinder thickness, £; and

cylinder length, L, characterize the present vessel-drumhead geometry. They

can be replaced by three mdepcndent dimensionless parameters, such as

= /T, T/R and L/R. The vessel is subjected to internal pressure P,. The
dlmensmnless limit load is written as

@1 p=F R/Ny,

where ultimate tensile force N, represents o, T with ¢, denoting the yield
stress. According to the geometric and loading characteristics, the collapse
modes can be classified into seven cases, as shown in Fig 1 to Fig 8.
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Fi1G.-3. Collapse mode of mechanism 2.

Only one complete solution for the above seven collapse mechanisms
was obtained in Ref' {2] by using two-moment limited-interaction yield con-
dition for the same configuration. However, it is rather difficult to obtain
the remaining ones by assuming such a yield condition. In many engineering
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F16. 6a. Stress profile of cylinder of mechanism 3. b, Stress profile of hemisphere of
mechanism 3,

F16, 7. Collapse mode of mechanism 4.
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FIG, 8a. Stress profile of cylinder of mechanism 4 b Stress profile of hemisphere of
mechanism 4.

application, a simplified version of the two-moment limited-interaction yield

condition (its bounding surfaces in stress resultant space are shown in
Table 1) is sufficient. to meet the. requirements of the engineering design.

Table 1. Yield condition

Cylinder - ] Hemisphere
" dress equatioh_ ': | strain rate vector stress equation stram rate v?ctor'

i o : (éﬂx Eys xx) ) . (39, é¢’ K, xd)

mp=1 (| p(1,0,0) m=1o . #(1,0,0,0

me=1 |1 u(0,1,0) : g = 10,1,0,0)
—Mgtie=1 p(—-1,1,9 - —ngtag =1 - p(-1,1,0,0)
=mp=1 . 1 u(-1,0,0) - =1 p(—1.0,0.0
LT = ' 1 : ui0, —1,0) - g =1 p@,-1,0,0
TR = : ‘ nu(l: _110) . " Hg— g = A ﬂ{17""13050)
mo=1 | g0, tmg=1 | 10,0, +1,0)

= e }1{0,0,——1) i-’"q‘":l } #(050,(]; i])

- 3 ' BAS{C EQUATIONS
The sign convention and the junction conditions are illustrated n Fig. 9.
At the hemisphere-cylinder junction, the following relations must be sarisfied:

T N¢1¢=n/2=inxﬂ0:Nl! Mtﬁ]qé:nﬂ=Mx‘x=0=Mis _
(3~1) Q¢t¢=n}2 == Qxix=0 = Ql: W1¢=n12 = W]x=0$
Yls—zn = Wli=o (in absence of plastic hinge).

The equilibrium equations can be expressed in the form
AN, jdx =0, dM Jdx=Q,, dQ./dx = Py—NyR for 0=x<1,

d (M sin §) = M, cos ¢+ 0y R sin ¢.
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" The geometrical relations are as follows:

. é=—WR, é=VR,
| Gg=0, #y=—d?W/dx:, Y= _dWidx for 0<x<l,
(3.3 bg=(Vcigg—~WYR, = —cigd(V-+dW/dg)/R?,
& = @V/dg—WYR, %= — -j_¢ (V+dW/dgyR?,

= —(V+dW/dgyR for 0<¢ Q%

4. LIMIT LOADS AND BOUNDARIES BETWEEN VARIOUS MECHANISMS

Based on the upper bound and lower bound theorems of limit analysis,
the limit loads for various mechanisms can be derived [1). They are complete
solutions in the sense of satisfying both the statically and kinematically
admissible conditions. A combination of different geometrical parameters
corresponds to a single collapse mechanism. All the combinations corres-
ponding to a specific collapse mechanism form a connected domain in the
parameter space. These domains would fill the whole parameter space provided
ali the collapse mechanisms were exhausted. The inter-mechanism boundaries
can be determined by statically admissible conditions. The limit loads and
the boundaries for various mechanisms are discussed below.

4.1, Limit loads

Mechanism 1 (cylinder collapse mechanism )
4.1) p=K(Q1+2w?), w?=22/KTR.
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Mechamsm 2 ( cylmder collapse mechanism )
4.2) _f : p,=2K.
Mecl;anwm 3¢ combmed collapse mechanism )
4.3) . pa=2(n2—n+KL/R)(r/2— 11+2L/R)
rwhete the angular location of plastic hinge circle # is' determined by

@4  2—K){(1-sing+@/2—9) (L/2R)] (L/R)~
~(1+K?) (n/2~- 1n+2L/R)(T/4R) = 0.

- Mechanism 4 (combined collapse ‘mechanism) :
The expression for p, is identical with that in Eq (4.3), where g is
determined by

(4.5) (2-K) [1—sin n} (L/R)~(n/2—n +2L/R) (T/2R) = 0.
Mechanism 5 (combined collapse mechanism) |
4.6) ps = (7/2+ KL/R)(n/242L/R).
7 Mechanism 6 (combined collapse mechanism)
4.7 ps = 2—T/R.
- Mechanism 7 ( spheﬂcai mechanism )}
(4 8 9. py=2.

.

4.2. Boundaries between various mechanisms

The complete solations of the preceding seven mechanisms are valid
- only in certain regions of the geometrical parameter space. The boundaries
between various mechanisms are obtained by examination of the statically -
admissible conditions, especially by satisfying the corresponding yield con-
ditions. _

By analyzing the analytical expressions and the computational results,
several conclusions may be drawn.

" Boundary between mechanisms 1 and 2
By equating p, to p,, one arrives at

(4.9) w? =2,

what implies that mechanism 1 and mechanism 2 are connected along
a boundary determined by continuous trans:hon of the complete solutions

- : * from mechanism 1 to mechanism 2. When w? > 2, the complete solution
" for mechanism 1 is relevant, otherwise the complete solution of mechanism 2 -

. i appropriate.
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Boundary between mechanism 1 and 3
From p, = p; it can be obtained that

" (4.10) (2—1() (L/R)[l—cos 53 jﬁgiwz)]”@_m (L/R)? —
~(L+ K} (TR2R)] 5— fﬁi e (+KH(T/2R)=0

The above formula can be abbreviated as fi5 (L/R, T/R, K) =0. The param-
eters {(L/R, T/R, K) Satlsfymg Fq. (4.10) form a surface of the parameter
space which describes the boundary between mechanism 1 and mechanism 3.
Complete solutions of mechanism 1 and mechanism 3 correspond to geo-
metric parameters located at the right and left-hand sides of this boundary,
respectively.

Boundary between mechanisms 2 and 3

From p, = p, one obtains the condition

@.11) (2-1()[1 ~ oS If["' ](L/R)+[(2 K) (L/R)* -~
KL/R

—{1+ K3 (T/2R)] "+ TA-K)

—(T2R)(1+K?) =0

which may be written in a simplified form as f,, (L/R, T/R, K)=0. On

the surface f,5 (L/R, T/R, K) = 0, mechanism 2 and mechanism 3 are linked

up. The complete solutions of mechanism 2 and mechanism 3 can be found

at the right-hand and the left-hand sides of this surface, respectweiy
Boundary between mechanism 3 and mechanism 4

(QL/R)(K2—1)
4.12) 2(2-—K)(L/R)|:i~vcos 5T KWZ_(KZ_I):[—[ZL/R—I-

(L/R) (K2 —1)
2-K) K—~(K~1)

] (T/R) =0

The above formula can be written in the form f;, (L/R, T/R,K)=0, in
which the two mechanisms are linked up. The right-hand side and the
left-hand side of the surface are dominated by the complete solutions relevant
to mechanism 3 and mechanism 4, respectively.

Region of validity of mechanism 5 (boundary of mechanism 3 J

Mechanism 5 is equivalent to the limiting case of mechanism 3 in
which the angular location of plastic hinge circle 5 tends to zero. In the
region of validity of mechanism 5, the geometric parameters (L/R, T/R, K)
must satisfy the following equation:



CRTA
20000} %
!

w000 +—

720,00

|
|

1 3 4 L7
80.00 |- g
|
|

40.00

2 f
1 1 % L i L i -
1) 425 050 47 100 125 180 175 200 g

Fic. 10,
R/T A
200,00 (-
160.00 1+~
12000 |-
80.00 -
7 3 7
40.00 —
| I | | _
0 0% o5 07 100 125 150 178 200 K
' Fic. 11
T ﬂh
20000 -
6000 |-
1260.00
8000 y P 7
40,00 |-
I i LA I i J_/

- -
il 075 050 075 100 T4g5 ik 178 200 K
: FiG. 12. '

. [638] . ..



. 'PLA&T"[C"D ON 6F'A'PRESSQR VESSEL:

I4+—=1=0.
( - 4L) 0

Region of validity of mechanism 6 ( boundary of mechamsm 4)

Mechanism 6 is cquivalent to the limiting case of mechanism 4 in
which n is taken to be zero. In the region of validity of mechanism 6,
the geometric parameters (L/R, T/R, K) must satlsfy the followmg equdtlon

{4.14) (2—K)—(T/R) {1+ nR/4L) =

Region of validity of mechanism 7

Mechanism 7 represents the pure membrane failure mode of the henn—
spheres, their ragion of validity being
4.15) K=12

Common boundary of mechamsms 1,2 and 3
Common boundary of these three mechanisms is described by the follow-
ing two relations
1 —[T/R+(L/R)*}/4—cos [(L/RPAT/R—I}/R?)] =0,
K ={L/Ry*/T/R).

At this common boundary, one has

(4.13) - - (2_[()(1-!-%) (T/ZR){I-{-KZ)

(4.16)

"(4L/R) (1 +=L/4R}

(@.17) T/R = mRA+LR

= (n/2)(n/2+ L/R).

Common boundary of mechanisms 4,5 and 6
At this boundary, one has

(4.18) T/R = 2— K1 +7R/AL), K = (1+nL/2K)?,

Boundaries in the parameter space between different neighbouring collapse
mechanisms are shown in Figs. 10—12. They have been prepared for repre-
sentative cross-sections in the parameter space of L/R=0,1,1 and 10,
respectively.

5. Discussion

In engineering practice, determination of the limit- load is a crucial
step for designing or testing a pressure vessel. According to the formulae
given in this paper, the values of the corresponding limit loads as well
as the structure failure modes can be found for a set of given geometric
parameters. It can be shown that p increases monctonically as K increases
when the values of L/R and T/R are fixed. As K approaches 2, p tends
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to the membrane solution of the hemispherical shell. A gap stil remeines
" between mechanism 6 and mechanism 7 where we failed to identify the
appropriate collapse mechanism. The limit load in this unidentified region
is, however, bounded by the value ps=2—T/R from the left side and by
ps = 2 from the right side.

According to the analytical expressions given in the present paper,.
a computational program is prepared providing the value of limit load.
An optimal design of the vessel geometry can also be achieved by this
program according to the pressure applied to the siructure.

The analysis and computations presented are carried out within the
range of geometrical parameters used in engineering practice. The analytical
solutions and computational data provide a rational, quantitative basis for
vessel design and can be included in the standards of designing or testing
of the combined pressure vessel structures. Effective and accurate determina-
tion of the limit loads and the associated failure modes will certainly have
a significant effect on the design and construction of composite pressure
vessels, resulting in a more reasonable safety margin, economic gains and
better material utilization,
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STRESZCZENIE

NOSNOSC GRANICZNA NACZYN CISNIENIOWYCH

Podano wartoéci obciazen granicznych dla’ roznych mechanizmdéw zniszczenia zbiornika
cisnieniowego ZloZonego z powloki walcowej zamknigtej powlokami pélsferycznymi. Okreslono
granice réznych mechanizmoéw zniszczenia w przestrzeni parametrdéw zawierajacej zakres stoso-
walnych geometrii zbiornika. Wartosci obcigzen granicznych na tych granicach zmicniaja sig
w sposob ciagly. Wyniki analizy rzucajs pewne fwiatlo na analizg plastyczng i okreflenie
warunkow zniszczenia w konstrukcji zbiornikéw cisnieniowych.

PE3WOME

IIPEAEABHAS BECYIAR CIIOCOBHOCTh HATNIOPHBIX PE3EPBYAFPOB

B paboTe paioTcd anaveHHs NPEREALHEIX HACPYIOK B CAYYAC DA3IHIHEIX MEXAEH3IMOB
PAIPYHICHNN IHIIHADHYECKOTO, 3aKPRTOFO nonycdeprycckimy 000N0uKaMn, HAHOPHOIO Pe3ep-
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Byapa. Onpefienciibl IPeleNsl A PA3MLHEIX MEXAHHIMOB PA3PYIICHMH, B TAKOM AHANA3OHE
UapamMeTPOB. IO yUTCHE rEOMETPHS BCCX HPAKTHYECKH HCIONb3YEMLIX PAHOBROHOCTEH pesep-
BYapos. 3HQUERRA NPERCTLHEIX HATPYIOK B 9THX OPEICTBHLIX CHYYasX HIMEHATCS HETIpEPbiB-
auiM obpazoM. PesynbraTet aHAIN3A DPASLACHAIOT HPOGICMSI, CBAZAHHEIE ¢ ITACTHICCKMM
4HATHIOM H 3a/ia4ed ONpeNeneHan YonoBHi papylenns, B CTPOCHHM HAROPHBLIX DE3EPBYAPOS.
TSINGHUA UNIVERSITY, BELJING, CHINA.
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