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AN ENGINEERING MODEL FOR COMPACTION OF SAND
UNDER CYCLIC LOADING

A SAWICKI (GDANSK)

A model for compaction of saturated sand subjected to cyclic loading is proposed. .
The model has been formulated in terms of the cyclic stress and strain amplifudes. The
first equation describing the model is the compaction law, the second one is fhe stress-
-strain relationship between cyclic amplitodes. A correlation of constitutive equations with
cyclic loading data is presented. Pore pressure generation under cyclic loading in undrained
conditions is evalualed to illustrate predictions of the model.

I. INTRODUCTION

+ The problem of sand compaction due to cyclic loading has been
extensively investigated in the last two decades, and there already exists
a vast literature on the subject, both experimental and theoretical. Tt seems
that the paper of Serp and Lee [17] has inspired that research and,
at the same time, has contributed to a befter understanding of the behaviour
of saturated granular materials subjected to cyclic loadings. The first stage
- of research involved the development of new experimental techniques and
some attempts to describe qualitatively the behaviour of sand under cyclic
loading, see: Siver and Seep [20, 217; Seep and Pracock 18], Fivw et al. [4],
Youp [23]. The paper of MartiN et al [8] recapitulates paramount
confributions in the field, up to the mid-seventies. The sirongest of these
contributions deal with the establishing of factors which influence compaction
and so-called “shear modulus”. MArRTIN ef al. [8] made also an important
observation regarding the relationship between compaction of dry sand and
pore pressure generation in a saturafed granular material. According to that,
the pore pressure increment in saturated sand caused by cyclic shearing is
equivalent to the increment of compaction of dry sand divided by the
skeleton modulus of compressibility.

Since the mid-seventies special efforts have been made to develop
theoretical or empirical models describing the behaviour of sand subjected
to cyclic shearing. 1t is not possible in this paper to make a survey
of existing approaches to the problem. Extensive reviews are provided by
Zienkirwicz et al. [24]. Finn [3], Ismigara and Townara [6], and MarTIN
and Seep [9].
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Morranp and Sawickr |11, 12] presented a constifutive theory for the
compaction of saturated sand, which had the minimal ingredients necessary
to reflect the observed cyclic loading phenomena. The constitutive relations
of differential type were constructed heuristically from typical qualitative
response. An influence of pore pressure on compaction was incorporated,
and the generation of pore pressure under cyclic shearing was investigated.
The theory was applicd to shcar wave propagation through a soil layer
subjected to an earthquake—hke motion, see: SAWICK! and MOR’LAND
115, 16].

The model of Morland and Sawicki is general in the sense that it is
three-dimensional and valid for an- arbitrary stress {or strain) history. This
generality, however; makes the engineering applications of the model rather :

dlfﬁcult exccpt for some snnplc boﬁhdary vaiue problerns The duratlon
of an earthquake, N is a small number, usually N < 20. In the case of-
foundations loaded by machines, N is even of order 10°. Solving a boundary

value problem for each cycle of the loading history is practically possible _:
when N is a rather small number, so the computer runs could not be quite

long. For N measured in thousands of cycles one needs an approach
appropriate for engineering purposes. Such an approach has to reflect the
main features of soil behaviour on the one hand, and must be as simple
as possible to enable us to solve various problems of practical 1mportancc
on the other hand.

An attempt to construct such an engineering model for compaction:
~of sand subjected to cyclic loading is presented in this paper.

2. SATURATED SAND AS A TWO-PHASE MIXTURE

Saturated sand is treated as a two-phase mixture, with the solid grains
as one constituent and the water with dissolved air as the second one.
For the practically important stress levels the behaviour of both phases is
glastic, although in many approaches the fluid phase in freated as in-
compressible. _

Let “0® and "¢/ denote densities of grains material and pore water
respectively. A raised prefix E denotes quantlty intrinsic to a constituent

of a mixture, see MorLanp [10] :
The. respective partial densitics are defined as follows:

2y =09, =4,
where ¢ denotes porosity. The density of saturated sand is then

(2.2) . C e=¢+e.
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n a similar way, we shall define other “partial” and “intrinsic” quantities.

_'The' superscripts s and f will refer to the solid and the liquid phases,
espectively. The total stress tensor acting on a saturated soil may be
ivided onto partial stress tensors in solid and fluid respectively.

@3 - 6= 4o

If:is .very convenient to introduce the intrinsic stresses, which are defined
-as follows:

ey e=(-gfe, I=g' = g1,

where "p/ denotes intrinsic pore pressure, ie. the quantity which can be
~~ineasured in a saturated soil (in geotechnical literature: “p/ is often denoted
. by u, and means pore pressure). There is kpf 2 0. Note that a minus sign
" “in_ o means compression, MorLanp and Sawickr ([11, 12]} We shall be
. dealing with small porosity changes, so an initial -porosity ¢0 will ‘be used
in Egs. (2.1) and {24) as a reference one.

It has been assumed that the behaviour of both grains and pore fluid
is purely elastic, so intrinsic stress tensors evoke the elastic strains in both
phases. These changes are described by the intrinsic strain tensors “&® and
Eef in grains and pore fluid respectively. The intrinsic volumetric strains
are defined through densities (MorLanD [10]):

o . . E s - E bf
(2.5) =le=p— = N
o Q _
where the subscript 0 denotes initial intrinsic density of a respective phase.l‘
Partial volumetric strains are defined as '

. 0 o
(2.6) &= 1——, l————‘
: . 15 Qo

- For small porosity changes we have (Morcanp [10]):

o E_ s ¢_¢0
(2.7 _ 8‘——‘E+1_¢0,
{2.8) of = Yol ¢—go .
: $o

From Eqs. (2.7) and {2.8) it follows that partial volumetric changes are
possible in the case of both incompressible grains and pore fluid.

_ Intrinsic volumetric changes in the constituents are related to respective
- intrinsic pressures according to the following formulae:

(2.9) b= —an, M M =, Y,

where x, and x, denote the moduli of compressibility for grains and pore
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' , : | S P :
water respectively, and ‘p* = — tr “o°. The constitutive relations between

partial pressures p’, p* = (1—dy)%p* and partial dilatations &/, & for the
elastic behaviour of saturated sand are presented in MoriLAND . and
Sawicki [11]. In this paper we restrict our attention to a simplified situation,
when the grains compressibility can be neglected in comparison with the
pore fluid compressibility.. The common approximation »x, = 0, adopted. for
example by Verruur [22], is well founded for sands since ®y 2 30,
see Lamse and Wwirman [7]. Elastic porosity variation .is assumed to
depend linearly on partial pressures '

@) 0% o aprbp =4,

| >
where @ and b are coefficients given by the following formulae (see
MorianD and Sawicki [11]): :

1—d, 14y { 1—do '
211 a= - Y
@1 - a=—gmn b= T ey

Here x denotes the compressibility of the soil skeleton. For sands, » is
of the order 107% m?/N.

The system of equations, ‘including the momentum balance for both
constituents, for the elastic behaviour of saturated sand is presented by
MORLAND and SAWICKI ({11 12]). '

3. COMPACTION DUE TO CYCLIC SHEARING

It is well known that under cyclic shearing loose and medium dense
sands compact (see SILvEr and SEED [20], Seep and Siver [19], CueLrAr
et al. [2], Youp [231). It is so for both dry and free draining sands.
The compaction is measured by a progressive irreversible decrease of volume
induced by rearrangement of the granular structure. '

Most of experiments have been performed in one-dimensional cyclic
shearing conditions, under constant vertical load and constant cyclic shear
strain amplitude, The main conclusions which follow from those experiments
can be summarised as follows: 1) compaction depends on the amplitude’
of cyclic stréin 2} the. rate of compaction decreases as a number of cycles
N increases, 3) compaction does not depend on frequency of cyclxc loading,
4) compaction does not depend on the value of confining pressure, 5) compac-
iton depends on the izitial relative density D,.

These conclusions can be treated as the main features of the dry
for free draining) sand behaviour under cylic shearing (see SiLver and
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Seep {20), Youn [23], Martin et al. {8]) We shall neglect, in this paper,
factors of sec.ondary importance since we would like to construct a rather
simple engineering model for compaction, The factor of secondary impor-
tance is, for example, a shape of cyclic loading which is assumed here
not to influence the compaction. This means that a sinusoidal, trapezoidal

or triangular wave causes the very same compaction if the magnitudes .

of cyclic shear strain amplitudes are equal. Compaction is also assumed
to be frequency — independent, what is correct only in some range of applied
frequencies, but we treat eventual frequency dependence as a factor of
secondary importance and neglect it in the construction of our model.

After MorianD and Sawicks [11, 12], let us introduce the compaction
@ by the following formula:

Go—9
9o

where 4 is defined as the reversible porosity decrease (see Eq. (2.10)),
and @ defines the irreversible, posmve porosity change due to cyclic

(3.1) — A4,

shearing.
We shall assume the compactlon ]aw in the followmg form:

- where the superposed dot denotes the rate of change with respect to some

monotonically increasing parameter defined with respect to the cyclic loading:

‘sequence, This parameter was defined by Morranp and Sawickn [11;, 12]
as the accumulated deviatoric strain, after Bazant and Krizex [1] and

ZIENKIEWICZ et al. {24]. We shall assume the cyclic loading to be harmomc'
in time, so it is convenient to introduce a number of cycles N as a

loading parameter. Note that this variable has no meaning in a general

constitutive law, and applies only to the case of simple harmonic cyclic

loadings. The function H appearing in Eq. (3.2) has to be determined from
experimental data, J denotes some invariant of the strain tensor.

Let us introduce the following decomposition of the strain tensor g
(3.3) e=48",
where & and £ denote the cyclic and non-cyclic parts of &, respecnvely,
and assume that cychc strains are harmonic, ie.

(34) 0 E=éE,

where E denotes the tensor of cyclic strain amplitudes. The quantity J,

appearing in Eq. {3.2), is defined as the second invariant of strain amplitudes
deviator:

(3.5) : J .=_ % tr (E)?,
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~ 1 .
where E = E~—~§—(tr £)1. In the case of simple cyclic shearing there is:

t
G6) J=57

where 70 denotes the cyclic shear strain amphtude Let us separate the

_variables in Eq (3.2), so that
dd
3.7 : N = JH | (9},

where H, (®) is an unknown function. From Eq. (3.7) we have

dd

(3.8) ——__ = JdN = dS (®),
| H, @) @

and, subsequently,

(39) “‘fi ](\‘f) _J

~ When the cyclic sheér strain history is prescribed, we can determine from
~ Bq. (39) the function 5, ie.
N

(3.10) . S@)=]f J(N)4aN',
: 0

where a number of cycles is treated as a continuous variable. For a simple
cyclic shearing of dry sand at constant shear strain amplitude, there is

G.41) : S(@):%}%Nw—:z,' |

where z denotes a new variable.
S h - ’ - . /X Yo=3

—-—-""v Ho=2

30 40 AN

FiG. 1. Compaction curves at different sirain amplitudes (MARTIN et af, £8])
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From Eq. (3.11) we have
(3-12) =52 =10,

where the function f (z) has to be determined from experimental data.
The typical compaction data are presented in Fig. 1, after MarTIN et al. [8].
There arc three curves correspondmg to various magnitudes of the cyclic
shear strain amplitude y,. Here &* is an irreversible volume decrease of a dry
sand specunen subjected to simple cyclic shearing. There is an obvious
relationship between & and the compaction:

1-¢
(3.13) P=— 0 s
' o
|
W g-g7in(1e022) ——
| . /‘X
20k
v Vv
10},
i 1 1 | L i i 1 1 1 | W

0o w s 0w 4 0
2
=5 %
Fia. 2. Common compaction curve for the data of MARTIN et al. [8].

Figure 2 shows a new interpretation of the data presented in Fig. 2,
using a new variable z introduced in Eq. (3.12) Those data can be
approximated by the following function:

(3.14) @ =C,In(l4+C,2) = f(2),
where C; =87 and C, =02, if z has a unit 10°% and & has a unit 103,

8,=0.564
Emin= 0478

100

& P=F216 In(1+0.061Z}

[71]

x 30""&43
4 0 =100
20 v p=170

FEES OO N NN N S SR [ N
o 00 aog 500 g goa

1.2
Z=g Yo N

Fi. 3. Common compaction curve for the data reported by NEMAT-Nasser and SHoxooH [14].

-
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i follows from Bq. (3.15) that

(3.'1-5) - z= —él—— fexp (®/Cy)—11= S(d).
2 T
From Eq. (3.9) we have
(3.16) as@ 1
dd H,(P)
and finally
(3.17) H,(®)=C, C,exp (—®/Cy)= D, exp (— Dy P).

For our data there is Dy = 174, D, = 0.115. Figure 3 presents the densi-
fication curve for another set of experimental data (NEMAT-INASSER and
SHOKOOH_,V[I/-I-]). The examples presented in Figs. 2 and 3 suggest that
in the case of cyclic shearing of dry sand, the compaction @ is a function
of a single variable z. The coefficients C and C, appearing in Eq. 3.14)
are, in this case, material parameters which in general depend on the type
and initial structure of the soil. In order to establish respective relationships
(C; and C, as functions of relative density, etc), a lot of experimental
data is needed, and this problem is ‘beyond the scope of the present paper.
The compaction law suitable for our purposts has the following form:
do

(3.18) L= Do (—-D, P),

where, for ‘a given sand, D, and D, arc¢ numbers,

A STRESS-STRAIN RELATIONS FOR CYCLIC AMPLITUDES

Let us assume that a cyclic part of the stress tensor ¢ has the form
4.1) o =T,

where T denotes the tensor of cylic stresses amplitudes. We would like
to construct the stress-strain relationship between the deviators of T and E
(see Eq. (3.4)). For _one—dimensional cyclic shearing this relationship is of

the form

(4.2) _ 79 = GYo»

where 7o and o denote cyclic shear stress and strain amplifudes, respectively.
and G is the so-called “shear modulus™ ‘
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Incregse of

B

__FiG. 4. Shear modulus as a fonction of strain amplitade and effective mean pressure,

There are a few factors of primary importance which strongly influence
the shear modulus G, see SiLver and Suep [20], Haroin and DeNevich {51
a mean effective pressure p, a magnitude of cyclic shear strain amplitude
Yo, initial structure of soil. The typical qualitative dependence of G on j
and y, is shown in Fig. 4. As the first approximation we can assume that
_the shear modulus G depends only on a magnitude of mean effective
pressure:

- (43) G =G, p™

where m=0.5-07 {sec MARTIN et al. [8]). Usually m=0.5. Here, G, is
a material paramefer. Equation (4.3) is a very good approximation of the
shear modulus for small strains (yo < 107%), see the experimental data of
SiLver and Sesp [20], Harpin and Drnevicn [5]. An advantage of using
the formula (4.3) is its simple form. For bigger strains (say o> 1073) the
influence of y, on G may be significant. In this case we can assume,
after Haromn and Drnevicn [5), the following form of shear modulus:

(@4) G = _.E“EELE;_“‘E"__,

where G, Is a maximum value of shear modulus, .., denotes the maximum
shear stress carried by a soil. The simplest form of expression for Ty
follows from the Coulomb-Mohr failure condition: -

(4.5) : Tmax = p tan i,

where  denotes an angle of internal friction. The quantity Gy.. depends
on the magnitude of mean effective pressure : :

4.6) Grux = G* /P,

where G* is a coefficient which has to be determined experimentally.
Substitution of Egs. (4.4}—4.6) into Eq. (4.2} gives the following relationship:

ptany -

=¥y = GYo.

4.7) _ S To=g

P tan :[/\/Fﬂro
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From Eq. (4.7} we also._'hgwe

1 -
G tan i \/E

ptani—1,

If the cyclic shear stress amplitude 7o tends t0 Tms then the demo-
minator in Eq. (4.8) tends to zero and, subsequently, 7, rapidly increases.
This situation corresponds to soil failure. Figure 5 shows the experimental
data of SiLver and Seep [20] and the corresponding G—yo curves calcu-
lated using Eq. (4.7). It is

(4.8) Yo = o = Qo

0.65p
(4.9) - oL S
3.68 /P +70
a -
— 06490
ah G(0; %)= T
a4t
L X Dr=80%
poh 8 R —x—x P~ 196
ey P=09H
< 504

ga b )
” 06495
G5 3y, )=
o041 (p» 30) 3581/?*@‘0
L w Dr=60%
—H——— F=1916
02 o _ ¥ X x % P
o s—s—a—a—s P=09%
v j=0.24
A A A A A A

s @ 08 85 07 09 g

FiG. 5. Proposed shear modulus against experimental data of SILVER and SEED [20].

Here, G has unit 10° N/m?, p has the stress unit 10° N/m?, and y, has
the strain unit 1073, Equation (4.7) takes the following form in the three-
-dimensional case: ' o

2p tany

%ﬁtangﬂdﬁ

(4.10) 1= E=26G,NE,

- 1 L : .
where T = T~T tr (T) 1 is the second invariant of stress amplitudes deviator. -
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5. PORE PRESSURE GENERATION AND LIQUEFACTION

Let us. consider a simple cyclic shearing of a saturated sand sample
at constant shear stress amplitude 7,, and at constant confining pressure p.
Consider the limiting case of undrained conditions such that internal diffusion
is negligible and the stress and deformation is uniform through the saturated
- sand sample. This idealised situation corresponds to experimental condition
- described, for example, by Sesp and Pracock [18), and FInN et al. [4].
When saturated sand undergoes cyclic shear in undrained conditions, the
generation of pore water pressure occurs up to the soil liquefaction, what
is demonstrated by the rapid increase of cyclic shear strain amplitude.
The increasing pore pressure changes the distribution of total pressure
between the soil skeleton and pore water. In other words, the mean effective
pressure p decreases as pore pressure “p/ increases according to the formula

(5.1) p=p-"pl,

where p=const is a total mean pressure. At the beginning of cyclic
shearing there is “p/ = 0. In undrained conditions the partial dilatations
in solid and fluid phases are equal (no relative motion of both phases):

(.2) ‘ e=¢.

Let us assume, for the sake of simplicity, that both grains and pore
water are incompressible, ie. "€ = "¢/ = 0. Substitution of Egs. (2.7) and
(2.8} into Eq. (5.2) leads to the following expression:

(53) . $=¢o=0,

what means that there is no volume change in a saturated sand if drainage
of pore water is prevented. This is a common assumption accepted in soil
mechanics. From Egs. (3.1) and (5.3} it follows

(54) A=,
or
(5.5 - C(—up+ufp)=

b

Differentiation of Eq. (5.5) with respect to N gives the following differential
equation for pore pressure generated by cyclic shearing in undrained condi-
tions: :

d*p’ dd

1
68 o N G A
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where g is given by Eq. (2.11) Integration of Eq. (5.6) assuming zero
initial conditions (for N = 0:p/ = @ =0}, leads to the equation

6.7 Epf = ':T &.

Note that integration of Eq. (5.6) with the initial conditions @ (N=0)=0
and %pf (N=0)=p leads to Eq. (5.5). The experiments of SEED and
Peacock [18] and FINN ef al. {4] were performed at zero initial pore
pressure, S0 in this case Eq. (5.7) is valid. Qubstitution of Eq. (3.18) into

Eq. (5.6 gives, in the case of simple cyclic shearing,

58 ey Z1e —_ E
where 7, is given, for example, by Eq (48) If we accept the simplest
form of Eq. (4.2), ie.

(5.9) 7o = Gy \/5_ Yoo

then we get the following ordinary differential equation for the pore
pressure generation:
E.f 2
(5.10) %zﬂ%exp(—Dzaﬁp").
Integration of Eq. (5.10) gives the pore pressure generated by a simple
cyclic shearing of a saturated soil sample. Usuzlly, in experimental conditions,
the total confining pressure p and cychc shear stress amplitude t, are
kept constant. The increasing pore pressure 5 reduces the mean effective
pressure p (Eq. (5.1)) down to zero. As j decreases, the. shearing resistance
of a satarated soil sample is progressively reduced, ie. G—0 In that
case the denominator of the right hand side of Eq. (5.10) tends to zero,
so a numerical procedure of integration of Eq. (5.10) becomes unstable.
That mumerical instability cotresponds 10 the so-called “final liguefaction”,
(see ZiENKIEWICZ et al. [24]), which occurs when p="%p/, ie. when a
caturated soil loses entirely its shearing resistance and behaves macroscopi-
cally like a liquid. Some of the authors (ZIENKIEWICZ et al. [24]) distinguish
the so-called “initial liquefaction” which, for example occurs when the
cyclic shear stress amplitude To = Tmax (Eq. (4.5) We can describe the
onset of initial liquefaction as well if we substitute Eq. (4.8). instead. of
Eq. (59) into Eq. (5.8). L :
We have computed iflustrations for the following data:
$o =04, wer2(X 10~ % m¥N), D, =174
p,=0115, G¢= 0.72 { x 108 N/m?).

which correspond to medium dense sand.
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F1G. 6. Pore pressure generation prior to liquefaction.
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F1G. 7. Pore pressure generation curve in normalised coordinates.
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FiG. 8. Number of cycles to liquefaction in terms of shear stress-confining pressure ratio.
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The pore pressure generation, for various cyclic shear stress amplitudes
1o {in unit 10° N/m?) and various confining pressures p (in unit 10° N/m?),
is illustrated in Fig. 6. For example, for 1o =04 and p=15, the final
liquefaction occurs after N, = 30 cycles. The ratio Ep//p as a function of the
normalised cycle count N/N;, for the data shown in Fig. 6, is presented
in ¥jg. 7 as a single curve. Figure 8 shows the results for a sequence
of t,, p pairs as a relation between To/p and the number of cycies N,

to liquefaction. There is a qualitative agreement with __cxperimental data

2o |
20

14

i 5 0 15 20 % N

FiG. 9. Shear strain amplitude as a function of N for various shear stress amplitudes.
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Fic. 10. Influence of skeleton compressibility on pore pressure generation.
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FG: 11. Influence of shear moduluys on pore pressure generation.
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(MARTIN et al. [8]). The cydlic shear strain amplitudes y, (in unit 1073),
for p=1 and various shear stress amplitudes, are shown in Fig. 9 as
functions of N. The similar qualitative results are presented by NEMAT-
-Nasser and SHokoon [I3]. It is visible that, at the onset of initial lique-
faction, the strain amplitudes rapidly increase. :

And finally, Fig. 10 shows the influence of the soi skeleton compres-
sibility » on pore pressure generation, and Fig. 11 illustrates the influence
of G,.

6. CoNCLUSIONS

The aim of the present paper is to _propose a simple model for
compaction of saturated sand, which may be useful in various engineering
applications. The model has been formulated in terms of the cyclic stress
and strain amplitudes. The first equation describing ~the model is the
compaction law (3.18), and the second one is the stress-strain relationship
between cyclic amplitudes {4.10). For small strains Eq. (4.10) can be replaced
by the following relation: '

(6.1)° T =26, /FE.

Dry sand subjected to cyclic loadings is then characterised by three par-
ameters, namely Dy, D, and G,, which have to be determined experimentally,
The other two parameters, ie. initial porosity @y and skeleton compressibility
% play an important role in studying pore pressure generation in saturated
sand.

The examples of pore pressure generation presented in Figs 6—11
serve as the first test for the model proposed. The results obtained show
good qualitative agreement with the available experimental data (see, for
example, Seep and Pracock, [18], FiNN et al. [4], MarTIN et al. [8])
There is also a qualitative agreement with the results obtained by using
the model of MorLAND and Sawicks [11, 12]. The substantial differences
between the Morland-Sawicki approach and the model proposed herein
- are as follows: ' -

i) The Morland-Sawicki model is formulated for full strain and stress
tensors. The present model is formulated for  the amplitudes of cyclic
parts of stress and strain tensors.

ii} The number of cycles N has been chosen as a loading parameter
in the present approach, against the accumulated deviatoric strain accepted
by MoriAND and Sawickr [11, 12],

iii} The shear response relationship (4.10) or (6.1) is of an algebraic
form, against the hypoelastic type differential equation proposed by Murland
and Sawicki. ’ o
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STRESZCZENTE

INZYNIERSK1 MODEL ZAGESZCZANIA PIASKU POD OBCIAZENIEM
' CYKLICZNYM :

Zaproponowano model zageszczania piasku nasyconego wody i poddanego obcigzeniom
cykliczrym. Parametrami modeln sq wieticodci amplitud naprezen i odksztalcen - cykdicznych.
Pierwszym réwnaniem miodetu jest prawo zageszcrania, a drugim — zwiazek miedzy ampli-
tudami cyklicznych napreten i odksztaices. Dla zilustrowania  zastosowaf modelu prze-
analizowano problem powstawania cifnienia w porach pod dzaleniem obeiazen cyklicznych,

Pz ME

HHXEHEPHAS MOJIEJbL YIITOTHEHHS NMECKA
HOoA AEMCTBUEM HUKJIMYECKOW HAIPYIKH

Hpemnaraeres MoHens YRAOTHEHRS THiecKa HPORUTARKOTO BAAFOH M HONBEPracMOro IHKIH-
HeCKAM HarpyskaM. TTapameTpamu ARjTOIOTCA aMILIATYMM HEKNHYCCKUX Hanpsrennii u nedop-
mauni. TIpHIoKemusS MONCAR HPOHAMOCTPHPOBANE Ha OPEMEPE 33184 O BOIHHKHOBEIIHH
JABICHUA B OOpax noj MeficTBREM HRKIHYCCKON HATPY3KH.
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