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FINITE DEFORMATION OF NONLINEARLY ELASTIC RING

T. WEGNER, K MAGNUCKI and P. WASILEWICZ (POZNAN)

The - object of this paper is the analysis of comgpression of a ring made of in-

compressive material having nonlinear properties, described by the Mooneys equation.
The case of compressing a ring without sliding between two plane rigid plates was
discussed. The resolution of the problem for finite deformations using the hypothesis of
plane sections was obtained by way of numencal minimizing the strain energy of a discrete

model of a ring.

NoTATION

a;, A; parameters,
C,,C, material constants,
D tensor of finite deformations,
E strain energy,
Cs Cops €55, €, COmponents of the strain tensor,
- deflection,
F  compressive force,
i index,
I, I,, I, invariants of tensor D,
n natural number,
p vector of stresses,
r, o,z cylindrical coordinates. )
ro radius of surface on which the radial displacements are zero.
~ ¥y, #3, 1 dimensions of the ring,
R, Z coordinates after. deformation,
Ry, R, internal and external radii of the ring after deformatlon
u, v, w components of the displacement,
U specific strain energy,
V  ring volume,
W work of extérnal forces,
{ mnondimensional coordinate,
A; principal components of tensor D,
n 3.14,
principal components of the actual siress tensor,
hydrostatic pressure,
Fpr Tppo OF, components of the actual stress deviator.
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1. IntRODUCTION

The object of this paper is the analysis of compression of a ring made
of incompressive material having nonlinecar properties, described by the
Mooney’s equation. A case was discussed of compression of a ring without
sliding between two plane rigid plates. The ring had an internal radius ry,
external r, and thickness h (Fig. 1). The solution of the problem for finite
deformations using the hypothesis of plane sections was obtained by numerical
minimization of the strain energy.

A similar object was discussed analytically in the papers [1, 2] for
some particular boundary conditions.

2. THE MATHEMATICAL MODEL OF THE RING
The problem will be solved in cylindrical coordinates r, ¢, P (Fig. 1).-
The components of the displacement vector of the material point in this
system, considering cylindrical symmetry, are described by u(r, z), v =0,
w (r, z). Considering the symmetry about the plane z =0
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FiG. 1. The ring compressed between two _rigid plates.

2.1 ulr,z)=ulr,~z},
(22) Cowin = —w(r, —2),
and the contact without sliding with the rigid plates
h
(2.3) u (r, —2—) =0,
h f
24 w (r, ?) =3

where f is the deflection of the whole ring.
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On the surfaces not contacting with the plates

P (rl 1 Z) = 0

p (72, Z) = )
where p is the vector of stresses acting on an element of the external
surface.

Taking into account the symmetry about the z-axis, we represent the
tensor of finite deformations [3] in the form

2.5)

142, 0 e,
(2.6) D= 0 142, 0 1,
€ 0. 1+2e,
where
L LT (w2
T or ) 2 \or ol
u 1 {u)?
=T TI\Y )
Q@

e = @__i_ﬁl_ _a_,{ 2+ a_WI_ ¥
#9z 2|\oz oz ) |
'_Bﬁ+ dw +_6_u@+ ow dw
“To b oz 0z ar
Expressing the invariants of the tensor D with the help of elongations
A (i=1,2,3), we obtain
28 Iy = A2 2442 A2+422 23,
where the elongations 1;, defined as relations of the length of the ele-

mentary line element after deformation to its initial length in, principal
directions, are linked with the components of the tensor D by the: formulae

i = 1+e,,+ezz+m
29 A =1+2e,
=1+ er;+ e —/len—e) +ek.
The value of the third invariant for rubber-like materials can be accepted:

(2.10) I =1.
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The above relationship expresses the postulate of incompressibility of the:
material. Tt can be presented with the help of components of displacements
in the form

ou dw\ Ou ow u
@11) | \:(Hé;) (”fz‘)”’a 7}7] (1 +T)_= L

The displacements u and w are mutually depending.
If the approximating functions of the displacements depend on the
unknown parameters ¢; (i=1,2, .., 1} '

2.12) =, 23 a1, G2y s i)
w=w (l‘, Z, 8,0z, > an)a

then the strain energy of the ring

(2.13) E=[UdV,
' 174
where U — specific strain energy, ¥ — ring volume; depends also on the
) parameters '
(2.14) L E=E(ay,dz, .., Q).

According to the principle of conservation of energy, the work of external
forces acting on the system is equal to the strain energy E:

@15 W=E,
and
{2.16) SW==oF.

For the variations of the parameters &; selected in such a manner that
@17 owl, _x=0, |

7

and in regard of the relation (2.5)-
(2.18) W=0,
thus '
2.19) | SE=0.

From the above results it follows that among all possible states defined
by parameters a; selected so as to keep the work of external forces constant,
the body in stable form of equilibrium assumes this state for which the
strain energy is minimum. The solution of the problem cossists in defining
the state of deformation of a nonlinearly elastic body in the case of finite
deformations is limited to finding a system of parameters @; which, for
a given deflection f of the ring, minimize the strain energy E.
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Assuming that the specific strain energy for rubber-ike materials is -
described by the Mooney’s formulae [4],

where C,, C, are material constants.
From Egs. (2.13) and (2.20) it follows that the increment of strain

“energy of the ring

(2.21) dE = [(C, dI,+C, dI)aV.
v
Making use of the energy conservation principle, we define the compressive
force ' ’
dE
2-22 == —
(222) ar

The increment of specific strain cnergy is connected with the principal
components of the strain tensor and actual stress tensor {(Cauchy) o; by

the term
- ' 1 2 . 3
_ , —% a5 172 45,48 ‘
(2 23) du /lt dlll },2 d 2 13 d),-_r,

For the Mooney body the components of the stress deviator

‘ o . N (11
(2.24) | G, =0,—0,=2 [C1 (A?«%_)—CZ (1—!2——?2>],

where o, is the hydrostatic pressure defined by the conditions of equilibrium.

3. THE CHOICE OF DISPLACEMENT FUNCTIONS
The incompressibility condition {2.11) can be preéented in the form
a , @ | g
(3.1) —aw;(r +u) EE(Z+W)—"3?(_Z+W)§§(T+”) = 2r.
For rings of low height h axially compressed we assume the hypothesis

of planc sections; this means that plane sections perpendicular to the axis z
before deformation remain after deformation plane and perpendicular to the

axis z Hence the axial displacement w =W (z) and

- ow

32 -0

(3:2) =0

Then, from Eg. (3.1) the r'elaﬁonship between the displacements u (r. 2) and
w (z) results in the form
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: B | .
33 ulr. )= —————te@]|
63 i [H_dw(z) 0|
, dz
where (p' (z) is a function of an integration constant nature.
In the ring there exists a surface on which the radial displacement is

equal to.zero. We describe this surface by the equation
(3:4) ) = ro (L4 Ag) [14+ A4, (= 00+ Ay =0+ %

where A, (i=0,2,4,..) are parameters,

7 1
2 z
T2
. In (F’i) 1 (ﬁ_)z

Sl NV SREAT
r

is the radius of the surface on which the radial displacements are zero
in the solution of the linear problem of compression of a ring, based also
on the hypothesis of plane sections.

Thus the function

dw (z)
dz
dw (z)
1
+ dz

(35 e@= [14 Ay (1 =3+ Ag 1=+ ] L+ A 7S,

The function w(z) describing the axial displacement has to fulfill the
conditions (2.2) and (2.4) and also the condition resulting from Egs. (3.1),
(2.3) and the hypothesis of plane sections:

ow
(3.6) FrE R 0.

7 —

We assume this function to have the form
o 1 -
3.7) wz)= 4 [l [2-3+A, 1=+ A3 (1=TP+ .0,

where 4, (i=1,3,5,..) are the parameters.
This form assures simultaneously the fulfilment of the conditions (2.1);
and (2.3) of the radial displacements. o

The parameters A; (i=0,1,2, ..) appearing in the functions of displace-
ments approach zero for f—0. In the case of finite deformations. their
values will be defined by the law of strain energy minimum. LA
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4. DISCONTINUITY OF THE CONTINUQUS RING MODEL

The discussed ring in the above description was treated as a continuous -
body. For computer calculations the continvous model is replaced by a
discrete model. In these calculations the discrete model presented in Fig. 2a -
was used. The continuous body was replaced by a finite' number of points
(nodes), from which any represented the surrounding space. In accordance
with the relationships referred in the previous chapters, the value of the
specific strain energy for the accepted parameters A, was calculated for
every node. The strain energy of the ring was defined by Simpson’s method
of nurnerical integration.

a

}'J\l v! -y -

PN == 2 ccc o S

| r=2.366h

f o f‘z-‘=5.256h

l

b 120h 106k

4 ' = t *

FIG. 2. a) Discontinuous model of an axjal section of a ring.
b} Deformed section for nondimensional deflection 0.333.

The distribution of the specific strain energy, assuring the fulfilment
of equilibrium conditions in a body, and the true values of strain energy
were obtained by optimization of the parameters A,

Repeating the described procedure for the following increasing deflections,
the increments of energy were calculated and, in accordance with the

relation (2.22), the forces F compressing the ring,
' The hydrostatic pressure o, {r,z) which is needed to define the total
stresses g; from Eq. (224) was calculated by integrating the system of
equations '

do, _ o4, O, GGy,

R~ 8R oz R °
4.1) : :

do, o o, _ o1, Ty

aZ 8Z B8R R

_ﬁSing._...ihe ._method of trapezoids. The system (4.1} results from equilibrium
_'c'(_)ndit_i_ons for a deformed body. In this system
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R=r+ulr, 2,

42 Z = z+w(z),

are coordinates of material points after deformation. -
Since the displacements u, w are described in coordinates before deforma
tion, the elongations J, and the components of the stress deviator (2.24):
are also functions of the coordinates r, z. Taking this into account when
caiculating the right sides of the equations (4.1), the formulae ‘

() R l_l_ﬁw 6(-)_6\4} a(-)
R " r 0z | or o oz |
a() R u\a(-) aua()
oZ :T[(”EF) oz 9z or ]
were used.

The integration constant of the system {4.1) was defined from the
condition

(4.3)

R, ' T
(4.4) F=2n [ [6,(R,00+0,(R,0)] R dR,
Ry
where
(4‘5) Ri'= rl+u(rf9 O)s = 152-

This condition, in the coordinates before deformation, takes the form.

456) F=2n f 5. (. 0)+ 0, (r, 0] (1+{?)(1+%)rdn

5. ExampLE

Computer calculations were performed for a ring having proportions
presented in Fig. 2. As repards symmetry, half of the. axial section of the .
ring was discreted. The ratio of the material constants C,:C; was assumed
to be 0.03039. In the displacement functions only the parameters A,, 4, Ay
were taken into account. The values of thosc parameters were obtained
by minimizing the functional (2.13) by the optimization method of the

golden section in conjunctive directions for ten deflections. h
' Figure 2b represents a deformed net of nodes in the case of non:
dimensionai deflection 0.333, and Fig. 3 the distribution of nondimensional
specific strain energy in an axial section of a ring. Figure 4 represents th
relationship of a nondimensional force to a nondimensional deflection, "
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FiG. 3. The specific strain energy in the axial section for the nondimensional deflection 0.333.
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Fia. 4. Relationship between the compressive force and the deflection.
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. Stresses for the nondimensional deflection 0.333. ek
[103]
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Figure 5 represents the principal stresses in the symmetrical section of
the ring (z=0) and the shear stresses on the surface of contaci with the
plate (z= h/2). As can be seen, the radial stresses are not equal to zero
on the surfaces r =, and r =r, This is connected with the impossibility
to fulfill the condition (2.5) according to the hypothesis of plane sections.
Consequently, the obtained solution in regions near r, and r, has to be
considered as approximated.
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STRESZCZENIE

SKONCZONE DEFORMACJE NIELINIOWO SPREZYSTEGO PIERSCIENIA

W pracy analizowano zagadnienic éciskania pierScienia wykonanego z materialu nie-

Scifliwego, majacego nieliniowe wiasnodci opisane r6wnaniem Mooney’a. Rozwazano przy-
padek dciskania bez podlizgdw pierdcienia miedzy dwoma sztywnymi plytami. Rozwigzanie
problemu dla duZych deformacji, z wykorzystaniem hipotezy plaskich przekrojow, otrzymano
na drodze numeryczne) minimalizacji enmergii odksztalcenia zdyskretyzowanego modelu pier-
Scienia.

PE3atoME

KOHEYHBIE JEOOPMANIMK HEIMHENHOTO YIPYIOFO KOJMLLIA

B pabote paccMoTpers sanata cxarTuf KOJLIZ A3 HECKHMASMOrO MATEDHANA, HENUHEH-
HBIE CBOHCTBA KOTOPOTO mOAYMHCHEL ypaswenns Mynes. PacoMoTpen cayuail oxaTHf, 6es
CRONBXCHUSA, MESXHY ABYMS ®ECTKHMH mmTaMi. Ilpeaponorammes Gospuome nedopmarum
¢ ywTOM THIOTE3S TUIOCKMA ceveHmi. Pelienue OHUIO NONYYEHO TWYTEM UHMCHEHHOH MPHM-
MU3AIAK SHEPIHA NeOPMATIME JHCKPETHON MOJCHM KOMbIE,
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