ROZPRAWY INZYNIERSKIE * ENGINEERING TRANSACTIONS * 35, 4, 721727, 1987
Polska Akademia Nauk * Instytut Podstawowych Probleméw Techniki

ENERGY RELEASE RATES
IN FRACTURE OF DISSIPATIVE MATERIALS(*)

A TDUMITRESCU and M. COC U (BUCHAREST)

Expressions for the energy release rates in the presence of a propagating crack for
a dissipative material are given. The relation between these energy release rates and J-type
integrals is shown. This relation is used fo calculate the global dissipation during the
fracture process.

NoTaTIONS

x = ¥ (X.#) the current position vector in the motion 7,
S=8(X,t) the nonsymmetric Piola—Kirchhoff stress tensor,
u=y(X,)—X the displacement vector of X at the moment ¢,
v=1u% the velocity field,
F(X,t)=[Grad y]* the deformation gradierit,
6=0(X,1),8>0 the absolute temperature, -
Q= Q(X,f) the heat flux vector,
e==¢{X,t) the specific internal energy per unit mass,
#=n{X,t) the specific entropy per unit mass,
p=p(X,1) the heat supply per unit mass,
§=2¢(X,t) the entropy production per unit mass,
80 =00 (X, 2} the mass density,
k ::ig(X, 1) the kinetic energy pér umit mass.

1. INTRODUCTION

Analysis based on energy considerations plays an important role in
fracture mechanics, both in static and dynamic situations. A remarkable
result of this approach was the introduction of the energy release rate
at the crack tip and the derivation of the relation between this energy
release rate and the J-integral for a nonlinear elastic material [1].

(*) The paper has been presented at the Euromech 210 Colloguium on Posicritical
Behaviour and Fracture of Dissipative Solids, Jablonna, 19—21 June, 1986,




722 A. T. DUMITRESCU AND M. COCU

The purpose of this paper is to obtain some useful expressions for the
energy release rates in a dissipative material in the presence of a propa-
gating crack. These expressions have been obtained using the general balance
laws of thermodynamics. We discuss also the relation between the J-type
integrals and the energy release rates during the propagation of the crack
and we give an expressmn for the global dissipation in terms of these
J-type integrals.

2. BALANCE LAWS IN DYNAMIC CRACK PROPAGATION

We consider a body B identified with the region of R?* occupied in

“a fixed reference configuration. Let us assume (Fig. 1} that B contains an

edge and sharp crack described, for SlmphCl‘[y, by a nonintersecting smooth

~curve ¢t), where tete, 1]

cinp) w
"“’r 3\

— )

FiG. 1. The geometry of the body and the crack in the reference configuration.

Figure 1 also presents disc’ of radius r centered at the crack tip,
denoted by w,, and dw,, éB which are the boundaries of w, and B,
respectively, in the absence of the crack and the position of the crack
tip ¢ (¢) at the current time t.

Let us denote by X = X (t) the generalized boundary of B at time t,
that is 0B and the two faces of the crack. The boundary of the domain
in which we may apply the usual continuum mechanics laws is defined by

X udw,, where X =X ()=2X—w,.

The first law- of thermodynamics for the material points which belong to
B—wm, has the form

(2.1) [ eolk+é)d@= [ 0o d-v+p)d0+ | (SN--v—Q-N)dZ,

B—(ur Bi"’r X Ao,



ENERGY RELEASE RATES IN FRACTURE OF DISSIPATIVE MA-TER]ALS 723

'where b=>b(X,?) is the body force per unit mass and where g, k, g ¢,
oo bV, gop, STv and Q satisfy the properties specified in the Appendix.
By using the law of balance of linea}‘ momentum,

22 DivS"+g, b= g, ¥;

Eq. (2.1) becomes

(2.3) { [0 G—p)—S- F+DivQ1dQ = 0.
B—w,

The second law of thermodynamics in the local form is

24) 00 =00 fi00 P/§+Div(Q/f) in B—a,,

where 0, 8, 0o 7, Q/f are fields which satisfy the properties given in the’
Appendix. From Eqs. (2.3) and (24) we can obtain

(2.5) | 0000d2= | (00 8i—0oé+S-F—Q-Grad 6/0) 42,
B—w, B¢,
and from Eq. (2.2) it follows that :
(2.6) S-F=Div(STv)—gp ¥ -V+oo b-v.
Then Eq. (2.5) can be written, using the divergence theorem,
2N [ 0008d2=— | gq@E+k)d+ j {eo Bn Q -Grad 6/8) dQ—§— '
B-w, B-w, B—w,
+ [ eob-vd2+ jS:‘v Ndx— j STy.NdZ.
B W,

In the sequcl we shall need the followmg classical tlansport theorem [2]:

' d . .
(2.8 i deQ: J‘Fd.Q—J‘Fé-NdZ‘

B— B— fo,

Applying the theorem (2.8) to Egs. (2.1) and (2.7), we obtain

(2.9} —g—t J.QO (k+e)dQ+ jgo (k+e)é-Nd¥ = 4[ Qo (b-v+p)dQ+

B o, few, B— 0,

+J(SN-V—Q-N)dZ— J(SN-v'—Q-N)d}_T,

d
(2.10) jgoﬁéd&!:-—dt fg(, (k+e) dQ— jgo{k+s)é-NdZ+

B—, B—m, o,
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-[(3611(:.}} , | + j (0o G:’p——Q-Grad 06/6) dQ+ j oo b-vdQl+
B ey ) : B ooy |
4 jS"v‘NdE— fSTV-NdE.'
L, s

" Let us observe that Eq. 29)1s a general energy balance law for a body
with a propagating Crack, while Bq. (2.10) gives an expression for the
dissipation in the regular domain B—w, during the crack propagation. '

3. ENERGY RELEASE RATES DURING CRACK PROPAGATION

To take into account the influence of the crack on the form of the
balance laws (2.9) and (2.10) we shall introduce the encrgy release rate
associated with the region @, at the time ¢ by '

@31 E= { [eo (k+5) &-N+SN-v—Q-NJd2.

with Eq. (3.1) the laws (2.9) and (2.10) can be written, respectiﬁeiy,

d ‘
62 jgﬂ(kﬂ)de: jgo(b-wp)dm j(SN-v~Q-N)dZ,
B— oy B—awy I - ‘

d
(3.3) jgoﬂédﬂer—a jgo(k+£)d9+ j(goﬂfrﬂ

B—a, B—wy ’ B—w,

—Q-_Gradﬂ/ﬂ)d9+ j g0 B vdQ+ j‘SN-\'vdE—S Q-Ndz.'
B—aw, z, [{on
Equation (3.2) justifies why E is defined as energy release generated by the
crack propagation in the region o, ' ‘
Resides the energy telease cate E, it is necessary fo consider 1he raie
at which the energy is absorbed at the crack tip as -

(3.4) E. =lim § Leo (k-l*ﬁ)é-N—!—SN-VH—Q-N} az.

. r—0 &w,
Taking into account the properties, given in the Appendix, of the hpetarm

ficlds appearing in Eq. (3.2) we obtain

35  E.= —% fgﬂ (k-+e) dQ2+ JQO (b-v+p)dQ+ j(SN-v—Q-N; dx.

B B X
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Remark 1. From Eq. (34) it  is clear that in the right hand side of
Eq. (3.5) instead of B and X we may take any fixed region D and
" (£ nD)u D respectively, where D surrounds the tip at every time fe[to, t1].

- Remark 2. Equation (3.5) generalizes the dynamic energy release rate
defined by Gurrin and Yaroms {3] in the case of elasto-dynamic crack

propagation, where b, p and Q are neglected.

Remark 3. If a process zone is considered within the region w, and the

velocity of dw, is equal to ¢, then from Eq. (3.1) it results that E is

- just the energy release rate given by Aoki, KisuiMmoro and Sakara [4] in

. the case of infinitesimal strains. :

4. J-TYPE INTEGRALS

For a nonintersecting path y which begins and ends on the crack and
surrounds the tip, we define the J-integral and J-integral as the following
vectors reSpectzveiy

4.1) ' j Lo (k+£) N- (Grad u)'SN] dz,

4.2) J = hm j {eo (k+£) N—(Grad u)TSN] dx.
" To obtain the relation between J. and Ec, we need the followulg_
result:
(4.3) lim j' SN-vdE = —~hm é j (Grad u)"SN dZ,
<0 l'fJ) -
where it is supposed that the dlspiacement u(X,t), taken as a function
g (X—c(z), 1), has the properties

(4.4) = %%L is continuous at the tip,
—c{i} .
and .
{4.5) { SNdZ -0, j' ISN|dX is bounded as r—0.

((!)

Now Eq. (3.4) can be written as
(4.6) E. = cJ—hm ] Q -NdZ.

((3

It is clear from Eq. (4.6) that E, = &3, if and only if lim {QNdzZ =0.

(([J

Takmg into account Eq. (44); the follewmg expression can be obtained
for E in terms of the J-mtegra}

@n E=¢-3(@0o)+ [ SN-V-Q -N)dE

fe,
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where J (fw,) is calculated as an integral over dw;.
If we denote by D, the global dissipation given by

) o ,
48 D,= —% jgo (k+¢) dQ+ Kgo 04— Q-Grad 6) dQ+
L. B

B

+ jgg b-vdQ+ JSN-vdE >0,
B z ’ .

then we obtain from Egs. (3.3) and (4.6)

(4.9) | D, = [ a0 00 dQ+¢é-J..

A similar form to Eq. (49) was obtained by Q S. Nouven [6] by a
different approach and for infinitesimal strains. T

APPENDIX

In the following we shall specify the properties of the fields used
throughout the paper (see [71)..

The field I' = I' (X, t) defined in (B—ec (1)} x[to, t1}; where I, = [to. ],
Vielty, t,], is called a C" fracture field if the derivatives of I' of order less
or equal than n exist and are continuous away from the crack and,
except at the tip, are continuous up to the crack from either side.

A fracture density is a scalar-valued C° fracture field I' such that

[rdg=1umy | rde.
_ i B0,
I' is called a regular fracture density if -
) I'isa C! fracture field;
ii) [ I dQ is differentiable with respect to time;
B

L d . d
iif) a?gfdﬂmig[(}gt— BerFdQ.

A fracture ﬂux‘is a vector-valued C° fracture field y which satisfies
) [ [y]:NaZ=lim [ [v]-NdZ;
ol i-:zclf,-)
ii) Jim { y-NdZ exists;
where [y]=7y" -7y is the jump of the field v across the faces of the
crack. ' S - .
Throughout the paper we have assumed ‘that the thermomechanical

filds w, &, #, S, 0, go, 0. P b and Q satisfy the following conditions:
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a) u is a C? fracture field; ~

b) 8, S and Q are C! fracture fields;

c) 0o & 0o f and gy k are regular fracture densities;
d) STv and Q are fracture fluxes;

e} gy 06, 0o O, 0o P, 0o bV and — _é— Q-Grad 8 are fracture densities.
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STRESZCZENIE

WSPOLCZYNNIK. WYZWALANIA ENERGIT W MATERIALACH DYSYPATYWNYCH
Podano wyrazenia na wspblczynniki wyzwalania energii dla szczeliny poruszajacej sig

w materiale z dysypacja. Pokazano zwiazek migdzy tymi wspélczynnikami i catkami typu J
i wykorzystano go do obliczania dysypacji globalnej w procesie pekania. -

PE3moME

KOBQPHUIMERT OCBOBOXIAEHHUA FHEPTHH
B ANCCUTTATHBHBIX MATEPHAHAX

Pabota copepkuT (OpMYyIEL AMA ONpefienenns koaQ(UUACHTOR OCBOGOXISHUS SHEPIHE
B CITyyae TPEU(MABL JBWKYUICHCE B maTepmafe € AMCCHDarped. Ykasama cBass 3tux xosdhpu-
HUSHTOB ¢ HHTerpasamMe Tana J. 310 N03BONAIO pacunTaTh ODHIYIO JUCCHTIATHEIO B npouecce
paspylIcHAs. ’
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