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SH WAVES IN A POROUS LAYER OF NONUNIFORM THICKNESS

A CHATTOPADHYAY M. CHAKRABORTY and
N.P. MAHATA (DHANBAD)

" The paper is concerned with the propagation of SH-waves due to momentary point
sources, in a porous layer of nonuniform thickness resting on an isotropic elastic homo-
geneons half-space. Green’s function techniques have been applied to solve the problem. The
effects of porosity and honuniformity on the displacement are distinctly marked. The possible
condition creating fracture in the medium has also been derived. The graphs for the critical
velocities of waves creating fracture in the medium versus thickness of the layer above the
origin have been plotted at different modes. :

1. INTRODUCTION

The theory of propagation of elastic waves in a fluid saturated porous
solid was presented by Bior {1]. In his theory he has shown that in such
a medium there are two dilatational waves. Later on, basing on this theory,
many authors studied the problem of wave propagation in such media.
Deresiewicz [2] has considered the effect of boundaries on the reflection
of plane waves at a fre¢ plane in a liquid filled porous solid whereas
Deresiewicz and Rice [3] have investigated the general case of reflection
of plane waves in a liquid filled porous solid. Bose [4] discussed wave
propagation in the marine sediments of water saturated soils. The propaga-
tion of Rayleigh waves in porous elastic saturated solid has been discussed
by Jones [5]. In fluid saturated porous cylinders, GARDNER [6] has shown
the effect of extensional waves. PauL [7] has considered the displacement
produced in a porous elastic half-space by an impulsive line load. CHaT-
ToraDHYAY and De [8] studied Love {ype waves in a porous layer with
an irregular interface.

The propagation of SH-type waves in layered media with nonuniform
thickness in a crystal layer have been discussed by many authors, viz
Sato [9], DE Nover [10], MaL . [11]. Buarracuarya [12], CHATTOPADHYAY
[13] and many others. Recently, CHATTOPADHYAY, CHAKRABORTY and PaL [14],
CHAKRABORTY, CHATTOPADHYAY and DEv [157] have studied the propagation
of SH-type waves in a transition layer (in a state of initial stress or free
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from initial stress) with parabolic irregularity in the lower interface whereas
CHAaTTOPADHYAY and DEe [16] have considered the problem of propagation
of Love waves in an initially stressed visco-clastic layer of rectangular
irregular interface with Voigt-type half-space. CHATTOPADYAY and MawaTa
[17] have studied the propagation of Love waves on a cylindrical model.
They have pointed out that the proper matching of the observational data
with theoretical digpersion curves, the length of the corrugation as well as
' the mhomogeneous character may be obtained.

| The present paper deals with the SH-wave propagation in a potous
-layer of nonuniform thickness {Fig. 1) The common boundary between the

-__"“‘———-;______

I = Porous

>y

zV

FiG. 1. Geometrjr of the problem.
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layer and homogeneous isotropic elastic half-space has been taken as hori-
zontal. The source of disturbance generating SH-waves is assumed as the
momentary point source located in the half-space very close to the origin.
The problem is solved by applying Green’s function technique indicated by
Covert [18]. The analysis presented here shows that the porosity and non-
uniformity in the layer play a very important role in the propagation
of SH-waves. The condition under which the fracture in the material may
take place has also been derived and the critical velocities of the wave
causing fracture for different values of thickness of the layer above the
origin have also been calculated numerically and presented by graphs.

2. MATHEMATICAL DERIVATIONS

For SH-wave propagation the only nontrivial equafion of motion for the
porous layer is (Bior (1956), CHATTOPADHYAY (1983)) -
| 1oy

. 2 - .
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Here N corresponds to the familiar Lamé constant and gy, @2, 05, are
the mass coefficients related to the densities ¢, g, ¢, of the layer, sohd
and fluid, respectively.

For the lower isotropic medium IT the equation is

(4) N V=t o

Taking the time-dependent proportional to ¢, the equation for media I
and II are, respectively,

(5) V2V, + K3V, =0,
and
(6) V2V, +K3 V, =0,
where ‘
. 2 2
(7) Ki=2_ and Ki="92
Cx M3z

The boundary conditions are
(i) at the free surface

(8) - N o, sinff— N ad cos 0 = 0;
' ' dx 0z
(i) at the interface z =0
9) @ ="
and
(10) 0 Ny,
oz oz

We propose to solve Egs. (5) and (6) under the prescribed boundary
conditions (8——(10) using Green’s function technique. The method of finding
Green’s function of such composite media was indicated by Covert [18].
We are interested in the displacement on the surface and so we shall iry
to find G (x, z/0, 0} for body 1 viz, the upper layer.
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Let G; and G, be Green’s function for media I and II under the
boundary conditions 9G,/0n, = 8G/0n, =0 at the interface and G, =0 at
. the free surface, n,, n, correspond to the normal drawn outwards from
the upper and lower medium respectively. Green’s function Gy (r/ry) for the
upper medium satisfies the inhomogeneous Helmhotz equation

(11) V2G, (rfro) +K* Gi_{r/r(,) = —4ad (r—ro),

where G, (rfro) is the value of Green’s function at r{x, z) for a unit point
source at rgy (X, yo). Similarly we have the equation for G,.

We have for a general source distribution of densities g} (r) and 0% {r)
in the upper and lower medium respectively. {cf. Morse and Fesusack {19]),

1 oV
(12) Vi) = JGl (r/ro) €1 (ro) dVO+H J‘Gl (rfrg) —— V (} o dSo1,
I oV (1,
19 0= |G o) s (9 dVon J6x 01 2 (2” Son,

AB

. where 7, (x,,0) is a point on the interface and integration is taken over
all the points (x,,0) on the interface. The conditions 8G,/dn, = 8G,/on,
at the interface arc employed in Egs. {12) and (13). .

Using the boundary condmons (9) and (10) we have at a point r, (x;, 0)
on AB

1 N ¥,
(14) An j[G1 {rl."'rs)-i"uj G; (h/"s)] Tni“ dx; -+

A8
+ JGL (ri/ro) 04 (ro) dVoy — JGZ (r1/ro) @ (ro) dVpz = 0.

If the point source lies very near the origin but in the medium II, then
01 =0, g; = & (r—ro). Hence rq (0,0) denotes the source point which is the
origin. Under these circumstances ¥; and ¥, become Green’s function in the
respective bodies. Then Eq. (14) becomes .

(15) Gz (f"l/O) = % j[ 1 (rl/r )+Tum._ G2 (7’1/&)] i(?—ég@ dxs,
AR

where G is the proper Green's function for a body corresponding to the
source in the medium I. From Eq (12) we get Greens functlon for the
upper layer as T ;

1 aG (e /0) B
(16) Gy="— J N Ta e

A8
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- Now [8G (r,/0)1/6z can be obtained from the integral equation (15) and
after the substitution of this value in Eq. (16), we determine Green’s function
for the upper layer completely. '

If a source is sitmated in the medium II, Green’s function G, for the
upper layer corresponding to the boundary conditions éG,/dn, at the inter-
face and G, = 0 at the upper boundary is obtained by the method of reflection
in the form

Gy (x, 2/0, 0) = 2i [HY (K /(> +25) } + HY (K, /T(x—2h0) +
+(z+2h)2_]+H§)” (K, JTx—2h02 +{z— 201} +
HO (K, J/L(x—8h0)* +(z+4h)]} +
+HP (K, JT(x—8h0) +(z—4hy¥* T} + ..].

where the reflected points are (2h0, —2h), (2h0, 2h), (8h0.4h), {8h9,4h},
(18h0, —6h), (18h6, 6h), .. to the first powers in & and HY’ is the Hankel
function of the first kind of order zero. Using the integral representation
of H{ (K, r/ry) in the form. '

3

HP (K rfrg) = o

1 Texp(i}"(x“xo)—a(y—YO)) df
7 |

where y—yo >0 and a? = f?— K} (cf. Morse and FesusacH [197), we get

G, (v, Z,O,O)_zln[ me

o

— oD

N 7exp {if(x#Zi:-))—oc (z+2h)} it
, [emwoc caia),,

\
L

o

o0

which, when expanded up to first power of 8 {assuming |f#|) to be always
small, becomes
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o0

(17 G, (x,z/(),()):% j[exp (aZ)—i_lejiE;.f (z--2h) _
R — 2he 1'+elem Cifx
_2ifh9f_(1__é___2h_a)3l{exp (cxz)+exp(_az)}] ‘ea df.

Now we will substitute (h—x,8) and (x—x;) for h and x in Eq. (17) for
the calculation of Gy (x, z/x,, 0). x, 0 is small as compared to h for all x,
for which there is a significant contribution' to the value of the required
Green’s function. - We therefore ignore the term containing x, ¢ and thereby

obtain

2 j P [ exp (o) +exp (= gz +2M)

(18) Gl(x9 Z/XS,O)Z—T? o l_e—Zhot—

— a0

—2ha Zhe
—2if h# {exp (az)+exp (—az)} Q—UZ%EP—)J af.

So that Gy (x, z/x,,0) at a point (xy,0) on the interface is

(19) G, (x1,0/xs,0)=)2— J exp (if(x1"~xs) «

i o
1+efzha > e—zka (1 +¢272hu) - ‘
x[m—-—«l_e_zm —4if he W(lwe_z”“)f’ | df.

Now, if a source is situated at a point (x4, 0) on the boundary, where
B? = f2— K3, from which G, (x, z/x,,0) at a point (x1,0) on the interface
is given by

(20) G, (xl,ofxs,g):% j exp (if(;;l_xs)) u

Substituting the values of Gy (x1, 0/x5, 0),G2 (x1/x,, 0} and G (x1,0/0,0)
in Eq. (15) and then, after some mathematical calculations, we obtain

dr oz

1 . '
— J e s 0G (x5, 0/0, 0) dx, =

1

= N ' 1te 2 ‘ o2 (1 g 2m T
_"k+___,7—_——41 ho — .~ L
ﬂ [ i ﬁ o (1—3 lhot) f o (l_e—zhm)S .
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Now, applying the Fourier inverse transform and then using binomial
expansion, we get

y oM gf

C oG
(1) S(x,.000,0) =2 N e +
i ﬁ o (1 _e—Zi'm'.)

()i.f',\'; o 2hu (1 +o— thr)

N ew Y
+ — 2har2
b B oaf{l—e™ 2

+2 J 4ifhi)

/)’O! (] — 2ha)3

where 0* and higher powers of & have been neglected. Substituting the
values of Gy (x, z/x,, 0}, G (x,,0/0,0) from Egs. (18) and (21) in Eqg. {16} and
using the resulis

2

o(f'=f)1= L [ exp (i {17 —1) x5 dx,

and

faUnef=Adf =aisy

where we have taken f'—f=n, so that d/"=dy. we obtain after simpli-
fication '

22) G (x, 2/0,0) Eii Jeu'_\- exp (o (z-+h)+exp (—a (z+h) df+

Ne (ehaieﬂ'm)ﬁkﬁl /j {ehm_l_e—lw)

eira +€—hcc

o Lita B {exp (az)—exp (—oz)} —

4ifhd

T

feif.\'

g

— Nao [exp {az)+exp (—oz)} | df /[ Ne (" — e ")+ 1 (6™ + e 7™ ]2

Now writing « = io; where o :.(Kf —fHY* Egs. (22) becomes

cos oy (z+h) "
iz ffeosa h—Nogsinoe, af

2 5
03 G20, 0= P2 J Jirs

. 2';';[2 Oh il cos oy h (i fisine, z— Na, cos a; z) v
' sin oy h{py feosay h—Nay sina, B2 77

which is the expression for SH displacement at a point cdrrespondingﬂ t_(:)."'
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a source in the lower medium but very near to the origin. This type of
integral has already been evaluated by SEzZAWA [22]. In order to evaluate
the integral, we choose the contour as the real axis and infinite semi-circle .
in the upper half plane with necessary cuts at the branch points f= K, K3,
The solution can then be expressed as the sum of residues of integrands
and two integrals along branch lines corresponding to the branch points
f=K, and f= K, The branch line integrals are 0(x *?) and become
negligible for large x. Therefore, neglecting the contributions of the branch
line integrals, we find for large values of x, :

r . h
(24) 2 je'fx cos oy (z-+h) ; df =

7 iy P cos ay h— Nay sin oy

cos oy, (2-+A)

=4, i) e n” \
212, _ F(f)

where .
@5) P (f)=p (2~ K2"? cos (VKT =) b= |
— N (K} - £ sin ((J(KE—rD) h,

so that f,{n=1,2,3.) are the roots of the Eq.
(26) F{fu)= 12 (r2 - KHY? cos (KT —£7)) h—

— N (K3— )" sin (KT =f7) h =0,
and

Ain = (K%‘fnz)l"z~

Similarly, the second integral of Eq. (23)

27) :_211;21_911 Jf iy COS oy Bz fisin oy z— Nog €08 oy 2) af=

sin oy 1 (s B c0s oy h— N oy sin o hY

2iu, Bh
= 2O oni) sum of the residues
A

) . .
il [ fe/™ cotay hiuy Bsinoy z—Noy cos o 2))y=fn

. df
= —dpu, eh); T df +
e wF cot oy, b LSIN @y Z— N 00, COS %1, 2)
_%_4!1,2 Ghznl f e 1 (JU“Z f?’{f)]?’l 1 1 ) F (f;,)_

: ’ Olgm i . . ¢
_4“2 th Z #%Lﬁz e!j mr [”2 ﬁm SIN 00y Z_Noclm COS Uiy Z]a
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-where oy, are given by sin oy, h =0 giving oy, h=mn (m = 1,2,3 ..} and
I are the correspondin ¢ values of f and f.
Since @ is small, for large values of x, the important contribution comes
from the first summation of Eq. {27) in the form
!
. . cot oy, bz B, sinay, z—~ Noty, cOS 2y, 2)
—4dip, 01 xf, €' n* - =
Zﬂl - LF (£)]?
xf,, €' n Noy,
[F (f)1* sina,h

= dipy Oh Y, €OS ay, (z+h).

Equation (26j can be written as

(28) fa B, cos oy, h;Nocln sin h = 0,

which is the modified dispersion equation of the SH-waves for the model

considered. Hence for large values of x, :

o cos {o, (z+h)}
F'(f)

xfuen* Ny,

LF' (/)1 sin oy, B)

- i GG (1)

The second term of Ed.'{29) is due to the slope of the upper. boundary,
which is large when sina,, h=0. This gives o,,h=nn (n= +1, £2,.)
from which we find :

(29) - G(x,z/0,0) = 4u, iy e n*

+4ip, 6RY cos {oy, (z+h)) =

C/C‘N‘.

1.7450
1.5980
14510
1.3048

14570

10160 1 I ! 1 I 1 T t ; Q_,
a1/ 40 ] 80 w0 120 M0 B0 80 200 220 i 44326648

FH

FiG. 2. C/Cy versus FH for different modes.
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z 1:2
. (%f h* —n? nz)
(30) f= 2 p -

Hence the displacement on the surface of the layer becomes infinite if the
relation (30} holds. Hence we conjecture that large scale fracture may thus
be caused. The critical values of C/Cy for different values of fh have been
ca.dculated_numerically (from the condition (30) by replacing w by fh} for
different modes and presented by graphs in Fig. 2. From the graph it can
be inferred that the fracture will take place in the material at less velociiy
of the wave if the values of fh increase.
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el T

STRESZCZENIE

FALE POPRZECZNE W WARSTWIE POROWATEJ O ZMIENNEJ GRUBOSCI

Rozwazono propagacje fal poprzecznych wywolanych chwilowymi frédtami punktowymi
w’ porowatej warsiwic o nieréwnomierngj grubosci, spoczywajace] na izotropowej jednorodnej
polprzestrzeni sprezyslg. Zastosowano mefodg funkcji Greena. Stwicrdzono istolny wplyw
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porowatoscl 1 zmiennej grubosci warstwy na przemieszezenin. Wyprowadzono rowniez warunek
pekania ofrodka. Przedstawiono wykresy zalezno$ci miedzy krytycznymi predkosciami fal
powodujacymi pekanie a grubodcia warstwy.

PEswomME

HONEPEYHLIE BOJHBI B TIOPUCTOM CJHOE NMEPEMEHHOF TOJNMIVHBI

PacemoTpena pacnpocTpaHeHie ITONEPEYHEIX BOIH, BBIABAHHBIX MIHOBEHHBLIME TOMEWHBIME
HCTOUHNKAMH B IOPHCTOM CJIO€ € HEPABHOMEPHOH TORMUUHOH, HAXOASIUEMCA HAa H3OTDOITHOM
OAHOPOMOM YIPYIOM nomynpoctpanctoe. [Ipumenen metox (ynknun I'ppna, KorcraTuposano
CYIICCTBCHHOS BINANMC TIOPHCTOCTH H TIEPEMERHOH TONIHNLL CHOA Ha NepemenieHus. Brisegeno
TOXE YCAOSBHE paspyiueHus cpensl. [lpeacTannens! Auarpammbl 3aBHCHMOCTH MEXTY KPHTH-
UECKHMH CKOPOCTAMY BOJIH, BHIZBIBAIONIMMH PA3pyilcHue, W TOJIIMEOH CrOL '
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