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TEMPERATURE IN SEMI-INFINITE AND FINITE CYLINDER WITH
MOVING HEATING OVER THE LATERAL SURFACE

T.ROZNOWSKI (WARSZAWA)

In this paper some relations describing a nonstationary temperature field in a semi-infinite
and also a finite cylinder heated over a part of its lateral surface with a moving axial-
symmetric thermal surface source and dependent on two cases of boundary conditions across
the face plane; the temperature is equal to zero and there is perfectly thermal insulation,
are derived. On the basis of the fundamental solution for a leng cylinder in [1] a computer
program has been made and the results have been widely analysed in [33 The formulae
of the temperature for various kinds of heating have been given. The temperature distribution
within the cylinder of length L is presented as an infinite sum of elements being the funda-
mental solution alike. Finally, a transformation to Green’s function as a limiting case of

results has been proved. Numerical results are given.

INTRODUCTION

The present consideration deals with a nonstationary temperature field in
a semi-infinite and also a finite cylinder heated suddenly on a part of its
lateral surface { = {, to constant temperature f, at the contact region by
the effect of thermal surface sources which, at the same time, start to move
with uniform velocity w in the positive axial direction (. ‘The remaining
part of the lateral surface is also held at a constant temperature but at
quite a different one, say, at zero while the face planc { =0 or {=1(0,L)
may be kept either at zero or be perfectly thermally insulated. :

The problem formulated above is equivalent to the case that at the
moment when the surface thermal source is applied to a part of the lateral
surface of the cylinder, it starts to move uniformly in the negative direction
of the ¢ — axis, whereas its free part of cylindrical surface is maintained
at zero and the remainder of the boundary, ie. the face plane, is held
at zero temperature or is thermally insulated.
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1. FORMULATION OF THE PROBLEM. SOLVENT FUNCTION
In the dimensionless system of the cylindrical coordinates and time

{0, {, 7} the heat conduction equation and appropriate initial and boundary
conditions become, cf. [1, 2]

6 _ “a
{1.1) (VZ*E)E):O, 0<e<l, O<t<w

., {oo — semi-infinite cylinder

<= . o
! L — finite cylinder,
(12) 0(e.[;0=0, O<e<l, 0<l<{p,
(1.3) (1,01 =0gn~L—wr), at the lateral surface,

and on the face plane, respectively:

I} In the case of a semi-infinite cylinder
if temperature equal to zero is required

(14); 8(0,0:1)=0
ot if the face‘plane is perfectly thermally insulated
0.0l
(1.4 — =0,
4); T o

I) In the case of a finite cylinder with length L:
if the temperature of both face planes equal to zero is required

(1.4, 0(,0;1)=0(,L;1)=0

or if both face planes are perfectly thermally insulated

= =0.
at t=0 at t="L

§=01(g, ;1) denotes the dimensionless temperature field in the domain,
1 (x)— Heaviside’s function, f# = T— T, — increment of absolule temperature,
T, — temperature of natural state. We recall the restriction that 6/T, < L.
The other notations referred to [1] and [2]; § = 8/0, and 0, is the source
temperature on the lateral surface of the cylinder.

We shall confine ourselves primarily to the consideration of a tempen ature
field in an infinite cylinder heated suddenly on a semi-infinite part of its
lateral surface, { >0, with thermal sources moving uniformly in the positive
direction of the ¢ —axis. The formulation of the problem is as follows,
cf. [1, 2}:
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c{1.5) (Vz—%)(j’:o, O0<po<l, [l<ew, 0O<zt<oo,
(1.6} ' G, ;00=0, 0<p<1, <o,
{1.7) g(i,{;r)=n(€-wr), 0<1<oo, |C]<oo.

The solution of the mitial boundary value problem (1.5)—(1.7) determining
temperature distribution 0 {g, {; 1) in the entire cylinder has been expressed
by Egs. (12), (17.1), (17.2) and (21) in [1} and we call it to our further
purpose the fundamental solution. The function 8 (g, (; 1) was investigated
numerically in [37] and its variation calculated in three aspects of functional
dependence, namely as =0 (1), § = 0(p), 0 =0 ({). Diagrams were plotted
and the most interesting fragments of the curves from the practical points
of view were discussed.

We iniroduce now a function of four variables # = % (p, 4, 4,, 1) and
define it as follows:

N |2 sl
(1.8) «“/f(Q,;LJ»’?Lz:T):T_Z /o (000

2 exp [—w? ]+
n=1 ‘ﬂ)" ay;l ((Un) P [ ]

e, A TP (e, Ao 1),

where

1 - j/() (CL),, Q) Wy CXP [(i,, /11]

—_ L , A =<0,
2 n; A w,) 0 (a) > +%2; )1/2 1
19y Flo, Ay r) = o ' -
(19 File, diiv) I & filw,e) ouexpla_, ]
_+ Z ) 1 2’, /’]L.] > 0,
2 n=1 jfl (wn) ( 2 w ) /
a_,{wy+——
-4
& m” 1 n 1 .
110) Fipn= s L0 ] s exp [(— w2 +a3) T+

n=1 jl (Ct)") ] B (Hﬁ +ay

, i
+a, A ]erfef a, /Tt ¥ —+
2 ( ViR )

A
exp{[{(—w}+a2,)tta_, i} eric (wa_,, ST )M
_ T

)} ol < o0,

wita?,

A

2
2./t

H

1 )
" exp |-, 7] exf(
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. 25142 .
S e ¥
a"-—\:(w”J{‘ 4) 2]>03
2 N\N1/2 '
= N2+ w
a_,= [(cu,,+ 4’) +2]-_<0,

% (x), 4 (x) indicates the Bessel function on the first kind of order zeroi
and one, w, are roots of the equation % x)=0,n=1,2,.. '
We state that the function

(111) g(@,(:;T)Eg(Q,C—WT,C,‘E},

is the solution of the problem (1.5}—(1.7), exactly. The proof can be achieved
by resorting to the method applied to the succeeding Theorem in Paragraph 4
or directly to [1]. '

by notice

Concrusion. The function

(112) gﬁo (Qn C: T) = g(Qa C—Coa T) =% (Q: C_CO_WTa C"CO: I))
in the solution of Eq. (1.5) with the conditions {(1.6) and (1.3) where
60 = 1 .

In this way the suitable formulae are made ready to define the tempera-
ture field in the cylindrical space bounded one-sided or two-sided by a face
plane perpendicular to the generator.

2. NONSTATIONARY TEMPERATURE FIELD IN SEMI-INFINITE AND FINITE CYLINDER

2.1. Semi-infinite cylinder

We shall now look for a solution of the problem formulated by
Egs. (1.1)—(1.3) and (1.4). We pay our attention to Eg. (1.12) and note
that the condition (1:4), will be satisfied in the time interval 0 <t <
if a hypothetic temperature field is maintained to the infinite cylinder
symmetric to Eq. (1.12) regard to the face plane { =0 but with a sign
opposite to Eq. (1.12) to reduce the residuary thermal state at section
{=0
By virtue of the formulae (1.12) with (1.8) the desired solution ] may be
expressed as follows: :

ey e lo=7 @l lomwi(~lo D~
: h fﬁ(@a “(€+CD+W1—)! —(C+€0)=T)
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Continuing the above idea, we define the temperature field in a semi-
-infinite cylinder with the boundary condition (1.4), by adding to the solu-
tion (1.12) the hypothetic temperature field to assure the face plane { =0
- against loss of heat flux. Thus we have

@) b G0=F (@ Llo-wr, (~le D+
+F (0, —(C+{o+wr), —((+o), 7).

If the delay 15 {, — 0, then a qualitative and quantitative analysis of such
thermal performances may be carried out obviously in some limit on the
data published in [3] combining the proper temperature values in agreement
with the formulae (2.1) and (2.2) putting in both { =0 It is possible to
deduce thermal distributions from the given temperature plots if the delay
{, does not vanish.

2.2, Cylinder of a finite length L

We extend our previous considerations of the temperature distribution
problem to a cylindrical medium bounded by two parallel planes { =0
and { = L initially at zero temperature when a part of the lateral surface
from {={y to {= L is suddenly heated at time 7=0 by the affect of
thermal surface sources at the contact region to constant temperature 6,
and at the same {ime the thermal sources start to shrink with uniform
velocity w towards +{. A free part of the cylindrical surface is maintained
at zero temperature and the face planes remain either at zero or are perfectly
thermalty insulated during the whole process.

This problem is formulated by Egs. (1.1)}—<1.3) and (1.4") and is more
complicated than for a semi-infinite cylinder. The method of solution will
be based on the fundamental solution (infinite cylinder) and the hypothetic
temperature field; the last one will be called later an image, see for
instance [4, 7]. :

At first we locate a sink (negative source) as the image of a given
surface source symmetric to the plane { = 0 of an infinite system beginning
from { = —{, towards —oo to reduce in this way the temperature at the
bounding face plane { =0 so to be zero if we mean the condition {1.4),.
Similarly we put a sink as an image symmetrically with respect to the
plane { = L, that is from {=2L-{, in the direction w to reduce the
temperature at { = L.-We perceive, however, that new sources must now
be introduced as the reflection of the image sinks to maintain the bounding
planes { = (0, L) at zero temperature and so on. Then it follows that an
infinite succession of alternating sources and sinks are required and they
must be taken into account -to satisfy the condition on the face planes.
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Finally, the temperature function in the cylinder of length L is writlen in
the form '

(2.3) éT,i(Q:C;T): i [f(Q,C-COIWT—ZmL,C*Co—ZmL,t)i

m= o

+ F (o, — (L otwr—2mL), ({4 e—2mL), 1}],

valid for 0 <t <(L—{o)w. The magnitude 7 (¢, 2, Az, 7) IS defined by
Egs. (1.8 ~1.10}. For numerical purposes the next formula may be useful:

o

(2.3) gT‘,(Q,C;T): ¥ {Ff(g,C~(:0-wr-2mL,C—C0f2mL,t)—

7 (o, L-@m—1) L, {—@m—1) L. 7}]
i[ﬁ}' (Qa —(C+C0+W’L’—'ZYHL), —(C+CO_2W‘L)= T)
)

+
-7 (0, #(Cw(2m~1)L), f(C#(Zmyl)L),r]}‘

The foregoing expressions (2.3), (2.3') are met if the face planes are
kept at zero temperature (the condition (1.4),) and if they are insulated
(the condition (1.4"),) where the minus sign refers to the planes at tempera-

ture to ‘be held at zero, ET, while the plus sign refers to -the insulated

_planes, b. . .
Further, we observe that Eq. (2.3) is true when w— 0. Then

0d)  Brite oo =lim 3 [F (0, L= Lomwe-2mb E-bo™

Wl ="

—omL, 1)+ F (o, —{L+ g+ wr—2mL), — ({4 y—2mL), 7)),

and at the limit Egs. (22) in [1] are to our disposal.

As an example of the concept we bring the solution of the one-dimen-
sional question of heat conduction in an infinite domain initially at zero
temperature subject to the thermal instantaneous point source at Xo, in the

form, cf. [4], pp. 167—177, Egs. (6.2.5) and {6.5.12):

(2.5 8 (x., t) = ——g: exp [—(x—xo)i"/,-"-lxt.].
o 2/ mut

The solution for a one-dimensional stick of length L heated with a poinf
source at x, and faces at zero temperature or thermally insulated may be
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wrilten immediately from the expression (2.4), (2.3) as

_ 0 = o
2.6y 8(x,1)= W ,,,;-im fexp [ — (x —xq—2mL) ot ] +
texp i —{x+xq—2mi) 4t}

where O — strength of point source at x;. t - fime.
The solution (2.3) in a meaning of the formula (2.3) was tabulated
numerically and the results are illustrated at Fig. | where the variation

&12)
(B(z)} p
0.4
23 - 7 2
22 - / §T
01 B
..... "'.1ai:F1|!at i -
0 40 20 74 5y

FiG. 1. Variation of temperature 0 ({) on the {-axis of the cylinder of length L="15 at .time

T = 0.2 heated over lateral surface, J = {, with moving sources shrinking to zero with velocity

w =1 Face planes are insulated perfectly, curve I, or held at temperature zero, curve 2.
Dotted curve referred to the infinite cylinder, @ ({).

of temperature. into a cylinder of length L= 15 at time © = 0.2 along the
{ ~-axis s given. It is visible that an influence of the boundary condition
at face planes is important in a relative short distance from the end-points.

3. CyLINDER WITH RING-TYPED HEATING ON A PART OF ITS LATERAL SURFACE

In more practical problems moving heating over a lateral cylindrical
surface of bodies maintained to ring-typed thermal sources, say, of width 20,
is met quite often. We point out the procedure in an attempt to construct
a solution in this case using the fundamental solution (1.11) and the results
obtained in foregoing sections.

We start with the f{ormulation of the problem for an infinite cylinder
signing with @ (e, ¢, 7; ) the temperature inside the cylinder caused by
thermal ring-typed sources moving with uniform velocity,
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(3.1 (Vz 6)67:0, 0<o<l, <o, 0<1<owo,

ot
B2 @uop=0, 0<e<l, <w,
where ‘

i*:f-{-ﬁ—wr, l’:C;ﬁ—wr, B =0.

The solution of Eq. (3.1) with thé conditions (3.2) and (3.3) can be
expressed by the function # well defined in Sect. 1 by Eq. (1.8)—1.10).

68 T lup=F @ AN (B D-F @4, [=B)

Proof may be performed in the way shown in the paragraph 4 or directly
-as in [2]. '

' If a delay of the argument { in the boundary condition over the lateral
surface is taken intp account, say 0. Eq. (3.3) requires to be modified:

(L3) . 61,0t B =nA")-nAr),
where _
Afr:C*Co‘i'.B_WT» lfz":“Co—ﬁ”WT-

We now have our problem described by Egs. (L.1), (1,2), (1.3) and
'(14). Seeking for a solution we assume at first Imultivariable function

G =%, 17,17, 1%, 4", 1) defined as
- P T o B
(35) g(ga’l+=/’i‘_>3‘+sl—at):gql(Q:2'+aA—;I)HgZ(QaA+sj“_;T)a

where

- wnf (CU"Q) . At a i 7
> N 112 (e"'iE m_e..x )a ’1+‘ <0,

=1 g (o) an(wﬁ‘%)

. P 0 ) 1 N 1 iy
66 G iig=]1-3% w"”%(w"ﬁ)z uz(fen»i— et )
| =1 A () (m + -4—) "

s Wy Fo (@n0)
25 172
"l (»gl (wn)a—n(w£+&>

4
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1) B °° 1 -l i
[cont] EZS (Q» /1+, AiY= MZ1 w"f({z:)g) { 603 e [eff( 2 \/; )H

* ‘ -
—erf( r ﬂ+ ! (1 [K (= 1%, ay, on; )=
2 T a,,ma_,, an

-K (_i_: ay, Wy T)j__""&"lm [H (_3"+a Ty Oy T)_

=

_H(=1", —a_,, o, 1:)})}, it <o,

: % b i , j_+

*
A -1 1 %, _
—erf( 2\/;)]— a"—aﬂ, (Z [H (/1 3 al‘ls wn: T)+

+K (_hk'ﬁs Ay, Oy, "':)]"'

%
[K (’q'+’ Oy, Wy T)+

-n

+H(—j‘, — iy, Wy r)])}, ‘ j* >0, jﬁl‘ < 0

3 % - 0 n 1 2 E+
‘gz (e, l+’- AT )= n21 w”j; (S:) ’ j‘: o e [erf( 2 \/; )_

" ;
. A . 1 1 * o % ]
—erf(z\/-{):l dn—ﬂ,n (‘d—n‘ [H (/'{ s Oy Oy, T}_H(i ,arlswn’T)]_ .
1

a'—ﬂ

[K (14‘ — CU,,,T) K( 3 Ty CG";T)])}, i_ > 0.

and further

H(, a,w;7)= —exp [{a*—o?) 1+al] erfc (a \/'?—t—

)

K (4, a,rw; T) = exp [(aéﬂwz} t—al] erfc (a f— 5 ff ),
; T

' true if Re[a] >0, A>0
.+ Studying Eqgs. (3.6), we discuss some properties of the fUﬂCtIOIl F and ¥
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i) The function % (o, AT, AT, A2, Ay, T) is continuous at the cross-sections
ib=0, Ay =0,
Ay =0, Ay =0, 0<p <,

where
?J:C—Zcﬁﬂ, j«izgﬁ‘:o“ﬁ‘

i) Tt can be proved that

(@

A S T, AT =% e AT AT
ER

(37) — - 3 4 -
= F e, Ar 0= —Gales A A2 7).

n..+ MF

A3
A

Kb fQ

Hence we have the following implication:
38)  Flo.Ah Al 0-Fle b =% (@, A1, AT D)~
- }2 (\Qn )"25’12 3 )” (;@(Q, f,ﬁ.i—,}»;,)\,;,’f).

It may be verified that Eq. (3.8) is the §oitlt19n of Eq. (3.1) with the
conditions (3.2) and (1.3) '

iii) Tt is obvious that -
(3.9) G_(Q,C,T;ﬁ):?‘f’l{Q,F,l#;f%fﬁz(&),ﬂﬁi—ﬂ;f):
o — G0, 2t A LB LB )
being the solution of Eqs. (3'1,)f{?f_'3)‘
VWe specify the symmetric function to G{o, AT, A7, Az, Az, 1) EQ. (3.8),
with regard to the planc { = 0. :
(3.10) ¥ (o, B e P C T
G (o, — A7, —i -9 e, —75, — 1351,
where
Af =4+ B tw, Ir = L= Brwe,
T3 =4+ f, Ty = (+lo—Bo
and recall ‘
>0, f>0, w>0.

In accordance to Sect. 2.1, we can present the* solution of a pfoblcm
described by Egs. (1.1). (1.2), (1.3 and (1.4). This means: we give an expression
for the temperature field in a semi-infinite cylmder heated by a ring-typed.
thermal source at a part of the lateral surface makmg use of Eqs (3.8)
and (3.10); thus we have :
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(3.11) E(Q,C,T;b’):'--’f’(g,if}ii/12*,/‘»5,1?)?5
(Qa 12415/"2:—)‘25 )a

where the sign —at the right side in the last equality is referred to the
requirement (1.4),, i.c. to the temperature zero at the face { = 0 whereas the
sign + to the data (1.4), ie. to zero heat flux across this face plane.

On the other hand, the result of Sect. 22 allows to obtain the
temperature distribution in a cylinder of finite length L. This is the solution
of Eq. (1.1) with the conditions (1.2), (1.3') and (1.4') in the next form valid
for 0 <t <[L—({y+B)]/w.

oD

(12 6. Lup= Y (9 A —2mL, Af - 2ml, if —2mL, 25 —

—2mL, )+ % {0, —(A7 —2mL), —(if —2mL), — {4y =
—2mL), —(45 —2mL}, 7},

where the minus sign refers to the face planes at temperature zero and
the plus sign to the face planes perfectly thermally insulated. We underline
that the functions at the right side of Egs. (3.11) and (3.12) are defined
by Egs. (3.5} and (3.6) and it can be justified that they hold at the hmit
if w—0, too. In the case of Eq. (3.11), we have the expression

(313) )é (Qs Co T, B) w=0 }_i_]‘:% [{’t‘? (Q: ’]LI}—’ )"l_‘: ’-{J-.ls ’{'275 T)t

+4 (o, —Ar, — A, -5 =15, 0,

which is accurately connected with Egs. (3.9) and (3.10} in [5], as a con-
sequence of passing to the limit. .

It may be verified that the formula (3.12) pertaining to the finite cylinder
0 < { < L reduces to the corresponding Eq. (3.11) for the semi-infinite body
when we put L— oo since in this case only one term of indicated series
remains.

A finite cylinder with' one bounding face plane at zero temperature
and the other face plane thermally insulated may also be studied by a simitar
procedure. In fact any arbitrary boundary condition across the face plancs
may be imposed and just a different one at either of these planes since
a combination of Eqg. (1.4'), and Eq. (1.4), with proper values-of the delay (g
allows to meet practically every set of data gained by the experiment.. Hence
a computer technique and experimental data give rise to one research system
.. of investigated problems. Some conclusions from the fo;egomg considerations

are expressed in Figs.- 2, 3 and 4 as a result of numerical calculation
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B(o)
10 . LT

86—

24+

o 0z 04 05 08 10

i =l
Fic. 2. Variation of temperatare 8 = 0 (g) in sections {, = (p+wr across the cylinder, L= 15,

f=10, {g=5 w=00L; at time 7= 0.05;-02; 1.0; under ring-typed heating.

qﬂt) f at=0, 2B o 1=03361
AN
o8] . for p=0.99 e
28
7 |
1
) Face planes insulated perfectly
———— fhce planes held al-femperature Zerc
07 - Infinite cylinder
J for p=086
01
2 | /o,o"
[P
T = T =
g ot o2 05 : 10 15 L2

FiG. 3. Variation of temperature é_I(C) into Fnite cylinder of length L=80 for ¢ = 0.66, 0.9%
heated with ring-typed sources which symmeétry planc is located at I, = {o+wr =012
(t = 0.3361). Accordingly p="008; w =0Q.119, {, =008 For a comparison the suitable data

of infinite cylinder are included, 7 (£}

of the temperature: function ] ‘(Q, ¢,t; B} according to Eq. (3.12). Figure 2

shows the temperature distribution BH(Q)_ in a cross-section of the cylinder,
L= 15, under ring_—typed heat occupancy at time t=005; 02; 10 The,

 variation of temperature §|(C) in a cylinder of length L=280 for a short -
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&2

o —mmerical data

Location of symmetry plane excitation

Lot WT = tpg = DIE25 m—am T=06039, curves —
Syz =05375 <4 T=1818, 4 e
Ex3= 20066 ~— T<IDE2TY, »  e———
Zxg ~35992 —-—em T=24.72640, .

85 |-

FiG. 4 Temperature field along (-axis at ¢ =033 into cylinder of length L= 80 heated
suddenly over its lateral surface with moving ring-typed thermal source by assumption that
the face planes .are insulated perfectly, curves 7, or are held at zero, curves 2, at the
moments 7 = 0.6039; 1.8118; 10.6270; 21.2540. Accordingly £ = 0.2150, w= 0,178, {; = 0.2150.
For comparison the temperature variation into infinite cylinder is included, curves 3.

Table 1.
QQ:R}:)? 1:0%3330 zeta O+w. TAU = 0.1200
1="TAU = 0.3361 Lo t
£ veta TETA (FL IN) TETA (INF) TETA (FIN. CO)
for RO, RO, RO, RO, RO, RO,
0.0000 0311 . 0125 0.155 0.063 0.000 0.000
0.0240 0.310 0.196 0.162 0.161 0.013 0.126
0.0480 0.308. 0.721 0,167 0.698 0.026 0.675
0.0720 0.303 0.900 0.170 . 0.884 0038 0867
0.0800 0.302 0.915 0.171 0.900 0.041 0.885
00960  0.297 0.931 - Q173 0.918 0.048 0.905
0.1200 0.290 0.935 0.173 0926 0.057 0.916
0.1600 0.274 0907 0471 0.900 0.067 0.893
0.2400 0.234 0.066 0.153 - 0062 0.073 0.058
0.3600 0.167 0.012 0.113 0.010 0.059 0.008
1.6960 0.002 0.000 0001 0.000 "0.001 .0.000
3.2720 0.000 0.000 0.000 0.000 - 0000 0.000
4.8480 0.000 0.000 0.000 0.000 0.000 0.000
6.4240 o :

‘FLIN — endsinsulated, FIN.CO — ends at constant (zero) temperature

time, 7=03361, at ¢ =066 and ¢ =099 is given in Fig. 3 and for
~different time in Fig. 4 at ¢ = 0.33. The influence of requirements on the:
~face planes is compared with data for the infinite cylinder, Tables 1 and 2.
" Thus it was shown that the solutions of the problem formulated above -
-have been obtained in the form of Egs. (3.1} and (3.12) definite by a combi-
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Table 2.
¢ = RO = 033 . |
1= TAU, = 0.6039
1= TAU, = 1.8118 .
[ = zeta TETA (FL IN) TETA (INF) TETA (FIN. CO)
for TAU, TAU, TAU, TAU, TAU, TAU, ~
00000 0490 $.245 0.000
0.0645 0.488 0.264 0.040
0.1290 0482 0.280 0.077
0.1935 0.473 0.202 0.110
0.2150 0.469 0269 0.294 0.251 0.120 0.132
0.2580 0.459 0.298 0.137
03225 0442 0.38 0.300 0:28 0.158 0.19
0.4300 0.403 0.375 0.289 0300 - 0176 0.225
0.6450 0.302 0341 - 0232 0295 Co0162 0.249
0.9675 0160 0200 0427 0182 0.095 0.165
1.8580 0.017 0.032 0.014 0.028 0.010 0.024
3.3933 0000 0.000 0.000 0.000 0.000 0.000
carve 1 curve 3 curve 2

-~ ~ & Ed
nation of the function ¥=% (0, A", 47, A%, A7, 1), where the arguments

i"”,. i, i", 1- are taken with different delay. The properties of the function
@ carried in points i) and iii), Eqs. (3.7—3.9), allow us to state that the
formulae (3.11) and (3.12) are expressed by the fundamental solution (1.11)
of the system (1.5-(1.7) indeed, what was the main task in this work,
keep Egs. (1.12) and (1.11) in mind. '

4, CYLINDER SUBJECT TO MOVING AXI-SYMMETRIC POINT HEAT OVERALL
L. ATERAL SURFACE

Let us now {ry to enlarge our considerations concerned with the relations
(3.1), (3.2), (1.3'y and (3.8) defining the temperature in a long cylinder subject
to the thermal ring-typed sources to some limit case when a surface source
approaches a point source distribution at circumference of the lateral bound-
ary. In this case the problems described by Eq. (1.1) and the conditions
{1.2(1.4) should be changed, with regard to the data given by Eq. (1.3) only.
Thus we have '

13y 00, G0=00,60=0,8(), A={={—wr,

where & (x) denotes the Dirac delfa function. _
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It can be readily seen that -if a limit is taken in the formula (1.3)
Sect. 3, when -0 an identical result is obtained as before. To show this,
there is enough to write a suitable quotient and to tend with f to zero bearing
in mind that Af = A7 {{, 1), 47 = A ({, ). Hence .

O0L,L5h) 1 0D nGi) _, @

4.1)  lim =00 571 (1) = 0, 8 (4,).

A~0 2p ﬁﬂo 2B

Conclusions connected with the refation (4.1) will be presented later but
now we wish to prove the following theorem

Tueorem. Let B be the infinite domain bounded by the cylindrical surface
OB with radius ¢ = 1. The solution 81{g, ;1) of the heat conduction equation
(1.5) satisfying the initial condition (1.6) and the boundary condition (1.3”) may
be introduced by the relation : '

(4.2) 0l. ;) =05(0. A1, Aos 1) = 63 (0, Ay: D+ 0 (0, L33 ),
where 0% and 03 are given in the form:

1. Integral expression in the Fourier transform space

[(o? +ioaw)'/? o]

- o B
4 N E s —imﬂ,
6'1 (Qs ;{'1 ] T) - 2 J OC “l“‘IOCW’)UZ] (iO(.,
(4.3) w0 ]
‘ o ) : 2 x Dg'f (CU Q) e*l’ﬂlfwtaz}'r—im}tz
96 j, : _ (¢} ]
.2 (@ 425) 2n HZI O A o) wp + o +jow
or

11, Equivalent series representation

. o

YO (('Un Q) Wy exp [("n il]

Zx w22
n= . 2 .
f] (CU,,) (6!)" + 4)

(44)  Bie, 40 =

i, <0,

i QJ,,,Q)CO CXp [a—lr l]

12 ?
LA o) (w i %)

>0,

"

(,!)" jﬂ (w]lt_) s

S5 s o
Ole: A0 = 0 Hlw,) T wltal

exp [(—w2+ad)1ta, AZ] x
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( = A\ b _ As 2]) '
x(a,,erfc(a,, t+2ﬁ) \/T_&exp[ (a,,\/;+2\/;) +
o chp[{—w§+ain)r+a_ni2]x
I L i
(oot gl e

1 (Ao)?
s T exp [w(m?‘. T+ 42 )]}, |i_zl < 0.

Designations are adopted according to Sect. 1. Here Ay =~y It is obvious
that the functions 0F and 83 are continuous in B and regular if {— <0, Bo=1.

+

" Proof The thesis will' be accomplished if the desirable function (4.2}
satisfies: 1) the equation in space B, ii) the initial data in B, iii) the boundary

conditions on &B. We note that (Vz——) (62 +B‘5)—(V2—a~) 2+ (VZ

0\ - 8 . .
——ér—) 65’ since the operator Vzwa— is linear.

Ad. 1. Inspection of the relations (4.3).

i) Carrying out the indicated operations under the sign of the integral
and the sum and using the next formulae ‘

A @=1, gl @=L @+, O,

d d
T Fe@=—A (Z}, zg; A= — (2)+27 (2),

we proceed tg the relations

Q>t

Vzga_ a2 a2
b —ﬁbTJr 0 3Q+"EZT

I, [(&® +ioaw)"? @]
Ig [(e® -+ iow)'*]

iow exp [ iad ] dot,

(D+O€

gy X
W, o +iow

2 fo(w 0)

Vz aé __
2T 2m 0= 1 £ (wn)

i
|

x exp [ —(@? +o?) t—iod,] do,
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which, in an evident manner, are reduced with proper terms of an operation

o1

it} We take a Hmit of the relations (4.3) at 1 — 0 and apply the identity
(3.4.2) in [5] to get

(— i) acting on the functions (4.3).

I [{o® +iow)'"? @] -
To [(0® + iaw) /2]

o ) N . 1

X exp [ —iod,] da,
:EO: Wy S (0, Q)

s A (@) (2P +iaw) F [—iad,] do =

_ . 2
03 (0, 42;0) = 5 |

LR

= —07] (g, kl;;0).
Thus we have, according to the relation (4.2),
B (0> A1, 42,0 = 87 (¢, 1,5 00+ (0, 4,3 0) = 0.

iti} Passing to the limit under the sign of the integral in the exp_ression.'
{43}, and the sum in Eq. (4.3), at ¢ —» 1 we obtain, in agreement with
Eq. (4.2),

— PR ~ i s ¢
4.6) 95(15115"{2:T)zgf(laj'l;T):ﬁ JeXp[“iotll]dﬂ@*fS(ll),

since 2 (1, 4, 1)— 0 because of Iimljo (w,0)=0
psh

: We see that the expression (4.6) exhibits a formal description of Dirac’s
delta function, compare with [6], p. 35, (86).

Ad II. Inspection of the relations (4. 4) and (4.5).

We return to the function (4.4) and (4.5) evaluating the denoted operatlons
- and arranging appropriate terms of the obtained results in groups similarly
s was done above at point T in agrrement with 1), ii) and iii), respectively.
Finally we state out that the sequence solution is quite right.

" For instance, the requirement ii) may be justified as follows. There are
“two cases of interest to be argued: for i <0 and Ay >0 both at 70
A_nalysmg the function (4.4) within the interval i, < 0 and remembering the
~ limit values of erfc (00) = 0, erfc (—o0) = 2, erf{c0) =1, erf(—o0) = —1, and
he definition of the magnitude a, whose partlcular consequence is that

W 1/2 :
: (w,’;’+4> , we proceed to the simple dependence
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2 2
an+wa,—oy =0,

satisfied from the assumption. ‘
The case when 4, > 0 is taken into account can be interpreted similarly.
At the end some remarks are given. It 18 clear that the relation {4.1).
suggests to write the following conclusions but it is the Theorem that permits
us to do so.

Concrusion 1. The solutions (4.4) and (4.5) of the conduction of the
heat problem in an infiniic circular cylinder subject to the moving boundary
condition on a lateral surface described by the Dirac delta function is the
-derivative of BEq. (1.12) with respect to the axi-coordinate { with the
fundamental solution involved.

~ Concrusion 2. The solutions of Eq. (1.1) in a semi-infinite and finite
cylindric domain’ initially at zero temperature and the boundary conditions
(1.3"), (1.4) and {1.4") are the derivatives with respect to the axi-coordinate
¢ of the solutions (2.1), (2.2) and (2.3) adequate to appropriate boundary
data across the face planes. g
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STRESZCZENIE

POLE TEMPERATURY W POLNIESKONCZONYM I SKONCZONYM CYLINDRZE
PRZY RUCHOMYM QGRZANIU POBOCZNICY

W pracy wyprowadzono zwiazki opisujace niestacjonarne pole temperatury w polnieskon-
czonym i skoficzonym cylindrze ogrzanym na czgici pobocznicy ruchomymi, osiowo-symelrycz-
nymi, ‘powierzchniowymi Zrédiami ciepla. Zatozono dwa przypadki warunkow brzegowych na -
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powierzchni czolowej: temperature rowng zero i doskonala izolacje cieplna. Na podstawie
rozwigzania fundamentalnego dla diugiego cylindra w 1], kidre zostalo oprogramowane
i przeanalizowane wyczerpujac numeryczoie w [3], wyprowadzono wzory na temperature przy
réznych sposobach ogrzewania pobocznicy. Rozklad temperatury wewnatrz cylindra o dlugodci
L jest przedstawiony jako nieskoriczona suma elementow podobnych do rozwigzania funda-
_mentalnego. W zakofczeniu udowodniono istnienie transformacji otrzymanych wynikéw do
funkcji Greena w sensie pewnego przejécia granicznego. Zauwazono, e mozliwe jest zalozenie
bardziej zlofonych warunkéw na powierzchni czolowej systemu i prowadzenie obliczen nume-
rveznych na podstawie rozwiazania-fundamentalnego w sensic analizy jakodciowej i iloéciowej
pod katem zastosowan. Wyniki numeryczne przedstawiono na wykresach,

PeEzowMme

ITOJE TEMITEPATYPBI B IIOJYBECKOHEUHOM W KOHEUHOM LHNAUH/APE
IPY IIOABUKHOM HATPEBE BOKOBOH [IOBEPXHOCTU

B paGoTe BEIBEACHEI COOTHOHISAMA ONHCHIBAMCHINE HECTAIHOHAPHOE TOJIE TEMIICPATY PbI
B TONYOECKOHEMHOM M KOHEUHOM IpIKILIDE, HAYPERaEMOM B 4acTH BoKXoBoOi TTOBEPXHOCTH
TIOABISKHEEIMIT, OCCCHMMCTPHYHBIMH, TIOBEPXHOCTHRIME HCTOYHHKAME TEITa, TPSANOIaras ARa
CaTyuas TPAaHMYHEIX YCI0BHE Ha noCosoii nosepxaocru: TemnepaTypy PABHYIO HYJIKD H WARAMbL-
HYIO TeNROsyro Haouanuo. Onupascs HA GYHIAMEHTANLHOE PELICHHE JUTA [UTHHHOTO HHAHHEPA
B {1], x0Topoe OMPOrPaMMUPERAHO | TPOARATHIHPOBAHO HCHCPIEIBAKOIHUM 0Gpa3OM HUCIICHHD
B [3], puienenEl opMmymsI A TeMHepATYpHL, npu  pasHpix cifocofax Harpesa Gokoboit
HOBePXHOCTH. Pacnpenenenne TeMmnepaTypsl BHYTPHM UunuHApa ¢ Limici I, NPSACTAB/IEHG KAK
feckoneunas CyMMa 3ACMEHTOB AHATOTHIHBIX 'Q)ymlaMeHTaanomy peienyo, B saxnroseHnn
FOKA3aHO CYWIECTBODAUNC NPeoBpA3OBANNS NHONYYEHHBIX Pe3yAbTATOR K hyuknmo Tprna
B CMBICAE HEKOTOPOrO HPEHE/bHOT0 TICPEX0/A. JaMEHAeTCH, YTO BOIMOKHO TNPeANONOMKERHE
Bonee CHOKULIX YCTOBHI HE OBOROH HOBEPXHOCTH CHCTEMEI 1 BEOCHHE YHMCICHHLIX PACHETOR,
OTIHPasch Ha'(byaﬂamemaﬂbuoe PEEICHHE B CMBICIC KAYECTBENHHOTO M KOJHYECTREHHOTO aHATHMRA
C TO'KH 3pEHUA HpHMCHeHHH. T1pHBENEHET PeIy LTATEL YHCACHHAIX PACUETON B BRC JUTAT PAMM,
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