ROZPRAWY INZYNIERSKJE * ENGINEERING TRANSACTIONS * 34, 1-2, 139-170, 1986
Polska Akademin Nauk ® Instytut Podstawowych Problemow Techniki

ON AN EFFECTIVE METHOD OF EVALUATION OF THE EFFECT
OF CAVITIES, INCLUSIONS AND CRACKS UPON THE STRESS
FIELDS IN ELASTIC MEDIA

M. SOKOLOWSKI (WARSZAWA)

Cracks, holes and inclusions introduce certain disturbances into the stress fields produced
in elastic media by external loads. Theoretical foundations of the analysis of such stress
fields are well known and, in pridciple, problems of this kind may always be reduced to
the solution of the corresponding sets of integral equations. However, the effective determina-
tion of stresses may prove to be not so simple, first of all in the ceses when the number
of defects is high and the stress fields are singular. Tn such cases the finite differences
or finite elements methods become impractical. This paper is aimed at presenting such an
approximate method of analysis which resembles the approach known from elementary
structural mechanics and which is applied to statically indeterminate structures; it reduces the
problem considered to the solution of a rather simple set of algebraic equations. If the mutual
distances between the elliptical inclusions and cavities are not smaller than their dimensions,
the accuracy achieved will be satisfactory from the point of view of engineering applications.

1. InTRODUCTION

- The problem of interaction of various defects in elastic solids subject
to the action of external loads has been dealt with in numerous papers.
Here let us mention several fundamental papers [1—3] published by
J. D. Esnersy and an exiensive study by H. Zorsxi [4] who considered
the problem within the context of a gencral theory of mechanics of defects.
Many other papers and books were devoted to both the theoretical and
practical aspects of analysis of stresses and displacements produced in conti-
nuous media and structural elements containing defects of various kinds:
cracks, cavities and inclusions in particular. For instance, let us quote here
three books [5-—7] published quite recently. In most cases the methods
of analysis proposed there are based on various methods of analytical
or numerical solution of more or less complicated systems of integral
equations governing the problem under consideration.
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In principle it is always possible to reduce the problem of analysis
of elastic media containing holes (cavities), cracks or elastic (rigid) inclusions
to the solution of the corresponding set of integral equations. An effective
solution of such equations may lead, however, to serious difficulties in the
cases when the number of defects is large and their distribution within the
body is nonuniform. If, in addition, the defects introduce certain singularities
info the stress field, the numerical methods of analysis based on finite
differences or finite elements may require the introduction of a very large
number of unknowns and other data and become hxghly time-consuming
and impractical. '

A slightly different approach to the problem was proposed by this
author in 1975 and later [8-—107; in this approach the number of unknowns
is reduced considerably in. spite of a relatively high accuracy of the results
obtained. A somewhat similar approach was also suggested by D. Gross
in 1982 (and by SHU-ANG ZHOU m a still unpublished "paper) [11].

The present paper constitutes a continuation and generalization of the
ideas discussed .in papers [8—10] We are not going to deal with the
theoretical foundations of the problem which may be considered ‘as known:
our principal aim consists in presenting a simple and effective method of
analysis of the state of stress produced in an elastic, infinite medium
containing three types of defects: elfiptical holes, elliptical inclusions (elastic
or rigid) and cracks. The method presented in this paper makes it possible
to apply the approach resembling the analysis of statically indeterminate
systems, known from elementary structural mechanics. In the case of n defects
existing in the body, the number of “redundant” elements equals n, 2n, 4n
or more, depending on the accuracy required. This number is considerably
reduced in the case of symmetry and under the assumption that the distri-
bution of defects is not very dense. In view of simplicity of the procedures
used in the analysis, the method may prove to be useful in many engineering
applications; it should also be stressed that it does not require (in most cases)
any Sophlstlcated Computer equipment.

In-order to make the presentation of the method as simple as p0351ble :
the considerations will be confined to the antiplane state of strain (or
stationary heat flow) in unbounded, isotropic media. However, generalization
of the results obtained to the plane strain and plane stress problems is not
connected with any serious difficulties as it was shown in the paper [10}
concerning the interaction of cracks under Mode 1 crack . deformation
conditions.

It is known that the antlplane state of strain-in an :sotropw elastic
medium is governed by the simple Poisson equation :

(S V2w ) = P (xa),
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where V2 = 9%/0x*+8%/0y*, w(x, y) is the displacement measured in the
direction of the z-axis of a rectangular (x,y,z} or cylindrical (r, 0, z)
coordinate system, p is the elastic shear modulus, and p(x, y) — intensity
of the body forces parallel to the z-axis (Fig. 1) The only non-zero stress
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tensor components are expressed in terms of the displacement w by the
formula

! ow dw
- (1.2 ‘ = = —-.
(12 T =R Om ‘,u oy
Tn cylindrical coordinates r? = x?+ 3%, x =rcos §, y =r sin f, we obtain
ow 1 ow
13 - o _ 1w
( ) . . Oy H af‘ E] Toz F ag

Equations (1.1}—1.3) may also be used to describe (under different notation)
the problem of two-dimensional, stationary heat flow in a solid characterized
by the heat conduction coefficient 4 and containing linear heat sources
of intensity W (x, y),

(1.1 IVET(x,y)= —W(x,y)
. : oT oT
(1.2 qx o dy 3y

Here T(x, y) denotes the temperature, and gq,, q, are the heat flux vector
components. Owing to this analogy, all solutions concerning the antiplane

state of stress in elastic media may also be used to describe the soiution'nof_ e -

the corresponding stationary plane heat flow problem.
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Let us assume that the elastic medium is unbounded and the body
forces are represented by concentrated forces Pd (x) é (y) uniformly distributed
along the z-axis (Fig. 1); the solution of Eq. (1.1) satisfying the condition
of vanishing of stresses at infinity is easily found to-have the form

P . const
W= log ,
2np r
P x P cosf
T2 = T30 3T T T3 T,
Py P sing
(1.4 Oy = =g T =~
P 1
Gpy = Oy, COS 040y, smﬂw—-__,
' 2 r
Ogz == — 0Oy Sin 0407, cos0=0.

Let us now introduce the following notations: solutions (1.4) correspon- .
ding to unit force loadlng P =] are denoted by two superscripts 0, 0, so that,
for instance,

0,0 __

w e log p
(L.5)

690 = 11 g% =0

rz 21! i” ré

Actually, P denotes the linear density of the body forces applied to the
medium and has the dimension of force/length. '
Applying now two concentrated forces: P at point (0, —4) and —P at
point (0, 8), denoting the product 26P by M®! and passing to the limit
0—0, we obtain the solutions which are denoted by the superscripts 0,1:

s

0,0 ' 0,0
o1 _ ow 0.1 _ oy, otc
ay L xz ay » .

The magnitude M®' may be interpreted as a concentrated moment (force
dipole) of the first order, uniformly distributed along the z-axis. In the heat
transfer theory M®' should be interpreted as heat source dipole intensity
(cf. T12])

In a similar manner higher order moments (multipoles) may formally
be introduced. For instance, the second order moment is- obtained by
applying two first order moments: M®' at point (—46,0) and —M®! ar
(8, 0), denoting the product 26M®' by M"' and passing to the limit §—0.
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Application of such moments at the respective points (0, —5) and (0:5)
leads to another second order moment M®2 The corresponding solutions
are obtained by simple differentiations: :

w1
0.2 - etc.

1,1 ow?! w
ax dy

The solutions corresponding to the (m+n)-th order moments, M™", have
the simple form
w (xa J’) == Mm,nwm,n(x’ y)s
(1.6) ' -
Gz (X, y) = M™" 633" (x, y),  ete,

functions w™" and o7, ¢"2" being determined from the formulae
X ¥z :

a"! a"
W= T el
1.7)
( . - am an o

—— VO [ —
Ofz. = ax™ ayn [akz (}"3 y)]a k X ¥, g.

In Fig. 2 are shown clementary, graphical representations of several first,
second and third order moments. It should be observed that the second
order moments M"' shown in Figs. 2c and 2d are strictly equivalent.

Substitution of the solutions (1.5) into the formula (1.7) leads to a simple
form of solutions of arbitrary orders. For instance,

FiG. 2.
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1 sin (m-+1) 0
m, 1 __ _ tynt1
= 2—1':#—( B m!.——urm+1 2
1 g sin(m+2)8
(L.8) ot =~ (= 1) +*(m+1)!ﬁ%_,

cos(m+2)6

rm+2

omt = L (= 1P+ (1)1
The above solutions assume the simplest form once the complex potential
F (z) is introduced (cf, e.g., {13]) Equations (1.1) and (1.2) are known to be
satisfied identically by the real and imaginary parts of an analytic function
of complex variable z = x+iy (not to be confused with the coordinate z),

F :
mw (x= y)=ImF(z), Z(Z):%Z—z o-yz+if_7xz:
(L9) . )
Oz (xa y)=1m“%;*, 0oz (xn J’) Re—d{“

The symbo] Z (z) denotes here the complex stress tensor (vector) ¢,,+ia,,.
It is easily verified that the function

F*%2) = “377 log z

yields the results (1.4) since, according to Egs. (1.9), we obtain

C 1° 1
Im I:_Z_nk)g Z]? _‘"E lOg F,

dF%-0 _ i 1 1 sinf+icosd
dz ~  2n z = 2m r )
Notations
_L — 0.0 _J;L_E0,0
o log z = F*"(z), . m (2),

make it possible to write down a simple general formula

_1m+n+i iu+1 1
(=1) !

(1.10) ™) =

‘Analysis of Eq. {1.10) leads to a simple conclusxon that ail moments
of the same order {m+n+1=const) lead to complex stresses differing at
most by the coefficients +i or +1, -

Tm— 1,uw+1 __ Em" Emuz,n+2 = . Xma m- 4,n+4 ):mn
- - 3
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Let us present the explicit forms of solutions corresponding to some

pairs of superscripts ¢, 1, 2.

1 sindg 1 cos@
01 _ _ , 1.0 _ _
v = 2T TR
oq 1 sin20 10; 1 cos20
Gy ™ R~ Oy = 5 7 >
* n r 2n r
111) : .
(119 o.1 1 cos20 10 1 sin20
O = " 3p T T T g T a0
1 1 i1
o1 _ L 1,0 ., * .
Sl PR 20 o
1,1 1 sin20 20_ L 00820
2nu - r? 2o 42 7
1t 1 2sin30 s0_ 1 2cos30
I = T TP e T Ty T
(1.12) .
1,1 1 2cos 368 20_ 1 2sm30
O TR TR T T s
1 2 21
L _ & 2,0 _ _ “ .
= 2n 27 z 2r 2
gl _ L 2sin30 g2u__ L 6
P S 2n %
(1.13) . .
21 1 6sindd 21 1 6cosdb
Oxe =g — G T TR T A

2. CIRCULAR HOLE AND INCLUSION

Let us consider the problem of antiplane state of strain in an unbounded
clastic body containing an elastic cylindrical inclusion of radius a and axis z
(Fig. 3). In the x, y-plane it may be considered as a circular inclusion
" (or hole). Assume the medium to be loaded at infinity by the forces
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. x y
65:=(qo+h —a_'*'P: e
x

! Y
2.1 - Do p gy P
( ) U'yz Po—q: P "1 as

, . 'z
Z™ = (po+igo)+(py—iqs) VL

which produce at infinity the displacement w® (here g = r/a),

x2—y*  xy.
41+TP1,

, 1
HW® = qo X+po y+-5

o0

. 1 1 .
Y %!_ = o @ c08 B+ po 0 sin 0+ @ cos 20+ p1 @*sin 26.
Introducing the notation

. ﬂ‘-ﬂ"“’
22 K= =
22 PEat

where p is the shear modulus of the medium, and ' — the corresponding
modulus of the igc}usion, we obtain the elementary solutions: outside the
inclusion :

Y= +~ ) cos 6+ Q+i sin 6+
ng = dlet; pol e+ Jsin
1 2 K 1 P A '
+7 ‘hl 4 +'Q_f CcOs 26+7p, ¢ "t"é—z_ sin 24,

z}

i j

2a

FiG. 3. .
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23) o= qo(i-gz) cos G+p0'(1-_—-§2~) sin 0+
‘ ;1-511 (Q_Exs) cos 28+ p, (g—%) sin 20,

. , ., 2
X= o.__vz+laxz = (Po+1‘I0)+(P1 +1q1‘) 7+

. a , . a
+“(Po—1%)—z’z+% (Pl—“h)'i:r-

Inside the inclusion
2

w2 X y 1 x*—y xy V!
H—= W(qo At gty i 7 )

(2.4)

i

2
Oy, = ,H_,u +{go cos 8+ p, sin 84 q, ¢ cos 20+ p, ¢ sin 26),

Comparison of the formulae (2.1}; and (2.3); indicates that the effect of the
inclusion on the state of stress for r > a is reduced to the additional terms
" in the expression for the complex stress

a? a’
2.5) 4X = "(Po'"i‘h)}"z"i'%(m“ifh);j

Let us .now compare this result with Egs. (1.11), (1.12); it is seen that
the state of stress and displacement in the body containing an inclusion
is exactly the same.(for r > a) as the state produced in an infinite solid
body (without inctusion) by loads ¢3; and o} applied at infinity and by the
first and second order moments (dipoles) applied at {0, 0),

0,1 2 1.4 _ 3
M™" = —2zxa*py, M"" =mua’ p;,

2.6).
MY = —2mxa’q,, M= mua®q,.

Moment M*%-may be replaced by the equivalent moment—M%2, and the
entire set of moments (2.6) — by the equivalent set of two moments of complex
mtensxtles

M®' = —2mxa’ (Po—iqo),
MY = mea® (p, —iqy).

~ In the case of a circular hole, the coefficient x=1 {¢'=0 in the
'formula (2.2)) and the equivalent moments have the intensities

2.7)

M®! = —2na’ (Pa"'“lo)
MY = nd (p; —iqy).
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Equations (1.10}—(1.13), (2.6} or {2.7) allow for an exact and explicit
expression of the displacements and stresses produced by the loads (2.1) at
an arbitrary point of the infinite medium (for r > a) containing a circular
inclusion.

The above solution may also be referred to the heat conduction problem
in a two-dimensional region containing a circular inclusion characterized by
the coefficient A’ different from that of the matrix, 4. The conditions at
infinity (2.1) express then the prescribed heat fluxes

g = Go+qy Xfa+py yla,  —dy = po—qy y/atp; x/a.

At the interface temperature T and normal components of the heat flux
vector are continuous: '
oT

T@=T1{@ and —A——

or

T
rea or

>
r=a

the primed quantities being referred to the interior of the inclusion. The
case of a hole in the deformed elastic medium corresponds here to a perfectly
insulating inclusion, A" =0, while a perfectly rigid inclusion —to a perfect
heat conductor (constant temperature at the entire boundary of the inclusion).

- 3. INTERACTION, OF CiRCULAR INCLUSIONS

Let us now present an approximate method of analysis of the state
of displacement and stresses in an unbounded medium containing several .
circular inclusions. For the sake of simplicity consider the case of two
identical inclusions of radii ¢ and shear moduli g, centered at points
(0,.0) and (L, 0); assume that L>a (with L @ accuracy of the method
will be higher). Moreover, it is assumed that the loads acting at infinity are
uniform and uniaxial, 62 = po. 02 =0 (Fig. 4). It should be remembered
that Fig. 4 (and other figures in this paper) presents two-dimensional cross- '
~sections of the actnally three-dimensional body containing cylindrical inclu-
sions. : .

The state of stress in the region outside the inclusions is represented
by the sum of the states produced in the infinite region without inclusions
by external loads ¢ (such stresses will be denoted by ¢y, k= x, y or r,0),
and the states produced in the region by the moments of unknown intensities
My, MY replacing the action of inclusions 4 and B.
(31) Oz (JC, J’) - Ekz (X, J")"'Z M[/,IJ J;;z] (x_xa', y_yA)+

ihJ .

i/

. +z MlJ.”fJ O-;;,zj (X—XB, y_yﬂ)
c L
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Here x4, y4 and xg, y; denote the coordinates of centers of both the inclusions
(hence, accordmg to Flg 4 Xy=ya=yp=0, xB = 1), and the formula (3 IV
holds true for x*+y* > a? and (x—L)*+y* > a®

In most cases, if L isn’t too small, two or at most four terms of expan-
sions (3.1) will be an acceptable approximation of the stresses; the terms
involve the first (M%!, M*%) and the second order moments (M1 1 M),
Taking into account the relations (1.11), (1.12) and (2.6), the expansmns
MY a;g may be expressed directly in terms of the coefficients pa. ad,
pd. g4 which characterize the stresses produced at point A by the external
loads and by the remaining inclusions {also replaced by the corresponding
momments). From Eq. (2.6) it Tollows that the intensity of equivalent moment
M/ depends exclusively on the values of stresses (py, qp) and their derivatives
(p:, q;) which would exist in the neighbourhood of the point x4, y, if the
inclusion 4 were absent. This state of stress will be called the primary
stress at A. ' '

For r? = x2+y* » a* and with the notation g = r/a the following formulae
are obtained:

sin 20 cos 20 i
G-\zgxay)z _pg% *qg%T_

4 sin38  , cos36
—pH 3 —qy % 3 Oxzs

(3.2) ‘
cos20 , sin20

_q(‘) U QZ

ay: (X, y) ™ pg x

a4 cos30 . sin30
P X Q3 q1 X 3 O-yz-
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The derivatives of stresses (3.2) with respect to ¢ = x/a and 5 = y/a at point
{0, 6) are expressed by the formulae

00y, (x, ) 4 2% i
—=r e —-sin 30 +qp —5-cos 30+
oL ~ P 0’ % 0
In Ix G
+pt -sind0+qf =,
P 94 q 0 Py
B3 2
995 (%, 1) —pi 3_cos 39+qulsm 36—
on o° 0
3x 3
-pf o 40+q4 0
Obviously,
oo da do do,,
3.4 ‘ i Xz _ ¥z , Xz _, ¥z
G4 o on on o

Substitution of the coordinates xa, vy for x, y into the formulae (3.3) yields
the stress parameters ph, qa. p¥, qi which are necessary to determine the
equivalent moments MY', ML°, My!, M

(3.5) | ¢ B)=q5, 0, (B)=pl,
and ' ' '

do do | da
3.6 xz 0%y | B L
(3.6) FE an |, a1 an |, 41

Let us now denote by @, ql; Pos 51 the correspoﬁding stress parameters
produced by external loads:

00, g 00, g

GN G B)=a@, @@B)=p, —FF=b. =

and consider them as the values known from elementary considerations.
Substitution of Egs. (3. SHB 7) into Eqs. (3.2)—(3.4) leads to the following
set of equations; :

- sin 20 cos 20 sin 39 cos 36
o= do—pi # 7 — i % 2 —pin 5 ——qix

2 4

_ cos 268 sin 20 cos 30 sin 3¢
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3.8 sin 30 cos 389 -sin 40 cos 44
Emm.% g} = §i+2pg x e +2q5 % P +3pix —Qr—+3q’1‘ * e

i cos 30 sin 30 cos 40 sin 46
+2q8 pe —3ptn e +3q7 s

pr *P1—2P0%

In these formulae » denotes the nonhomogeneity coefficient (2.2) of inclusion
A, and ¢ and 0 are the coordinates of the center of B measured in the
polar coordinates centered at A Smnlar four equations are obtained by
equating the coefficients pg§, g4, pi. g to the sum of stresses produced
by external loads (pg, ... 4} and the stresses produced by the inclusion B
{or the corresponding stress gradients). Some of the terms in Eqgs. (3.8)
change their signs due to the change of angles 8,5 =0g,—7 As a result,
we obtain a set of eight lnear equations for the eight unknown moments
MY and MYy'; stresses at an arbitrary point of the medium are then-
calculated from Eqgs. (3.1). A similar procedure is applied in the case of n
inchusions; 4n equations with 4n unknowns are then obtained.

To illustrate the procedure, let us return to the case of two circular
holes of equal diameters 2a centered at points (0,0) and (L, 0) Fig 4).
Due to the symmetry of the problem (external loading is uniform, ¢}; = py),
we have

Pa=pPE=pe, Pi=-Pi=p1, G=ab=qi=41=0,

and the system (3.8) is reduced to a simple set of two equations with two
unknowns. We obtain the solution

_ , Po . Po
pO lﬂi_i;"“’ l_ia -
AT A% 13438 e
39
(39) 2/ - 2
P = 3 PGNIJPO
=%

7
M ‘~M‘“ — 2na? 1_1"/4, Myt = - My =21 73,

:and the approximate values of stresses (outside the holes) may be found
from Egs. (3.1) or (3.2). For instance,
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: o _' 1 cos 20,  cos 26,
(10) oy (@O~ po| 14—y | — 3 a )

+ 2 ( cos 30, __cos 38,
PN el o} '

Here ¢,, #, and g,, 8, are the coordinates of point (x, y) measured in the
polar coordinate systems centered at {0,0) and (L, 0) (Fig. 5).

g " ' (x4}

N
4«0(3

’z'*ape

8;

B4

=¥

FiG. 5

The diagrams of stresses ¢, (x,0) calculated from the approximate -
formula (3.10) under the assumption that A= L/a =35 is shown in Fig. 6.
It is interesting to note that, in spite of a rather small distance between
the holes (% hole diameters |, the-contribution of the second order moment
is almost negligible. This makes it possible to reduce the number of unknowns
in the case of n different holes from 4n to 2n, and under additional symmetry
properties — even to a smaller number, For instance, uniaxial tension applied
to a body containing an infinite row of equal and uniformly spaced holes
may be reduced to two or even a single equation. Accuracy of the approximate
formula (3.10) may be estimafed by means of Table 1 containing the values
of ¢ = r/a at which the stress ¢,, vanishes; in the accurate solution stresses
¢, = 0 at the boundary of the hole, that is at ¢ = 1. It should also be rioted
that in the case of a crack replaced by a concentrated moment [9] the
approximate solution becomes fairly accurate at a larger distance from the
center of the crack, ¢:> 1, while the solution (3.10) yields satisfactory
results at points lying very close to the boundary of the hole.
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i a'yz(x,o)
- Pa
i T3
]
r +2 N
1
1 ;
I
!
] |
: 1 _ 11 -
-25 -2 | o 1 2 25 X
F1G. 6.

Table 1. Roots of the equation o,. (r, 6) = 0 for several values of £.

8 1° 10° | 30° 60° | %0° | 120° | 150° | 170° | 179°

109757109761 0.982|0.993 | 1.002]1.008 | 1,010} 1.011 | 1.011

4. EiLIPTICAL INCLUSIONS

The method outlined in the preceding section may also be applied to
the cases of elliptical inclusions and holes. In the limiting case of elliptical
holes with semi-axés a, b and lim b/a = 0 we may also analyze the mteractlon
between various inclusions and cracks.

Let us consider the simple case presented in Fig. 7 and concerning
an infinite elastic body subject to antiplane strain and loaded at infinity
by uniaxial tension ¢} = p,. The body contains a cylindrical inclusion of
elliptical cross-section with semi-axes @, b and. ¢ =a?—b% The elastic
moduli of the body. and inclusion are y and p', respectlvely Let us introduce
the additional parameter

. i . o ,ub—
4.1) %= bria
In the case of a circular inclusion % = % given by Eq. (2.2); for an elliptical
hole ' =0 and # = 1; a rigid inclusion is characterized by # = —1.
Application of the complex potential method (see, for example [13])
" leads (o the following solution.
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r— " .
I yh (X,u)ml
| < I
I |
| g |
| -a {
| - |
| NN x )
i .0 P u |
'u‘ E
I |
| A |
L ]

Fia. 7
Outside the inclusion
1 24/t = _ a+b
F(z)_7p0(a+b)( ‘ a+b —¥% z+\/zz—c2 ):

“42) pw =Im F (?)’,

_ {(a+b)?

. ' 2o 2 :
Z(E)=0,ti0;=F5]|1-+ — [ 1+ .
@ =0, 2 [ 8 (z4 /25 =) ( N )]

Separation of the real and imaginary parts in Eq. (4.2); yields the strésses
o,, and o,.. At the boundary of the inclusion variable z assumes the values

(4.3) % =g cos d+ibsin &,

& denoting a parameter. With the additional notation
h? = a? sin? 9+ b cos? 9,

the formulae for stresses o,, and o, may be written, in view of the

yz

identity )
Z4+./z2—a*+b* = (a+Db) (cos 9+isin 9),
in the form
Oy (2) = —ﬁg%b)- [a—b-+7%(a+b)] sin 9 cos 9,
(4.4) |
(@ b)

Oy (5) = Po [a sin? 9+b cos? 9+ % (—a sin? 9+ b cos? 9)].

2h*

Stresses g,, and ¢, (in the directions normal and tangent to the elliptic
boundary) are calculated from the formulae
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b a .
Oz = Oz ~p - €OS 3+a,, & sin 3,

(4.5)

b
Gy = — sm9+cr -~ cos &,

xzh

Substituting the " stresses (4.4) into Eq. (4.5), we obtain the partlcularly
simple formulae

a+b

Onz = Po (I —3¢)sin 3,

4.6
(- ) a+b

Gy = Do (1+x) cos 9.

It is seen that, in the case of a hole (i = 1), stress a,,(£)=0
Displacement w at the boundary of the inclusion is expressed by the

formula :

(4.7) | iyw(2)=%(a+b)(1+i) sin 9.

In the case of a perfectly rigid inclusion, ¥ = —1, the displacement vanishes,
w(z) =0, in agreemen{ with the physical sense of the problem.

Inside the inclusion the displacement w is a linear function of ¥, and the
stresses are constant,

. lat+h)y , 1 (a+ b} ,

(48) W = O,u'a-l—,u,b’ Oy = Po ,u’a—i—,ub’ szxo-
It is easily verified that at y = bsin § .Eqs. (4.8) lead to identical results
as Eqs. (4.6) and (4.7), so that the normal stresses and displacements are
continuous at the boundary of the inclusion. Since, in addition, Eq. (4.2);
at |z]— oo yields the constant value py,

lim % (z) = po,
lz]— o0

the formulae (4.2) and (4.8) are seen to represent the accurate solufion to the
problem shown in Fig 7. .

In order to determine the equivalent concentrated moments corresponding
to the elliptical inclusion in the stress field considered, the function X (z)
given by Eq. (4.2) must be expanded into a power series of 1/z; disregarding
the terms of orders greater than four we obtain

@) E@=DRrR@HbP ] ot po [ @ b
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Let us now compare the terms of the expaﬁsion {4.9) with the corresponding
terms of the formula for X (z) resulting from the application of concentrated
moments M>!, MYt MZ%!, Eq. (1.10):

410) Z ()=

4

1 - MO,I Ml,l MZ,I
1
[ z z z

5 2! 3 T,

_Mm,l
(=" m ) ——5 ]
b4
" From the comparison it follows that the stresses produced' in the body
(outside the inclusion) by uniformly distributed loads o} = p, at infinity,
may be expressed by the sum of p, and the stresses produced by two
concentrated moments of the first and third orders: '

T
Kap0> Mz’l: —ﬁ Ka Czp()a

T

0.1 _
M= = 2

(4.11)

with ‘the notation

2ab (a-+b) (u— )
b+ a '

(4.12) K,=#%(a+bP+c* =

Confining our ‘appmximation to a single first order moment M** (Fig. 2a),
the stresses in a body containing an elliptical inclusion are calculated from
the formula ‘

1 1
E(Z) =Po (1+z- Ku'z_g)a

1 cos 28 ‘ in 20
Gy = Po (l +_Zf K, T), Opp = _"IZTO KaaSlr—z—.

Accuracy of the formulae derived may be illustrated by the following -
comparison. With x = 0, the accurate formula (4.2) in the case of an elliptical - :
hole leads to the stresses. :

1
\/yi+c2 §

.‘ | 1
s (o,y):%’(aw)[f(y)— ; (y)]

where

N T

-
a+h ’ y>b, azb,

fy=
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Table 2. Single elliptical hole; comparison of accurate and
‘approximate results,

a/b yib cl. {0, 1) o (0, ) Error
12 12 0.251 0.293 17,
15 0487 | - 0.499 2.4
20 0.695 0.697 0.3%
3.0 0.8585 0.8587 0.02%,
2 20 0.513 0.672 319
. 25 0.644 0.693 7%
30 0732 | 0750 2.5%
50 0,898 0.8908 0.01%
10 10.0 0.677 0.858 26%/
200 0.884 0.888 0.5%
300 0.9435 0.9439 0.04% ,
100 100.0 0.704 0873 24,
2000 0893 | -0897 0.5%
300.0 0.9481 0.9485 0.04%

while the approximate formula involving two moments M®', M*! yields

1 a@+bh) 3 ala+b)a®-b*
U;L(O,Y)=po[l-"2 (yz ) +? ( lg_ )]

* Both results are compared in Table 2 for various a/b ratios and several values
of y. Tt is seen that the approximate formula yields fairly accurate results
outside the circle of radius a circumscribing the elliptical hole; for y = 1.75a
the relative error is about 1%, for y = 2a-—about 0.5%, and for y=3a
the error drops below 0.05%, Similar restlis are obtained from the analysis
of stress variation along the x-axis: g, (£,0), £ = x/a > 1. With the notation
8 = bja the approximate formula reads : ) .

The values of ¢!

5y are compared with the accurate values

Lo 1+8 S VPR
G)’z(‘fvo) [1+ (5+\/€2+ﬁ2 )](l-i_\/fz—-}_ﬁz—j)’

in Table 3 . :

 In the neighbourhood of point x=a, y = () the approxlmate formula
-yields inaccurate results so that at points lying mear the boundary of the
‘inclusion or hole other approximate formulac must be- used. In the case
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Table 3. Single elliptical hole; comparison of accurate ¢l (£, 0), (I), and approxi-
mate o,; (£, 0), (IT). (At the boundary an approximate formula is not applicable).

= 10 LTS 20 30 |
a i
I
' I 3 1.8016 1.2188 1.0889
B=1/2 il 21118 1.2900 1.2139 1.0885
error 29% 0.9% 0.4% 0.04%
T 11 1.2395 1.1696 1.0667
B = /10 1 19584 1.2231 11630 1.0661
error 82%, 1.3% 0.5%, 0.05%
I 101 1.2208 1.1560 1.0613
B =1/100 g 1.8837 1.2053 1.1499 10608
error 98Y%; 1.3% 0.5%, 0.05%,

of a crack, the stresses must be calculated from the known near-tip expansions
{cf. [103, p. 125). In the case of an elliptical hole or inclusion, the known
values of normal and circumferential stresses, Eq. (4.6), may be used to
~determine the behaviour of stresses near the boundary. For instance,

oy [(1+ £} a, 0] = oy, (1 —2a?/b?) = 6, (1—ea/R),

where R = b*/a is the radius of curvature of the ecllipse at x=a, y=0.
In Fig. 8 the solid line represents the variation of stress o, (x, 0) according
- to the accurate formula, and the dashed lines @ and b are the “near field”
and “far field” approximations of the same sfress. ‘
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Let us now return to the genecral solution of the problem of stress
distribution in an infinite body loaded ait infinity and assume that the load
is represented by horizontal tension o = go. The complex potentlal is then
assumed in the form

z+\/z —a’+b* ﬁ a+b
at+b 24 /2" —a*+b?

what leads to the compl'ex stress tensor

4o . (a+b)? z
2@=7 [1+ z+\fzicr)2]( +\/2 —c? )’

with the notation

F(z) = 1(a+b)(

. Wb—pa o

= \ = a’—b%
Wb+ pa
At the boundary of the inclusion, z = Z, the stresses are
a+b b .
Tz = qzo (1+%)cos 3, a,z:% a-; (—1+3%)sin 3,

and the displacements

do

w(é) ::‘Im F(2)= ﬂ(.a+}r;>)(1_fe) cos 9.

Inside the inclusion

,_qgo‘ura—j-b . ., 0w .
w_2,u p (1—%) x, crxz——,uw, g, = 0.

The conditions of continuity of normal stresses and displacements are fulfilled
at the boundary of the inclusion, and the complex stress temsor reduces at
infinity to the required value, °

lllr‘n Z(z)—-qoz

Expansion of X (z) into a series and comparison of the first three terms
- of expansion with the corresponding terms of the series

1 ‘ M0 M1,1' - M2
E(ﬂ:;[l!z 2 +2! —5—~—31i +...:|,

Z z
‘yields the values of the equivalent moments

T .
MO ﬁij do MY =0, M“= 16Kbc do»
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yvith the notation _ .
2ab (a+b) (u—p"

K, =
i pa+p'b

Summing up, we may conclude that in considering an unbounded elastic
medium loaded at infinity by uniformly distributed forces o3 = go. 07 = po,
the action of an elliptic inclusion {(a,b) may be replaced by the action
of a system of concentrated moments: .

of the first order . '

(4.13) MO = -% K,, M"= ——;— do K,
and of the third order
@131) M>' = 16K (a —bYpy, M= _"1% K, (@®—b%) g

The coefficients K, (a, b) = K,, (b, a), and

2ab (a+b) {p— 1) K — 2ab{a+b) (u— ;,t)
,ub-i—,u’a pau'b

K, =

Let us consider several special cases.

(a) If the body is homogeneous and u' = p {no inclusion), then K, =
=K,=0, M*' = M!? =0 and the equivalent moments vanish. :
(b) In the case of an elliptical hole, ' = O w#0, K,=2a(a+b), K=

= 2b (a+b), and
4132)  M>'= —mna{a+Db)po, ML = —nb(a+b)q0
(c) If, in addition, the hole is circular, b = a, then -
(4.13.3) MY = —2ma’p,, MY = —2ma®gy;
this solution is accurate. An accurate solution is also obtained
{d) in the case of a circular inclusion, K, = K, = 4xa®, » = (u—p)/(u+p),
and '

- (4.13.4) TM%' = 2malup,, M = —2ma’xq,.
{e} In the case of a horizontal crack, b/a — 0,
. (4.13.5) M®' = —na’ p,, M0 =0.

This result is identical with that given in [97 (p. 100), and with the known -
- phenomenon that a crack parailel to the direction of tension applied to the
body does not disturb the uniform state of stresses.
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() In the case of a perfectly rigid inclusion, w/u'—0, we obtam ‘
K,= —=2b(a+b), Ky= —2a(a+b), and

(4.13.6) M*' = gb(a+b)py, M"“® = na(a+b)q,.

Once the values of the equivalent moments are determined, the stresses
(in the medium outside the inclusions} are found from the formulae

M%' sin20 MY cos20
+ +

4. = .
( 14) Oxz QO+ 273 '_2 271_ 1‘2

L M2 6sindo M2 6 cos 40

2n T 2n 7
M%' cos20 MM sin 26
(413) 0y = po— g ot LT
M?! Geosd0 M2 6sin 46
n 2n M

The formulae (4.14) and (4.15) containing four equivalent moments consti-
tute a good approximation for stresses produced by uniform loads in an
infinite elastic body containing a single clliptical inclusion. The accurate
solution of such a problem is known, and thus the approximate formulae
will be used in the analysis of more complicated cases when an infinite
(or large emough) body contains a larger number of inclusions. In order
to simplify the considerations, let us discuss the problem of two elliptical
inclusions {a,, b,) and (a,, b,) centered at the respective points A (0, 0) and
B(Lcos ¢, Lsin @), and take into account the first order moments only:
M%1 and M, Fig. 9.

The values of equivalent moments M%', ML° replacing the inclusion
at B may be expressed, as it follows from Eqs. (4.13), in terms of the
“primary” stresses which would act in the region of B if the inclusion
did not exist and the body were homogencous. The “primary” stresses
are produced by the prescribed external loads applied to the body (at'infinity
or far enough from the region), and by the concentrated moments MY
M%° replacing the other inclusion (their values are not known yet). The
primary stresses are not constant in the region occupied by the inclusion B,
" but they may be assumed to be approximately equal to their values at the
center of B (the error will be small provided the inclusions are not too
close to each other). Denoting the first component of the primary stresses
(due to external loads) by §, = &, (B) and p, = g, (B), the complete formulae
for the prlmary stresses at B are written in the form

M5t sm2cp+M§,° cos 2¢
2n I 2n o

(4.16) L (B)=do+
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=¥

Fic. 9.

MGt cos2¢ N M0 sin 2¢
2n I 27 L

(416) Oyz (B) :IEOW

The values of equivalent moments replacing the inclusion at B are
calculated from Egs. (4.13): '

@1 My~ -3 Ko, (B, My~ 5 KPoo(B)

Substitution of Eqgs. (4.17) into Eq. (4.16) leads o a set: of two equations -
with four unknowns: : .

My°® 4 ]\29" sin 20~ MYLY cos 2q
B I i P 4 M4 P

2n K& A 5 2n I?

(4.18)
MY 4 MY cosQ(p+Mﬁ,'° sin2¢ ©
T KF 2w B w2

a

The two other equations are obtained by expressing the moments M%
"MY° in terms of the stresses produced at A by the external loads and_
by the moments M%' and ML the four unknown moments are then
determined. from the complete set of four equations. _

If the characteristics of both the inclusions A and B are 1dentlcal that.
is K= K¥=K, and K = K} = K,, the correspondmg moments will also
be equal; M%! = M%! = M®' and M4° = Myp® = M°; their values will be
determined from the set of two algebraic equations, and :

M®t L {4  cos2p\ _ sinle
on :‘5[_p°(ﬁ+_"ﬁ )“’0 Z |

M 1] sin2p _ [ 4 cos2e
o e kT )

.

(4.19)




METHOD OF EVALUATION OF THE EFFECT OF CAVITIES, INCLUSIONS AND CRACKS 163

with the additional notation

D= 16 +4coquu 1 1 1
T KK, I’ K, K, &
Let us now consider several particular cases; assume the infinite body
to be subject to uniaxial vertical shear, so that g, =0, Po# 0. If the

body contains two identical elliptical inclusions {a, b) located at the x-axis
at a distance of L from each other, (Fig. 10a), we obtain

0 . oa_ T PRy
M "_0’ Mi‘ T2 1=K A
a | b )
yk oF NN
: R BANN 4
L - ‘_ =
I . T <
My N NN X Ay x
2l a, Za | Za |
c y |
,ia Za r?.g_. 2q I__Za
w L L L — b, ﬂ
d
r == |
I‘\—-fo O O O O O |
Jﬁ ©o o o o of
T
I}—ro O o o o ol
JhlLo O 0 o O © } -
I
r+~0 o o o o ol
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Two inclusions located at the vertical axis (Fig. 10b) lead to the equivalent
moments '
n ﬁO Ka

1,0 _ 0,1 = e e —
M= =0, M 3 14K, A

An infinite row of umformly spaced elliptical inclusions (Fig. IOc) may be
replaced by an infinite row of equal moments

MY =0, M= _E__}ﬁ_,
T -2 | n? K,
nre

In the case of an infinite, regular array of elliptical inclusions (Fig. 10d) '
each inclusion may be replaced by the moment

MO = —%m—u——ﬁoK , MY =0.

457

’R'Z o n2_k2 az . .
'where S:T -——I 44 Z Y PR ,anda=H/L.f L=H,S=0 i

e=1#k=1
and M%!= —np, K,/2. Finally, in the case of two horizontal, collinear -
cracks of lengths 2a and distance L between them, we have K, = 2d¢% and

M°’1:“W1lezfz, M0 =0, L= Lfa.

5 ELLIPTICAL HOLES, LINEAR STRESS VARIATION

Let us consider the problem of an infinite body containing a cylindrical; -
elliptical cavity (hole) and assume a more general case of external loading
at infinity, expressed by the linear functions :

2y 2x
5‘ . 0 o__ " o _
( 1) a;z—pl ar b 0 =P o

The solution of such a problem (combined with the relations (5.7)) will -
enable us to achieve a better accuracy in replacing the holes by second
order moments and taking account of variable primary stresses in the region
contained within the hole boundary.

The corresponding complex potential must be assumed in the form

(52 2(@=0,(d+ie.(2)=

pl[z+\/z —c* N (a+b) }(14— z
z

2_ a+b (Z_I_\/Zz_cz)s
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Displacements w are determined from the formula

PR AL BN N EL N .ﬂmz]
(53) pw (2) = 4 _““[( a+b ) (z+\/z"mc2) '

From Eg. (5.2) it follows that at infinity the stresses tend to

2z

_Ew(z)=P1 ash’

in agreement with the assumption (5.1). At the boundary of the hole
Z=qacos J+ibsin 9 the displacement {(5.3) becomes
(3.4 : ww (2) = py (@-+b)sin Jcos I,
while in the case of a circular hole we had (Eg. (23),)
J ’ pw (2) = 2ap, sin 9 cos 9.

The normal component of the stress at the boundary of the hole vanishes
since from Eq. (52) we obtain for z=%

0. (5) = ll(“;f’l 2a sin 9 cos 29,
2h : .
" +b
0y (2) = El—%ul 2b cos 9 cos 29,

and substitution of these stresses into Eq. (4.5) yields

pyla+b)cos2y.
L .

In order to determine the equivalent moments, the function X (z) from
Eq. (52) is expanded into a scries. The first two terms of this cxpansmn

_ have the form .
o [ @byt 1 _
x (Z) = ﬂ+b [Z"I‘ 16 "Z‘g-l' I

(55) . Oz (E) =0, 04z (2) =

The term with z 2 is missing from this expansion, like in Eq. (23) With

d = b this formula yields the expression

3
z a
Z(z)=py ?"HH Erl‘

dentical with Eq. (23); for go=py=¢q, =0 and x = 1. The equivalent
moment is obtained by equating ' from the formula (1.12) to the
corresponding term of the above expansion,
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1 (a+by*+c*
1,1,
(5.6) M =g P4 arh

Reducing the elliptical hole to a crack (b =0, ¢ = ¢} we obtain the result
complying with that given in [9], p. 100.

To make the analysis complete let us finally consider the case of loading
the body at infinity by the following forces:

- 2x e y
{5.7) "“hms Oy = — a+bh " )

The diSpIacement and complex stress must be ‘assumed in the form

: 1 [ {2+ /22 =c2 \? a+b 2
HW—TQ‘l(a-f-b)Iml[( > ) +(Z+ e ):ia
a2 h a+b r+ 7o )

At the boundary of the hole, z = %, we obtain

(5.8)

1
i (2) = 5 0 (a+b)cos 29,
atb

Oz (2) - 09 P (2) = —{ sin 23,

_Expaﬁsion of the function (5.8) into a power series

2q; § {a+by*—c* 1
E(Z): E_[_b ‘72 16 23+... a
and comparison with Eq. (1.13) yields the equivalent moment
: ' 1 (a+b)*— ,
59 MO = — e
( ) 8 iy a-l—b 7. .

Substitution of the values of M"' and M>°, Egs. (5.6) and (59), into the
formulae for stresses leads to the expressions

44
2p, [r-sinf)—(q+b) +e sm39:|+

%= atb 16 73
24, (a+b)y*~c* cos 30
(5.10) a+b [r 00" P
‘ . 2py 0 (a+b)*+c* cos30
Oy = CI—+F rcost+ 16 3 + |
T (@a+by*—~c* sin 30
+_a+b [} s Q_ 6 2
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which describe ‘the stress field in an ‘infinite body containing an elliptical

hole and loaded at infinity' by the forces (5.1) and (5.7). However, in the
case of a single hole and linear loading at infinity, accurate solutions are
known and there is no need to apply the approximate formulae (5.10);

they will be used mainly in analyzmg the more complicated cases of several
holes and arbitrarily variable stress fields, the coefficients py, g, (and pg, ¢o
discussed in the preceding section) playing the role .of characteristics of the
“primary” stress field necessary to determine the values of equivalent
moments.

6. INTERACTION OF ELLIPTICAL HOLES

Summing up the results derived above, let us outline the procedure
of evaluation of the equivalent moments replacing the elliptical holes in a
body subject to arbitrary 10ddS Fach hole is replaced by a set of four
moments M%!, M%°, MY %0 (here subscript A corresponds to hole A).
“In order to determme thear vaiues the primary stress ficld in the region
occupied by hole 4 must be determined. It consists of the component
due to the external load applied to the body (either at infinity or, at least,
far away from the region), and of the components due to the action of other
moments MY, MY, . replacing the holes B, C,... The primary stress must
be expanded into a power series of x and y in the nelghbou: hood of pomt A
{center of hole A) with the coordmates X, ¥4l :

2 A
/\'A)+

2
0-;:‘2 (X, J’) :"’qu+ Cl"‘?"lb ( +b _yA)a
1 2 2
o e ) =Py aj},( R S

The formulae (6.1) may also be useful in the case of a single elliptical
hole in an infinite region, provided the stress field produced by the external
loads is not linear. Instead of using the complicated potentials F (z) correspon-
ding to such stress states, the average values of pg, qo, Pi. gy in the region
of A may be determined and then used to e¢valuate the set of four
equivalent moments. The approximate stress distribution is found from the
formulae

_ 1 sin 28 1 . cos 20
Txz (f‘, 9) = Oyxg (I‘, 9)_T Ka Po —T—T Kb do 2 -
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_ - cos20 1 sin 28
Oz (r, 9) =0y (i’, 6)+"E Ka Po "M;EW_T Kb do 1’2 )
1 cos 39 1 sin 30
+8 Kip _FKqu——rg;—'

The following notations are introduced here:

K, =2a{a+b), Ky = 2b(a+b),
_ {a+by 4t _ (a+by—c*
Kl - a+b b KZVI_ a+b 3

and G, (r, 9), 7, (r,0) are the stresses produced by external loads. In the
case of a circular hole a = b and linear stress distribution at infinity, the
formulae (6.2) become accurate and reduce to Egs. (2.3); in such a case
K,=K,=4a* and K, = K, = 8a°.

In the case of several holes, Egs. (6.1) are used to construct the necessary
set of equations for the unknown values of M. The primary stresses and
stress gradients at 4 expressed in terms of the external loads and the
remaining moments MYy, M¥, . enable us to write down the four equations
required {cf. Egs. (5.1}, (5.7)),

[ | P |
Oxz|ld = o> Tyzid = Po>

dog | 4 2 do,, 4 2

ax |, Taxbe oy Pt
note that, for obvious reasons,

00y, _ 00y and day, oy -

“dy x dx dy

Consequently, the case of n holes will be reduced to a system of 4n
equations with the same number of unknowns. In the case of additional
symmetry propertics, this number may be reduced, thus making the solution.
fairly simple.
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STRESZCZENIE

O EFEKTYWNEJ METODZIE OKRESLANIA WPLYWU OTWOROW, SZCZELIN
T INKLUZJI NA STAN NAPREZENIA W OSRODKACH SPREZYSTYCH

Defekty roznego rodzaju wprowadzajy zaburzenia do pola napresen- wywolanego w oérodku
sprezystym przez obciaZenia zewnetrzne. Teoretyczne podstawy analizy takiego pola naprezen
sq dobrze znane i w zasadzie, zagadnienia takie sprowadzi¢ mozna do rozwiazywania od-
powiednich ukladoéw réwnafh catkowych, Jednak problem efektywnego, wyznaczenia wplywu
"defektéw na pola naprezel napotyka znaczne trudnogei, zwlaszeza gdy mamy do czynienia
z duza liczba defektéw wprowadzajacych nieskoficzone koncentracie naprezed | wymagaja-
cych np. zastosowania wielkiej liczby elementow skoficzonych. Celem tej pracy jest wiadnie
przedstawienie tak;ej metody przyblizonej, ktéra przypomina znang z elementarnej mechaniki
budowli metod¢ rozwiazywania ukladéw statycznie niewyznaczalnych i pozwala sprowadzic¢
omawiane zagadnienic do rozwiazania prostego ukladu rownan algebraicznych. Jedli wzajemune
odleglodci otwordw i inkluzji eliptycznych nie sa mmnicisze od ich $rednic, dokladnosc uzyska-
nych wynikow okazuje sig zadowalajaca z punktu widzenia zastosowan inzynierskich.

PElroME

OB DPPEKTUBHOM METOME OIPEAETEHUA BJIVASHMA OTBEPCTHIN,

- TPEIHMH W BKJNIOUEHWH HA HANPSKEHHOE COCTOSHHWE B YIIPYIUX
CPEJAX

HedexTol pasuoro poja pROJAT BOIMYIUEHRS B JIONE HANDSOKSHNH, REI3BANIOE B yOpyro#
Cpene BICIIHMM HATPYXeHueM. TeopeTHIeCKHe OCHOBSI aNANHM3A TAKOLG OIS HANTPAAECHHH
XOPOLWI0 HIRECTIHLL M B OPAHIKHIE TAKHE 32JaYH MONHO CBECTH K PEINSHHIO COOTBETCTHYFOLIHX
CHCTEM MUTETPANbHEIX ypasHeuuil. Ofpake mpobiema 3((peKTHBHOTO OmPERENeHUs BIUAHUA
nedexrTon na noas HAOPDKeHHH BCTPEYAET IHAUMTEALHEIC TpyauoctH, ocobenno, KOT/Ia HMeeM




170 . . M. SOKOLOWSKI

JERO ¢ GONBIIHM KOJIHICCTBOM Ae(EKTOB, BBOJISHINR GECKOHEYHBIE KOHIGH TPAIMH HATIPIKEH i
# Tpebyronmx, HAIPHMED, NPHMCHEHNAS BORBIIOTe KOTMUECTBA KOHEYHBIX seMeHTOoB. Lleibro
HacTOdmE# paboThl SBAAETCH HMEHHO ApeeTARJIeHAe TAKOTO NPHGIIKEHNOTO METOMAA, KOTOPHIA
HATIOMUHAET MIBECTHEI K3 2JIEMEHTAPHOH CTPOHTETRHOR MEXaHHKH METOL PEUICHHS CTATIHICCKH
HEONPEAS/MMBIX CHCTEM H TO3ZBOMNET CBECTH obcyxaaeMyio 3aAauy K peUICHNID [POCTOH
ccTemyl aireOpanueckux ypapuemiil. Eci B3anMHbIC PACCTOAHNA OTHEPCTHH ¥ 3JLNUNTHYECKHX
BKJIIONEHHH He MeHbIIE YeM HX AMAMETPEl, TOMHOCTH HONYUEHHBIX PE3YIBLTATOR OKA3HIBACTCA
[OCTATOYHOM ¢ TOUKH 3PENHS HWHMKEHEPCKHX TMPUMEHCHHH,
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