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THE POST-BUCKLING BEHAVIOUR OF THIN-WALLED COLUMNS
IN THE ELASTO-PLASTIC RANGE

K KOWAL-MICHALSKA and R. GRADZKI (LODZ)

The post-buckling behakur in the elasto-plastic range of thin-walled, steel columns
subjcct to uniform compression is analysed. The problem is solved using the Rayleigh—Ritz
variational method involving plasticity. The plastic stress-strain relstions are described by
Prandfl-Reuss equations. Numerical calculations have been cartied out for different. geometrical
parameters and material properties. The load- shortening curves and the spreads of plasticity
regions in component plates of a cofumn are presented in ligures.

© MoryaTION

5 s L,‘,,. S35 deviatoric stress tensor,
€, 1,p Cauchy's stress tensor,
&% Kronécker's delia,
tap» €33 in-plane direct and shear strain,
i, & Lamé constants,
d¢ plastic strain increment factor,
U total potential energy, )
T; wvecior componenls of the edge farceq pel unit ares,
u; displacement component,
v, middle surface in-plone displ':cemmt
w{f,) out-plane displacement,
Hap, Faxs Tiyys flyy  Imembrane sectional forces psr unit iength
s Pleg, Mgy, My bending sectional moments per unit length,
¢ Ary's stress function,
x,y,z coordinate system for a plate,
a length, width of a p]:ite,
h thickness of a plate,
u, v, w in-plane and out-plane displacements,
fi, [ independent parameters of the deflection function,
amplitude of local buckle deflection in a center of a plate,
“applied compressive strain, -
‘Young’s: modulus, ‘
Poisson’s ratio,
gy . yield stress in simple tension,
g,y average stress corresponding to 5,
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. *E hy?
g¢r  elastic critical buckling stress o, = _3(%‘2)%(*) .
—v

The superscripts e, p denote the elastic and plastic parts of strain increments.

1. INTRODUCTION

It is well known that the collapse analysis of a plate loaded in-plane
is relevant to all forms of steel-plated constructions, e.g. box-girder bridges,
ships and cranes. In spite of the fact that a great deal of attention has
been given to the elastic analysis of a plate buckling locally under in-plane
compression, relatively fewer attempts have been made to account for
plasticity in the post-buckling range.

The rigorous numerical solutions to the plate collapse analysis problem
have been done by Graves-Smite [1], MoxHam [2]), CrisrieLp [3], Frieze
and others [4], LitrLe [5], using energy methods, finite element formulation
or the finite difference dynamic approach. Recently, BrADFIELD and StoNor
[6] presented a simplified elastic-plastic analysis for plates uniaxially loaded,
in which the full section yield criterion (Ilyushin criterion) was used.

In this work a more precise approach to the problem solved by
T. R. Graves—Smith in his pioneering studies is presented.

Fic. 1. Square section with local buckles.

The thin-walled box column (Fig. 1) of a square cross-section, subject
to uniform compression, is considered. The column sections are of such
proportions that local buckling occurs entirely elastically and then the
interaction between large deflections and the spread of yielding through the
volume of the plate has to be taken into account.
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2. YIELD CRITERION

The plastic yield of the isotropic material is governed by the Huber—Mises
yield criterion, which may be written in the form

C 2
2.1) 8y 8= T o2,
where the deviatoric stress tensor component is defined by the equation
. . o1
(22) ) S5 = T3—~§- & Tk,

and o, is the experimental material yield stress. For a plate we have the
system of Cartesian coordinates @,.(x = 1,2) and 05, where &, is orthogonal
to 8, so that the yield criterion can be expressed in terms of in-plane
components of the deviatoric stress tensor as follows:

Sep Sapt+ 52, = %ai, (a0, B=1,2),
(2.3) '

Sy = = —833-

3. PLASTIC STRESS-STRAIN RELATIONS

It is assumed that after yielding differential increments of strain, de are
a total of elastic and plastic components de® and de”. Applying the usual
elastic stress-sirain relations to the problem of a plate (Carteman coordinates),
the equations for in-plane increments become

3.1 At = 21 deyg+ Adyg (da,,+ds33)—2,u defy, o, fi=1,2.

In these equations the fact that there is no change in volume as a result
of plastic strain increments has been taken into account,

Further it is assumed that strain hardening effects are neglected and the
material being elastic-perfectly plastic is governed by the Prandtl-Reuss
equations

(32) C dely=dl Sup

The scalar d{ is determinate (4 >0) when a known strain increment is
applied to the plastic material in such a way that unloading from the yield
surface does not occur, thus the corresponding stress changes must satisfy
the differential form of the yield criterion . (2.3).

According to (3.2) the equations for in-plane stress increments become

2ud 2u
(33) dTaﬂ = 2,“ dﬁa”+ 2 +A 50:1] d&'33 dC [2.” Saﬂ‘l' 2 o) 6,13 S33]
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In the elastic region the stress-strain relations take the form
‘ 2l

(3‘4) 2# Saﬂ+ 2 +,1 aﬁ 833.

The scalar df is determined by

Sap deap+Saa deay [A(2u+ )]

) Sap Sept 53 [A/2p-+ )]

In a practical calculation, finite increments of strain are applied to the

elasto-plastic body and the stress increments Az can be found approximately

by substituting 4 for d in the equations. The deviatoric stress fensor is

determined after each strain application by making a running total of the
stress incremenfs as they are calculated, noting that

(3.5) d{ =

1
(36) ASmﬂ‘ = Ataﬁ_? 5,1!; AT33 .

4. THE VARIATIONAL PRINCIPLE

Let the potential energy in the elasto-plastic range have the form

hi2
. . ATF
(4.1) U=[ﬁfwd5+j[(réﬁ+ ;-)Asaﬁ-u(]dp—j J T; u; d8s dC,
E P ¢ — W2

E P
of the column plates.

[, | tepresent volume integrals taken over the elastic and plastic parts

£

- . - . - . 0 N
K is some scalar constant representing the integral j T,p degp taken in

the plastic zones wp to the stress and strain levels Tg, &g, eXisting prior
to the current strain increment (for the purposes of minimization this strain
energy may be arbitrarily put equal’ to 7er0) T; are the vector components
of the edge forces per umit area.

The functional (4.1) can be expressed in terms of d1splacements usmg
the second order in-plane strain displacement relations:

(4.2) 2e,p = g+ vl — 264 W[aﬁ+W|a wlg,

where v, (8,, 0,) are the middle surface in- p]ane dlsplacemen’rs and w (9!, : )
is the out—of-planc displacement, s

It was proved by Graves-Smith that by equating to’ zero the variation
of a potential energy functional, with respect to virtual dlsplacements
satisfying the geometric boundary conditions, we can obtain Euler equations
representing the equations of equilibrium and the static boundary conditions
of an elasto-plastic plate undergoing finite deflections.
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The equilibrium equations for the plate have the form

(4.3) n""’lﬂ =0,
@.4) g+ (0 wl )l = 0,
where '
n2 /2
n“‘ﬂ = I : Taﬁ d63, mﬁﬂ = I 93 Taﬂ d03.
—hf2 —h2

A stress function ¢ (6,,0,) can be introduced from which n*# are derived
that satisfy Fq. (4.3) identically.

For Cartesian coordinates x, y we have

(4.5) A _o¢ 0°¢

=T T T Ty

The compatibility condition may be derived from Eqgs. (4.2) (3.4) by elimi-
nating u,.

The compatibility condition and the second equation of equitibrium are
the well-known von Kérman equations.

5. EXTENT OF PLASTIC ZONES

The extent of plastic zones in the cross-section can be determined by
establishing the values z/h for which the elastic stresses satisfy the Huber—
~Mises Criterion (Fig. 2). Substituting into Eq. (2.3) the stresses expressed
by the strains (3.4), we obtain the values e; and e, which are therefore
the roots of the equation of the second degree.

Il e, < z/h < ey plate is elastic,

zfh> e, z/h < e,  plate is plastic,

e

Plastic zone T Gy,
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Fic. 2. Bxtent of plastic zones in the cross-section and assumed distribution of stress.
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le] =0,5(i=1,2) plate is entirely elastic and
e; — complex plate is entirely plastic.

In order to integrate the energy functional through the thickness, an
approximate method is used in which the stresses are found accurately on
the surface and are then assumed to vary linearly with depth until reaching
their values at the elasto-plastic interfaces. ‘

6. BOUNDARY CONDITIONS

In the problem considered the square built-up column consists of four
identical plates. The boundary conditions correspond to those occurring in
a square plate simply supported along all edges. The unioaded edges are
assumed to be siress-free and the loaded edges to remain straight, so the
change in distance between them is proportional to the applied compressive
strain S. It should also be noted that a plate is initially flat and stress-free.
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Fis. 3. Plate geometry with applied loading and boundary conditions.

The general arrangement of a single plate, loading, deflection functions,
coordinate systems and boundary conditions are given in Fig. 3.

7.  AIRY STRESS FUNCTION AND DISPLACEMENT FUNCTIONS

In Graves-Smrti's work [1] and many others, the deflection function
of a single plate was assumed as follows:

(7.1) w =0 cos 2 cos L.
' a a
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It is well known [7] that the deflection function of a- form

. s X 3n

(7.2) f; cos 2 —cos ——+ f> cos Y cos fz—l—,
i a a 7
gives more “cxact” values for the so-called equivalent width of a post buckled
plate in the elastic range. Little {57 has suggested that for plates with a small
ratio h/u the representation (7.2) seems to be more appropriate to predict
the ultimate load in the elasto-plastic range.

in this paper the function of out-plane deflection is chosen in terms
of iwo independent parameters f; and f;.

The stress function ¢, satisfying the ‘static boundary conditions (Fig. 3),
is found using von Kdarman’s equation

(13) &= (H, cosh 2yx+ H, x sinh 2yx) cos 2yy+(H; cosh 4yx+
+ H, x sinh 4yx) cos dyy+(H s cosh Hx -+ H; x sinh 6yx) cos Gyy +

i
+E { 33 11 (cos Zyx +cos Zyy)’—w 1 (9 COS 2yx+-§~ cos G}Jy)—

i X 1
16 it (COS 2yy +cos 4yy +cos 2yx cos 2yy+

+1 cos2 y)ec
ECOS TX COS 47y 7 .

7
where 7 = C, from H,; to Hg-— constants known from the boundary

conditions.

Next, for the elastic case, the in-plane displacement functions u, v, fullilling
kinematic boundary conditions are determined by applying Bgs. (3.4) and (4.2).
The forms of these functions in the elasto-plastic state are assumed to be
the same, but their amplitudes may take any values without resulting in
kinematically inadmissible displacements.

The deflection parameters f; and f, can be found, according to the
Rayle1gh~R1tz variafional method, by minimizing the functional of a potential
encrgy U (4.1}

Knowing the extent of plastic zones throughout the cross-section (values
¢! and e?) and applying analytical integration over the thickness, the volume '
integrals in Eq. {4.1) may be changed into surface iniegrals. -

The method requires now the repeated evaluation of integrals over the
surface of a plate. In order to. accomplish this only a quadrant of the plate
surface is considered, enclosed by a mesh and all 1ntegrauons are performed
numerically.

1
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To provide the convergence of the procedure, the parameters e, and e,
are assumed to be invariant during each minimization. In order to satisfy
the requirements of the plastic theory, the analysed system is subjected to
a load which increases in small increments, thus the response of the column
to the increment of the longitudinal strain AS is examined.

‘The average stress is found numerically, using the principle of virtual
work '

1 U

(74) Oay = 4(12h '}f

1t should be underlined that the average stress g, corresponds directly to
the carrying capacity load of a column. '

8. RESULTS OF NUMERICAL CALCULATIONS

Numerical calculations have been carried out for the columns of the
square sections of the geometrical parameters h/a (thickness to width) varying
from 0005 to 0.017. The material properties have been used as follows:
E = 206-10° MPa, v= 0.3, or = 256,372,496 MPa. - .

Theoretical curves showing the relation average siress o,, versus the
compressive strain § are given in Fig. 4 and the corresponding amplitudes

by, [MPa] R=0
200 - w:AgﬁMﬁa
372 MPa
[
=003 | &
20 h/a=0.01 <
hfa=001 L&
&
ha=0.005 | &
100
i |
g 32
sx 107

Tig. 4. Stress-strain curves.
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A, [MPd] f=0

300 | oy =496 MPa

ha=0017

372 MPa
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Gy=
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6/ax10?
FiG. 5 Amplitude of local buckles.

" of local buckles are plotted in Fig. 5. The spreads of plasticity regions
are presented in Figs. 6, 7 and 8. In all cases calculations have been carried
out using deflection functions with one independent parameter (f; = 0) and
two parameters {f; # 0).

Discussing the results of numerical calculations we should notice that
the character of “load-shortening” curves depends on the yield stress and
on the ratio thickness to the width of a plate. When ¢, is constant (in our
case equal 372 MPa), it has been found that the remarkable influence of the
second parameter of the deflection function on the average stress occurs only
for thin plates. For plates of hfa=0.13,001 the decreasing of the average
stress is in the range from 2 to 3 per cent and for plates of h/a = 0.005
is about 5 per cent. For thick plates (h/a = 0.017), such as were cxamined
by Graves-Smith, the discrepancy in average stresses (applying the deflection .
function with one or two independent parameters) appears for larger values
of a,. ~
The influence of the yield limit bn_a character of the curves o,, versus S,
for plates of hja = 0017, has been: analysed. When the yield stress is near
the critical stress {(e.g. 0./, = 0.85) of a plate, the collapse load is ‘reached
very soon and after the rapid decrcase of loading capacity is observed. :
For the ratio o, to o, equal 0.39 the load-shortening curve has a long
“platean”.
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The effect of different ratios thickness to width of a plate on the character
of the load-shortening relation has been investigated for plates of hjg =
= 0.017, 0.013,0.01,0.005 with o, = 372 MPa. It is easy to notice that omnly
the curve for a thick plate reaches maximum, for plates of hfa=-0.013
and 0.01 the curves have the long platean and for a thin plate {h/a = 0.005)
the relation o,, versus § is still increasing. It should be underlined that
numerical calculations have been stopped when the plate edges of a width
equal to 1/8 “a” became completely plastic.

If the amplitudes of local buckles are concerned (Fig. 5), it may be
found that for the fixed load {o,, = const) the introduction of the second
parameter causes the increase of the amplitude for plates of hfa = 0.013, 0.01.
For a plate of h/a = 0005 the situation is quite opposite, it means that
the shape of the deflected plate becomes more flat.

The spreads of plasticity regions have been determined for each examined .
plate. Because of symmetry, only a guadrant of the plate is considered.
In thick plates the plastic zones appear in the middle of the plate (Fig. 6)
and when the longitudinal strain increases, almost the whole plate is in
the elasto-plastic state. Thin plates {h/a = 0.005) behave in a different way:
plasticity is encountered only in the neighbourhood of the unloaded edges,
which become completely plastic, and the middle of a plate is entirely
elastic (Fig. 7). , : .

Tt has been found that for thick plates there is no influence of a second
parameter of the deflection function on the spreads of plasticity regions,

by
h/a=0.017  Gy=372MPa  F#0
:/& e
= &*L[
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_ E plastic an oulside Face
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S=0.00215

FiG. 6. Spread of plastic zones in thick plate.
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h/a=0.006 cy=372MPa  Fp#0
=
kY
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{

5-0.0075 §=0.0020 . §-00075
FiG. 7. Spread of plastic zones in thin plate.

small differences appear for plates of h/a = 0.013 and the distinct ones may
be observed for plates of hfa = 0.01 (see Fig. 8).

The results of theoretical calculations have been compared with experi-
mental tests done by Moxnam [8]. These experiments seem to have been
carried out very carefully and the results in the elastic range have the
great accuracy. Moxham tested long, rather thick plates (h/a > 0.0125),
initially flat, with the yield hmit equal to 240 MPa.

Comparison can be done only for plates for which the vield stress is
larger than the critical stress and their values differ slightly (e.g. h/a = 0.017,
o = 215 MPa, g, = 256 MPa). In such cases the experimental and theoretical
results are in good agreement, regarding the character of. load-shortening
curves and the values of the average stress and the longitudinal strain
in the maximum point, '

a k=0 . hla=0.01  oy=372 MPa
] A Y
) X I‘{ L%

L - Fa
= i
£
i
i

\ﬁ\

g1
-
=]
———t ¥
H y’

$=0.0013 §=0.017 S=0.0021 §=0.0025
b mzo
717 N K
I, ‘\} [L ‘\{
o A
4 f“‘ 1’ 1
E ¥

<§§_
5=0.0013 §=0.0017 §=0.0021 - 8=0.0025

FiG. 8 Influence of a deflection function on the spreads of plasticity regions.
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" During the calculations the effect of the increment size A4S on the
accuracy has been analysed. Because of the assumptions of the plastic theory,
a small shortening increment would appear imperative. This has been
tested by investigating the same two plates using successively larger increment.
It has been shown that although it is important to use relatively small
increments‘in order to pin-point the maximum load, the increment size may
then be increased significantly to calculate post-collapse behaviour, In this
paper the fairly small increments have been used, sometimes unnecessarily

~small,

'The problem is solved upon the assumption that the application of AS
does not cause a strain reversal at local plastic zones. For a chosen few
plates, after each minimization, the sign of df (3.5} has been checked at
the points in question. In the cases examined it has found that no unloading
from the yield surface occurs.

0. FINAL REMARKS

Comparing the results given in this paper with previous theoretical works,
we must admit that the direct comparison can be made only for precisely
the same pair of E and ¢, values. This has been done only with Graves-
—Smith’s work for plates of h/a=0017 and the results are in a good
agreement. Also the character of load-shortening curves for different ratios
hja agress well with Little’s results [5]. ,

In most papers the ultimate load of plate corresponding to the stress
at which the purely compressive stiffness is zero, has been found. From the
results. considered here it follows that the ultimate load can be determined
only in the case of plates for which the load-shortening curves get the
maximum point or the long plateau. '

It sems that the deflection function with one parameter is sufficiently
accurate for most engineering purposes provided hja is not small; for small
hja the representation with two independent parameters is more appropriate.
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STRESZCZENIE

STAN ZAKRYTYCZNY CIENKOSCIENNYCH SLUPOW W OBSZARZE
SPREZYSTO-PLASTYCZNYM

W pracy zbadano stan zakrytyczny cienkodciennych stalowych slopdw poddanych réwno-
miernemu sciskaniv, pracujacych w-obszarze sprezysto-plastycznym. Problem zostal rozwigzany
metoda wariacyjna Rayleigha—Ritza z uwzglednieniem plastycznosei. Zwiazki napreZenie-od-
ksztalcenie w obszarze plastycznym opisane sy réwnaniami Prandtla—Reussa. Obliczenia .
numeryczne przeprowadzono dla rdéinych parametréw  geometrycznych i wiasno$cl materia-
lowych. Wyniki w postaci zaleznodci obciazenie jako funkcja skrocenia shupa przedstawiono
na wykresach, Na wybranych przykladach pokazano rowniez rozwdj stref plastycznych w ply-
tach skladowych slupa.

PE3WME

IAKPUTHYECKOE COCTOSHWE TOHKOCTEHHBIX OIOP
B VIIPVIO-INMACTHYECKOH OBIACTH

B paGoTe McCASAOBANO 3AKPHTHYCCKOC COCTOMHME TOHKOCTEHHLIX CTANLHBIX OHOP IOOBEP-
THYTHIX panuomepnowﬁy ckaTio, paboTaronnx 8 YIPYro-TUIACTHHEECKOH 0DIacTH. 3asava pelueHa
| BAPHATIHOHHEIM METOZIOM Pesen-PuTna ¢ yueToM fnacTHIHOCTH. COOTHOMENHS HATIPHEHIE —
gedopManms B IUIACTHAecKOH ofnacri oTmcaHsl ypapnermaMy Ylpamarser-Peiica. YucneHHEsIE
pacueTHl TPOBEIEHBL AJA DA3HEIX TEOMCTPHYCCKHX napaMerpoB B MarepiaspHpIX CBOHCTB.
PesyabTaTH B BEAS HATPYMKCHIR KaK (JYHKHUM COKPAIISHAN OTOPH! NPEACTABICHEL HA rpadurax.
Ha 136pasybX IPIMEPaX MOKa3an0 TOXKE PusBHTHE NIACTHHCCKUR SOH B YUTMTAX COCTABIATOMAX
ONOPHL
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