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THE POST-YIELD ANALYSIS OF RIGID PLASTIC BEAMS COLUMNS
AND FRAMES

M.K. DUSZEK and T'LODY GO WSKT (WARSZAWA)

In the paper the influence of second-order geometrical effects on the post-yield behaviour
of plastic structures is considered. The presentation is limited to the purely mechanical
{isothermal) theory and quasi-static deformation processes. The problem considered is illustrated
by means of the examples of rigid-plastic beams with various kinds of partial end fixity, the
rigid-plastic columns loaded by vertical and horizontal forces and multi-story portal frames.
It is demonstrated that plastic deformations may result in changing the boundary conditions
in such a way that the stabilizing effect of tensile axial forces is reduced. By making the
proper choice of some factors unstable mechanisms and catastrophic collapse can be avoided.

1. INTRODUCTION

The post-yield behaviour of a plastic structure depends, on the one hand,
on the material propertics and, on the other, on the effects of geometry
changes. The material is usuvally assumed to be strain-hardening (stable) in
the range of deformations which are relevant from the engineering point
of view. The influence of geometry changes however, may be either stabilizing
or destabilizing.

In this paper attention will be focused on problems concerning geometrical
nonlincarities and thus, for clarity, the perfectly plastic material model will
be assumed. Then the geometry changes will be the oniy reason for the
structure to remain stable or become unstable.

The presentatlon is limited to the purely mechamcal (isothermal) theory
and quasi-static deformation processes.

The problem considered, is illustrated by means of the examples of beams
with partial and fixity, the fixed column loaded by vertical and honzontal
forces and mulh—story portal frames.

" The influence of changes of boundary conditions due to plastifications
on the stability at the yield point load and on the post-yleld behavmur is
also considered.

In the presence of finite elastic displacement or structural 1mperfect1ons
the load-carrying capacity calculated by the tools of 11m1t7 analysis may never
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be reached if the post-yield behaviour is predicted to be unstable. Therefore
the meaningful assessment of the load-carrying capacity must be accompanied
by the analysis of the structural behaviour after the yield-point load has
been reached.

2. INCREMENTAL ANALYSIS OF POST-YIELD BEHAVIOUR OF RIGID- PLASTIC BEAMS
WITH PARTIAL AND FIXITY

There are numerous papers describing the post-yield behaviour of fully
fixed beams. In particular, detail analysis was presented in [1]. In the
papers [2]-[4] attention was focused on the problem of the changing of
the collapse mechanism at advanced plastic deformation.” The study of the
behaviour of rigid-plastic and elastic-plastic fully fixed beams and comparison
of the results obtained with the experlmental data where presented in the
paper [5].

There arc many practical situations, however, in which it is difficult to
realize the perfect end fixity of a beam. Therefore ‘the assumption of partial
end fixity represents the real condition.

The influence of elastic deformations and frictional restraints on the load-
deflection relations for elastic-plastic and plastic plates were considered by
M. Janas [6] and M. Janas, A. Sawczuk [7] N. Jones [8] presented an
analysis of beam which was subjected to a prescribed axial displacement at
the end. The investigation of a rigid-plastic beam on elastic supports was
carried by P.G. Hobge [9].

An analysis of the post-y1eld behaviour of rlgld-plastlc beams w1th various
- kinds of end fixity is presented in this chapter. The incremental formulation
of the problem is proposed in contrary to the rate formulation applied in
the papers [6]-[9]. The advantage of this method consists in being. able to
describe in the same way the whole class of beams’ with various boundary
conditions and in applying directly the results obtained in the post-yleld
-analysis of plastic frames (Sect. 4).

Let us consider a prismatic beam subjected, in the mldspan to mong-
tonically increasing dead load P (Fig. 1).

The following cases of partial end fixity will be analysed

The elastic restraints in axial direction (Fig. la).

Motion of the supports of beam under constant axial force (Flg 1b).

Motion of the supports of beam under force of friction (Fig. 1c).

The material of the beam is assumed to be r1g1d-perfectly plastic and
the beam’s cross section obeys the yield condition in the form

2.1) F=m+nt-1=0,

where m, n are, respectively, the dimensionless bending moment and axial -
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B, H are the dimensions of the rectangular cross section of the beam {width
and depth respectively), o, is the yield stress at uniaxial tension.

To specify the geometrical realtions we compare the two neighbouring
equilibrium states of the beam as shown in Fig. 2.

It is assumed that the plastic deformations are concentrated at the
generalized plastic hinges. The length and the rotations of the rigid segments
at the time ¢ and 4 At are denoted, respectively, by L,, L, and Dy, P,
For the deflection W comparable with the depth of the beam I (H= W)
- and for the increment of deflection AW much smaller than H (AW < H), the
increments of elongation AA and rotation A® at the generalized plastic
hinges can be calculated from the relations

| e

(2.4) AA = T(LZ—LI), A@ = qjl—¢2,

where

23 L= W, (L) = (L-s— AP+ (W AW)?,
_ w O Waaw r.

@6 h=Te Bt

Substituting Eq. (2.5) and (2.6) into the relations (24) and neglecting the
higher order terms in the Taylor series expansion, we obtain _

. WAW
2. Al A
2.7) AA 5 5= 5) ds,
AW
2.8 AP =—""
@8) A¢ L—s—As

Taking into account the flow rule (associated with the yield condition 2.1)),
the dimensionless axial force i can be determined from the relation

, 2 4
9 =
@9) | " &
o1, in the incremental form,
2 A4
2.10 =
(2.10) "=H 40

Next, substituting Eqs. (2.7), (2.8) into Eq. (2.10) and neglecting the higher
order terms, the following relation between the deformation parameter and
the axial force, can be obtained: C

aw

2.11) ' As = - (W-nH).
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Finally, making use of the equilibrium equation-
(2.12) _ P{L—s)=4M+2NW

and of the yield condition (2.1), the external load necessary to continue the
deformation process can be expresséd in the form

P L L, WY
(2.13) P = (l—n +an)

where By = 4M/L is the limit load.

The formulas (2.11) and (2.13) describe the behaviour of the beam for
any kind of considered partial end fixity. The control parameter in the
incremental procedure is AW. Equation (2.11) determines the increment of
the displacement of the ends of the beam As and, therefore, also the new
value of s. Next, making use of the boundary (partial end fixity) condition,
the load intensity .p can be calculated by means of Eq. (2.13).

2.1, Fully-fixed beam
For a fully-fixed beam the displacements of supports are eqhal to zero:
5=0,As=0. Then Eq. (2.11) yields

W
(2.14) _ n=—r=w,

where w is dimensionless deflection, Next, substituting Eq. (2.14) and s =0
into Eq. (2.13), we obtain the known relation p—w for a fully-fixed beam [7] |

(2.15) - p={l+wd).

2.2. Elastic supports

We assume that the horizontal end displacements s are proportional to
the actual axial force intensity n (")

(2.16) n= ks,

where k is the stiffness of the elastic supports 'in the axial direction.
Substituting the relation (2.16} into Eq. (2.11) and into Eq. (2.13), we obtain

(2.17)” . As= L_ ksH) |
| L , 114
(2.18) p=t [1—(1:5) +2ks H].

(1) This simplification can be accepted if the deflections are not greater than beam dcpth
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- The results of the analysis for the different value of k are presented in
“Fig. 3. The post-yield behaviour of the beam is stable (the slope of p—w
curve is positive) for all k > 0. The geometrical hardening is greater for the
greater value of k. For k— 0 the beam proves the natural stability. The
analytical solution presented in [9] confirms the above results obtained by
incremental procedure.
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2.3. Motion of the supports of beam under the constant axial force

We assume that the horizontal displacements s start to increase when the
axial force »n reaches a certain critical value n, and then remains constant.

(2.19) n=n,

For n < n, the beam behaves as fully fixed and the motion is described by
Eq. {2.15). For n=n, the p—w relation given by Egs. (2.11) and (2.13)
results in

AW

(2.20) . s =7

(W_'nc H)s B
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L w
- = 1— 2 —I.
(221) P= ( ng +2n, H)

The post yiéld behaviour of the beam with supports moving at constant axial
force is shown in Fig. 4 for several values of n,. For w < n, the curves
p—w have the common part described by Eq. (2.15).
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24. Motion of the supports of the beam under the force of friciion

Now let us consider the case when the motion of the supports of the
beam begins as the axial force n reaches the value of friction force deter—
mined by the relation (%)

(2:22) A= é pff

The axial force n is now proportional to the load p and the friction
parameter ¢. Substitution of Eq. (2.22) into Eqgs. (2.11) and (2.13) yields
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AW H?
(223) ) As = m (W—”—zL pé)s.
- L H N H W
=) [1"(”51 P‘S) " ?]-

The set of equations (2.23) and (2.24) describes the relation between the
dimensionless load p and deflection w.
The diagrams p—w are plotted in Fig. 5 for several values of the friction

. H
parameter ¢ Similarly as in the previous case, for n <7p§ the beam
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behaves as fully-fixed and the motion is described by the relatlon (2. 15)
The supports start to move horizontally at the deflection

L L [ (HN

{2) This simplification {as for elastic supports) can be accepted if the deflections are not
greater than beam depth. :
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In view of Egs. (2.14) and (2.25) the largest value of axial force (n=1 or
N = N,) is reached for ¢ = L/H. Therefore for ¢ > L/H the friction forces
are so large that the supports cannot move and the considered beam behaves -
like a fully-fixed one during the whole deformation process.

The plot in the p— & diagram for the friction parameter { = 8.0 describes
the situation in which the supports stop to move, reaching the plastification
of the cross section only under normal force (membrane effect).

3, THE POST-YIELD BEHAVIOUR OF RIGID PLASTIC COLUMN
Let us consider a fixed column made of rigid perfectly plastic material

and loaded by vertical and horizontal forces P2, and P2, increasing pro-
portionally or independently (Fig. 6).

PAv

PAn

. FiG. 6.

Equilibrium equations written in the deformed éonﬁguration for the base
of the column have the form

(3.1) N = —Pi,cos &+ P, sin®,

(3.2) M = Pi, Lcos &+ PA, Lsin @,

where N and M are, respectively, the axial force and bending moment at
the base of the column.

~ Substitution of Eqs. (3.1) and (3.2) written in dimensionless form into
the yjeld condition (2.1) leads to the following relation:

. : H 2 -
(3.3) F = 16p,(cos @+1sm &)+ pi (I) {sin @ —n cos PP —16 =0,

where
' Pi, L
3.4 : : =
( ) Pn Mo »
Ay
(3.5) n=
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Equation (3.3) describes the relation between the intensity of load applied
py and the rotation angle @, for the determined value of the'ratio of the
load intensity #. Figure 7 illustrates the relation (3.3) for n = -1,0,1,3,5

20 40 60 80 ()

and H/L=0.1. As it follows from Eq. (3.3) and Fig. 7 the post-yield
behaviour of the considered column depends mostly on the parameter #.
For # <0 (the load P is directed upward) the post-yield behaviour is stable,
whereas for # < 0 the deformation :process is initially unstablé but after the
rotation @, the column becomes stable.

At the assumption that plastic deformations are concentrated in a gene-
ralized plastic hinge, the loading condition F =0 leads to the relation .

. OF oF .
3:6) F= ahp,,—i-a@@—{)
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:and hence
OF.
dph _ 3@
(3.7 o = @
opy

Assummg —gpﬂ #0, it follows from Eq. {3 7) that the COIldlthIl i@ =0is
h

satisfied only if 20 = 0. Therefore the neutral stablhty condltlons takes

eventoally the form _
(3.8) #y=1tg @.

The same result can be obtained when making use of the structural stability
criterion for a perfectly plastic material in the Lagrangian sense [8]. The
column is then stable if the axial force N is positive. In view of Eq. (3.1)
it follows that for # > tg & the column is stable,

for n=tg @ the column is neutral,

for n < tg & the column is unstable. _

Figure 8 illustrates the above relations. A similar analysis can be carried
out for a constant value of one of the components of the load and an
increasing value of the other. Figure 9 illustrates the relation p,— @ for

Pi, L
=—1,0,05,08,1.0,20, and H/L=01.
M, __

Py =

4. THE POST-YIELD ANALYSIS OF RIGID-PLASTIC FRAMES

The steel portal frames used primarily in tall buildings constitute one of
the most important problems in the plastic analysis of structures,

For the complex frame structures, if the yield-point load is associated
with the local collapse mechanism, plastic deformations may result in such
changes of the boundary conditions that the stabilizing effect of tensile forces
is increased or reduced. By making the proper choice ot the beam-to-column
rigidity, unstable mechanisms can be avoided.

At the assumption that plastic deformations are concentrated in generalized
plastic hinges and the displacements do not exceed the depths of cross sections,
the structural stability criterion (for the perfectly plastic material in the
Lagrangian sense) takes the form [8, 9]

;Z Nt' é;'l Li
(4.1) =t >0,
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where N,, &;, L; are, respectively, the axial force, the rate of rotation and
the length of the i-th element; r is the number of elements, W; denotes the
displacement rate of the force P, in its direction, f; is the yield point load,
m is the number of points of load application,

Since the denominator in the inequality (4.1) is nonnegative, the stability .
of the frame structure is ensured if

(4.2) Z N; &7 L;>0.

The stabilizing effect of tensile forces and the destablhzing effect of
compressive forces is, therefore, evident,

In the post-yield analysis of plastic frames at modcrately large deflections,
the mechanism of motion is usually assumed to be the same as at the yield
point load. This assumption may result in an improper estimation of the
post-yield behaviour.

To illustrate the problem let us consider an k-story portal frame subjected
to concentrated vertical loads as shown in Fig. 10a. The analysm w1ll be
carried for the: first floor: (Fig. 10b).
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The foliowing dimensionless coefficients are infroduced:

H H, w

c Hb
Hb’ ﬁ"' Lb’ ?_Lc’ W—Hb.’

43) o=

where L., Ly, H,, H, denote, respectively, the lengths of the columns and beams
and the depths of the columns and beams.

All beams and columns are assumed, for simplicity, to have the same
‘widths and to be made of the same material.

It follows from the limit analysis that the frame begins to - deform
according to the beam mechanism (a) presented in Fig, 11 with generalized

p:

sty

[k=T}R

10

| |
: i
W W

[ 1

FiG. 11,

plastic hinges at the cross sections 2,2, 3. If the columns are rigid enough,
the beams of the frame work as fully ﬁxed beams and the relations (2.14)
and (2.15) describe the behaviour of the frame. The curve (a) in F1g 11
illustrates Eq. (2.15). The stability criterion (4.1) then ylelds

Thus the frame is stable. “ “

However, at the certain deflection W the increasing axial. force in- the |
beams results in the yielding of the column (or columns) and further
deformation continues according to the mechamsm (b) shown in Flg 11
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The beams of the frame behave then as beams on moving supports at
constant axial force. Substituting n = W/H, = w and s = (W—W)?/2L, into
Eq. (2:21), we obtain

: 2 (1— W2+ 2iw)
2= w—w)

The stability criterion (4.1), after neglecting higher order terms, furnishes

@.5)

. 2ww
(4.6) o= T w?) =0.

The frame is still stable though the increase of the destabilizing effect of
the compressive axial force in the columns and the reduced stabilizing
effect of the tensile forces in the beams result in diminishing of the stability
cocfficient 1.

Taking into account the second-order geometrical effects as well as the
“influence of axial forces on the yielding of the beams and columns, the
equilibrium equation, written for the mechanism (a) at the moment. of
plastification of the cross section 1, eventually leads to the condition

(4.7) ot y—2aw (k—1) k—ky (1 —#2)— 02582 yk? (1+2Ww?) = 0.

Putting w = 0 into Eq. (4.7), we obtain the relation between the number
of floors k and the geometry parameters for which the hinges in the cross
sections 1,2, 2" and 3 develop simultaneously at the yield point load, namely

O(- n i T
[‘ L
=02
stable -
3l =-"‘.O.1
uns"cctble
2 3
1 ) k

12 3 4 5 6. 7 8 9 10 1112
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The above relation for §=0.1 and =02 is illustrated in Fig. 12.

If the rigidity of the columns are less than, or equal to, the critical value
described by Eq. (4.8) then, from the beginning the mechanism of motion (b)
occurs. The condition of equilibrium yields the relation

4.9 o p=—nzw‘5,—(,/ocz—n—w2 af?),
therefore

. D 2af3? ww
4.10) = == e
( o £ Po JoaZ—n
and the frame is unstable. The foregoing relations are valid only for
a’ > n.

<0




THE POST-YIELD ANALYSIS OF RIGID PLASTIC BEAMS COLUMNS AND FRAMES 189

Further deformation may lead to the realization of the mechanism: (c)
presented in Fig. 12 which proves to be unstable. However, this analysis in
view of the occurrence of very large deflections would exceed the scope of
this paper. Figure 13 illustrates the considered example of the frame for

which the bottom of the columns at each story are connected with beams °

by hinges, for the following geometric parameters: « =2, =0.15,k=2 and
k=235,

5. CONCLUSIONS

The results obtained in the previous sections describe the behaviour of
some simple plastic structure at the assumptions of the lack of geometrical
imperfection and the lack of elastic deformations. Those assumptions from
the engineering point of view are hardly acceptable. Therefore the question
arises what is the reliability of the obtained results when a real engineering
structure is considered.

From a comparison of the results obtained for structures of a perfect
shape, made of a rigid-plastic material and for those made of an elastic-plastic
material or which exhibit initial geometrlc imperfections, the following
conclusions can be drawn:

In the case of the stable post- y1eld behaviour of a rigid-plastic, structure
of perfect shape the elastic-plastic structure or the structure with initial
geometric imperfections is capable of sustaining a load which exceeds the
load-carrying capacity assessed by the tools of limit analysis.

If the post-yield behaviour of a rigid-plastic structure of pérfect shape is
predicted to be unstable, then the maximum load which can be supported
by the same structure but is made of an elastic-plastic material or exhibits
initial geometric imperfections may near never reach the load-carrying capacity
since the structure may collapse much earlier.

Therefore the full advantage of the load-carrying capacity can be taken
only with an additional analysis of the behaviour of the structure after the
yield-point load has been reached.

It may happen that a structure with a smaller limit load but stable is
in reality capable of supporting a greater maximum load prior to collapse
than an apparently stronger structure which was proved unstable.
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STRESZCZENIE

PO-KRYTYCZNA ANALIZA SZTYWNO-PLASTYCZNYCH BELEK, SLUPOW I RAM

W pracy rozwazany jest wplyw efektow drugiego rzedu na po~gramczne zachowanie sig
konstrukcji plastycznych. Analize ograniczono do czysto mechanicznej (lZO[’CImICZHC_}} teorii
i quasi-statycznego procesu deformacii. '

Rozwazany problem zilustrowano przykladamii sztywno—plastycznych belek z roznymi rodza-
jami czgsciowego zamocowania brzegdw, sztywno-plastycznych stupow obcigzonych pionowymi -
i poziomymi silami oraz wielopigtrowych ram portalowych. Wykazano, Ze plastyczne deformacie
moga wplyna¢ na zmiane warunkdéw brzegowych w taki sposdb, Ze stabilizujgcy efekt sit
rozciagajacych jest zredukowany. Przez odpowiedni dobér pewnych parametréw mozna umknqc
niestatecznych mechanizméw oraz katastrofalnego zniszczenia, :

PE3romME

HOCJ'IEKPI/ITH‘-IECI{HFI AHAJII/IS )KECTKO-HJIACTI’I‘-IECKI/IX BAHOK CTOJIBOB
H PAM

B pabBore paccMaTpuBasTcs BIMAHME :acpq)eKTon BIOPOTQ HOPHAAKA HA TOCIHELPEASABHOS
HOBC/ICHAE IUTACTHIECKHX KOHCTPYEIIM,

AHaNu3 OrpaHAYeH X MexaHHYecKol (M3OTepMHUECKOI) TeopHu u KBAYHCTATHYECKOMY TIpO-
necey medopmanem,

PaccmaTpupaemas. npoGieMa HIUIOCTPHPOBARA IPHMEPEME KECTEO-IIACTHYSCKAX BATOK
¢ PAIHEIMM POJAMH YACTHYHOTO 3AKPCHICHWA KPAeB, KECTKO-IUIECTHYECKHX CTONIGOB, HACpY-
MEHHEIX BEPTHKANLHEIMY M. TOPHAIOHTABHbIME CHIIAMM, 2 TAKXE MHOTOITAMHELX DOPTa/bHbIX
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Iloka3aHe, ¥TO LIACTHYECKHE AeDOPMATH MOTYT BIHATH HA H3MEHEHHE IDAaHAYALIX YCNOBHI
TaxuM oOpazom, uT0OE cTabummsapylomuii shdexr pacTarveaiommx cmn GRUI PeAYUHDPO-
paHHRM. IIyTEM COOTBETCTBYIOLICTO HONOOpPA HEKOTOPHX HAapaMCTPOB MOXHCO H3OGemKaTs
HEYCTOHYHBEIX MEXaHM3MOB H KaTacTpodmueckoro pa3pylueHms.
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