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ON INTERNALLY STATICALLY AND KINEMATICALLY
DETERMINATE PROBLEMS IN THE LINEAR THEORY OF SHELLS

Z. RYCHTER (BIALYSTOK)

Modified conditions of static and kinematic determinateness for the interior domain
* of an arbitrary elastic shell are found on the basis of estimates of the error of shell theory
solutions in an energetic norm. The conditions are illustrated by an example and confronted
with  their earlier counterparts formulatéd in terms of the residual error in shell theory
equations. . ) i :

1. INnTRODUCTION

Approximate particular solutions in shell theory can often be found by
reducing the problem to a sequence of statically and kinematically deter-
minafe problems. Then the equilibrium and compatibility equations are no
longer simultaneous and may bé solved successively, The approximate solu-
tion thus obtained is known to be correct undér two conditions [1]: (i) the
stress distribution over the thickness is nearly uniform, or, conversely, it is
close to that of inextensional bending and (ii} the residual error prodiced
in the equilibrium equations is small compared to the load. In the coniext
of (i) the question arises whether {(and when) problems other than the two
extreme ones of the ‘membrane and inextensional bending theories can be
reduced to a sequence of statically and kinematically determinate problems.
A second question, related to (i), is that conceriing the actual (not residual)
error of the approximate solution (two-dimensiotial) comnpared with the exact
solution, for real bodies the latter being three-dimensional.

In this paper both questions are answered by the hypersphere method
suggesied by Prager and SynGe [2] and then used. by Koirer [3] and
DanieLson [4] for establishing bounds on the error of shell theory solutions.
We shall make special use of Daniclson’s results who has shown that,
given an exact shell theory solution in two dimensions, one may construct
an approximate solution in three dimiensions, which has an error of relative
order ¢ when compared t0 the exact three-dimensional solution, ¢ depending
on the shell geometry and the shell theory solution. In constrast to this
we start from not an exact but an approximate solution in two dimensions
which is then used to construct a three-dimensional solution having a reldtive
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error 8, with & generalizing the parameter & Furthermote, by requiring J to
be small relative to unity, a set of modified conditions of static and kinematic
determinateness is obtained, which proves to ‘be less restrictive than the
classical conditions (i) and (ii). It is shown, in particular, that some non-
membrane and noninextensional bénding problems can also be reduced to
a sequence of statically and kinematically determinate problems.

In opposition to [3, 4] our analysis is based on the introduction of two
wavelengths describing variations of the membrane and bending strains. This
makes the conditions of static and kinematic determinateness less TGSII‘ICUVB
then they would be with one single waveléngth.

The general considerations "are illustrated by an example concerning
a circular cylinder under normal load.

2. CLASSICAL CONDITIONS OF STATIC AND KINEMATIC DETERMINATENESS

A successive jntegration of the membrane equilibrium equations and the
membrane strain-displacement relations is often uséd to determine particular
solutions in shell theory [1]. For our purposes it is convenient to summa.mze
this method without explicit reference to the displacements.

~The full linear equilibrium and compatibility equatlons of shell theory
can be wr1tten in the followmg vector form:’

2.1) . Enmm=q, G@om)=0

where E and G are. vector-valued linear differential operators, n and m are
membrane forces and moments, q is a given load. Equahons (2.1) may be -
mtegrated successwely as follows: '

step 1: 1nteg1ate G{O,m=90 for m,
(2.2) step 2: gwen m integrate E(m,m)=q f{or n,

~

step 3: gwen n mtegra‘te G, m)=0 for m.

The final approximate solution is (n, m-+m) and it is known Lo be correct
under two conditions [17]: -

23) hn> m-+m or hn<<m+m,
‘ E (0. @)<gq,

where the vector and tensor imequalities are meant to hold for the absolute
maximum values of the components, and & denotes the thickness of the shell.
The condition (2.3); requires the deformation to be either nearly membrane
or that of nearly inextensional bending, whereas the relation (2.3), demands
the error produced in the equilibrium equations by the moments 1 to be
small compared to the load. If is to be noted that the problems in steps 1
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and 3 are kinematically determinate, as they consist in integrating three
compatibility equations for three unknown moments with given membrane
forces. In step 2 we have a statically determinate problem where three
equilibrium- equations must be solved for three membrane forces with given
moments. Thus the problem of determining particular solutions to ‘generally
coupled equilibrium and compatibility ~ equations reduces to a sequence
of statically and kinematically détérminate problems, the conditions (2.3)
being the classical conditions of static ‘and kinematic determinateness.

3. MODIFIED CONDITIONS OF STATIC AND KINEMATIC DETERMINATENESS

Although widely used, the classical conditions of static and kinematic
determinateness are not fully satisfactory. The restriction (2.3), on the type
of deformation is intuitive but has not bgen proved to be necessary. Likewise,
the condition (2.3), ensures only that the residual error is small, the actual
error being unknown. To answer these questions we rescrt (0 results due to
Dantrrson [4], adapted for our purposes, first, by introducing two wavelengths
of the deformation pattern and, second, by replacing the exact shell theory
solution of [4] by the approximate solution obtained in Sect: 2.

Equation (3.3} of [4] 1mmed1ately 1mp11€s the followmg fundamental
1nequal1ty

{3.1) 1&—ol/18] <o
where .
(3.2) 7 o= {&—al/s].

This means that an exact, practically unknown, stress ficld ¢ in three
dimensions may be approximated by two known stress fiélds: a statically
admissible stress & and a "kinematically admissible stress & The relative
error is & and il is seen to depend only on & and 6. The energetic norm
used is, when squared, equal to the complementary energy corresponding
to a given stress. The above relations are valid under certain “regular”
boundary conditions [3, 4] which require the prescribed stress to be equal
to & and the préscribed displacements to produce, through the stress-displa-
cement relations, the stress field 6. Dealing only with the interior problem
of -shell theory, we may freely assumé the boundary COIIdlUOIlS o be
“regular”.

Our main task is to construct from the approximate shell theory solution
given in Sect. 2 the three-dimensional fields & and &. These f1elds can’ be
casily ‘obtained from those of [4]:

- N 12zm n hnh m m-
(33)  Gup=Giy= %_Tfﬂw(}i’ S _f;)
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33). . . z 3 [ 4z7 : n hn mom\°
ot Fer =Gy = — iyt | G Mt O\ 7o R By )

~ L n o bm o om  m o\
T3 = 0= O\ R B hR* By )’ ‘
where n,, and m,, are membrane forces and moments whose absolute
maximum values are denoted by n and m, h is the thickness of the shell,
» dénotes the distance from the midsurface, R is the least principal radius
of curvature, a vertical stroke marks surface covariant differentiaiion. Ly and
L, are the characteristic wavelengths of n,y and m,, and are defined to be

the largest numbers such that

/Ly, |Pappal < 1/ Ex,

n =
(34} ! af |l = "
< mfLy, |ma!i|xl| <m/Ly,. 5

|m'zz,8|x

The estimates in the relations {3.3) and (3.4} only make sense for the mid-
surface ‘coordinates having the dimension of length, which is also assumed
to hold in what follows. ' ' '

In [4] only one single deformation wavelength L was defined: in view
of the relations (3.4) it is verified to be the minimum of Ly and L. The
distributions (3.3} are actually those of [4] with the error terms estimated
here more precisely by means of the two wavelengths.

- The main feature of & and @ is that these stresses are statically and
kinematically admissible in three dimensions. In [4] this [act was proved
for & and & constiucted from the exact shell theory solation (1, m,;) this
solution being obviously both statically and kinematically admissible in two
dimensions. In actual fact, however; any statically admissible two-dimensional
solution, when introduced into the relations (3.3), produces a statically
admissible stress field in thrée dimensions. Similarly, a kinematically admis-
sible two-dimensional solution provides through the relations (3.3 a solution
which is kinematically admissible in three dimensions. This applies, in parti-
cular, to the approximate solution from Sect. 2: according to ‘the relation
(2.2),, (n, m) is a statically admissible solution, and, in view of the relations
(2.2), and (2.2);, (n, m+-1i) is ‘a kinematically admissible solution. Conse-
quently, & (n, m) and & (n, m+r) afe statically and kirematically admissible
siress fields in three dimensions. They may easily be calculated from the
relations (3.3) to give '

n hh m m m\:
& (0. m)— 3 D) = 0| o s 73T
{n, m}— & (n, m+m) (R’ 0y R By i >’

6.5) |
&, m)=0 (%%-)
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n, m and m now being the absclute maximum values of n, m and m,
whereas Ly and Ly are wavelengths of n and m. These estimates are
meant to be valid for all the components of the stress tensors involved.
They are verified to be also valid for the energetic norms of the stresses,
provided the terms on the right-hand side of Eq. (3.5) are multiplied by
a ceitain constant to compensate for the difference in units between stress
and it§ cnergetic norm. When the norms of Eq. (3.5) are introduced into
Eqg. (3.2), the constant cancels and we find ' '

nhnom om @ my
(36) é = max (“E If ﬁ, ?, )/max ( P hz )

Since 5 is the relative error of the approximaté solution from Sect. 2,
it mist be small compared to unity. This with Eq. (3.6) gives the modiflcd
condmons of mternal statxc and kmematlc determinatencss

h h? m h* rﬁ
A — —_— =m,
(3.7 R < 1, 2 <« 1, T B <« 1, < 1 for hnzm
h h? hn W i
(38) -Rf<<1, E<< 1, ““};1——?;«1, E«l for hn < m.

Compared with the classical conditions, the modified conditions of static
and kinematic determinatendss are seén to be far less restrictive. At a glance
the latter are greater in number than the former. However, the first three
relations in the sets (3.7) and (3.8) are actually the requirements [5T imposed
on any solution in shell theory if it is to be a valid approximation to the
exact elasticity theory solution. QObserve that neither the set (3.7) nor the
set (3.8) demands the deformation to be a membrane or that of inextensional
bending, in conirast to the classical condition (2.3);, unless L, is as short
as h in the case of the set (3.7) or Ly is as short as h in the case
of the set (3.8). Also, of the two wavelengths only one is required to be
large compared to the thickness; this would not be so for one single
wavelength L = min (Ly, Ly), as 1ntroduced in [3, 4} since then the mequah-
ties {(3.7),,3 and (3. 8)23 would reduce to

(3.9) _ <1,
Finally, it should be stressed that the modified conditions of static and
kinematic determinateness are concerned with the error of the solution,

whereas the cla331cal restrlction (2.3); is imposed on the error in ‘the’
equations. o '

4. EXAMPLE

As an illustration consider an infinitely long circular ¢ylinder of a constant
thickness subjected to a rotationally-symmetric normal load ¢ (x); the Carte-
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sian coordinates x and y are assumed to be arc lengths along the generator
and circumference, respectively.

The general formulae in absolute notation, Sect. 2, may now be specified
in their physical components. The nonzero membrane forces and moments
are

(4.1) n={n,n}, m={m,m}.

They are interrelated by the equilibrium equations

4.2) (E (n, m) = q} = {dnJdx = 0, n/R—d?mjdx* = q}
and compatibility conditions

(4.3) (G (n, m) = 0} = {dm,/dx = 0, d” n,/dx*+12m,/(h* R) = 0},

from which the strains have been eliminated using the standard firsi-order
constitutive equations in which the Pmsson s ratlo was assumed to be zero,
for the sake of simplicity.

When applied to Egs. (42) and (43), the approximate integration
procedure (2.2) gives ' ' '

step 1:  m = {m,=0,m, =0},
(4.4) step 22 n={n,=0,n,=qR},
step 3: = (i, = —(h2R*/12}d* g/dx®, in, = 0},
where taking m =0 in the first step is the natural dssumpnon adopted

when searching for a nearly membrane solution {1].
We spec1fy the load to bave the simple form

(4.5) g(x)= a+b sin (x/1),

a and b being certain constam! pressures and [ being a certain length. For
such a load we have ' '

4.6) g = O [max (g, b)], d" g/dx" = O (b/I").
From the relations (4.4)-4.6) and (34) we can calculate the amph‘tudes'
and wavelengths of internal forces and moments to find
n= O [max(a, )R], m=0, =0 (bh>R>P),

“ Ly = O [max (M!, D, Lu=0(.

This implies that hn > m; consequently, the modified conditions of static’
and kinematic determinateness are the relatmns (3.7) and reduce, together
with the relations {4.7), to

(4.8)  WR< 1, ff(n)=min (L, bja) hR/® < 1,

where the remaining two conditions, resulting from the inequalities (3.7),,3,
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are readily verified to be fulfilled automatically when the relations (4.8) are
true. ' ' o

An interesting fact is that the conditions (4.8) permit the bending strain
wavelength to be as short as the thickness. Indeed, for Ly=h Bq. (4.7)
gives [ = h, and the conditions (4.8) hold provided that

(4.9) /R < 1, bja < WR,

which are true for a thin shell subjected to a nearly constant load. Thus
we have constructed a solution which satisfies the modified conditions of static
and kinematic determinateness in terms of two deformation wavelengths and,
at the same time, violates. the conditions restricted to one wavelength, see the
inequality (3.9). This proves the usefulness of introducing the two wave-
lengths: ' ' '

The conditions (4.8), are, in fact, equivalent to the statement that the
error of the solution (4.4) is - '
{4.10) © 0 = max [4/R, min (1, b/a) hR/I?].

Substituting the relations (4.4),.5 intovKs. (4.2), the residual error a« of the
same solution is found to be of the relative order

@11 a =0 [h*R? (d* g/dx*)/q].
In view of the relation (4.6), this gives
(4.12) o= 0 [min (1, b/a) h* R*/I*].

Comparing the relation (4.10) with the other {4.12), it is immediately verified
- that the following relations are true simultaneously: =~ - o

- (@413) Jhla <1, BRIZs 1, w—0(1), s 1.

This means that for loads consisting of two parts: a large constant part
and a rapidly varying of small amplitude, the residual error may happen
to be large, whereas the actual erroris small. In such a case, the classical
- condition (2.3), which restricts the residual error is scen to be unsatisfactory.

5. CONCLUDING REMARKS

‘The modified conditions of static and kinematic determinateness obtained
in this report require the energetic-norm error of the solution to a statically
and kinematically determinate problem to be small compared to unity. When
~satisfied for one, say, classical shell theory, this demand is also satisfied for
“all the variants of shell theory which differ from classical theory by small
erms of relative order § in their constitutive equations. In particular. the
conditions (3.7) and (3.8) are the same for both classical and the Sanders-
—Koitér shell theories which are of most practical “interest.
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STRESZCZENIE

O WEWNETRZNIE STATYCZNIE 1 KINEMATYCZNIE WYZNACZALNYCH
ZAGADNIENIACH LINIOWE] TEORII POWLOK

Otrzymano zmodifikowane warunki statycznej i kinematycznej wyznaczalnodci wewngirz-
nego zagadnienia liniowej teorii powlok spreZystych — na podstawie oszacowania, bledu roz-
wigzan teorii powlok w normi¢ energetycznej. Preedstawione warunki zilustrowano na przy-
kladzie oraz pordwnano 2 warunkami znanymi dotychczas, opartymi na oszacowaniu blgdu
residualnego w rownaniach feoril powlok. : ' :

PE3HOME

O BHYTPEHHE CTATUYECKHM H KHHEMATUUECKU OIMPEJAERISIEMBIX
MMPOBIEMAX JIMUERHON TEOPUM OBOJIOUEK

MoayJers MOBGHIAPOBAHNBES YCIOBHA CcTaTHYECKOH M KMEEMATHIECKOH OIPEeNeacmacTy
BHYTPOHHEH TPoBieMs! HeHHOE TeOPUH ynpyrux 060Jl0Mek HA OCHOBE ONEHKH TOTPEeLLHOCTH
pemenuii Teopun obonouek B aHepreTHYECKOH HOpME. TlpercTap/eHHEE YCROBHS WILTIOCTRA-
POBAHEL HA TPHMEPE, & TAKKe CpapHEHBL C VCIOBHAMU HABECTHRIMH M0 CHX [Op, Omupa-
LOLIMMHCA HA OUCHKE PeIHAyabHOH MOTpELHOCTH B ypaBHEHNAX Teopun 0DONIOUEK.
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