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STATE OF STRESS IN ANNULAR PRESTRESSED PLATE UNDER
CREEP CONDITIONS

I BIALKIEWICZ (KRAKOW)

The solution of the problem of creep of an annular plate prestressed by a system
of concentric cables is presented. The method of the solution is based on a double iterafive
algorithm. The preblem of interaction of the cables and the influence of plane stréss state
on the state of bending of a plate have been solved by iterative methods.

1. InTRODUCTION

The processes taking place in prestressed plates are dependent on the
physical and mechanical properties of the material of the plate and of the
prestressing cables. The method of solution presented below is typical
for noninetallic plates (made from concréte or plastic) prestressed by a
system of corcentric cables. The usual phenomenon causing redistribution
of stresses in normal temperatures is creep [1,2]. In the case of concerte
plates, during drying of the construction, shrinkage takes place. The extent
of the shriftkage depends on hydrothermal conditions of the environment [3].

The work of prestressed cables is usually limited to the linear-elastic range,
However, if the designed stress level in cabled is close to the yield point,
the plastic-visco-elastic model of the mateual for the pmthssmg cables
should be applied {47

The paper is a conlinuation of probioms studied by the dUthOI’ in [5]
The new elemeénts of the present paper are:

the influence of bending upon the longitudinal forces,

the algorithm of solution of an annular disc prestressed by a system of
concentric cables,

the algorithm of the 'malysls of an annular plate afier rejcctlon of the
stiffness principle (the second order theory), and

the numerical example of the analysis of an annular plate prestressed
by six cables,

Assuming the distribution of cables to be uniform, the magnitudes of
individual prestressing forces are determined. The problems of optlmal
prestressmg {6] remains unsolved. )
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2. FORMULATION OF THE PROBLEM

A model of the plate material will be assumed according to the phys1ca1
relatlon of the Boltzman mfmltemmal theory [7, 8]

21 T@= {Eq (v) trE(r)w-j tr E (t') Eq (t) Ry (1, T) dt'} 1+

C42G (D E ()2 f E(T)GE)R, (r,t)dr".
1

The symbols used in the equation denote: T (1) — Cauchy’s stress tensor,
E (7} — the strain ténsor, E' () — the strain deviator. The magnitudes E,,
G (1), Ry (1, 1), R, (t, ) are scalar material functions of the loading time
and the age of the material v’. Equation (2.1) is presented in dimensionless
variables. In the formulated initial-boundary problem, the stress T (7) and
strain E (1) tensors will be written in a cylindrical coordinate system {g,0.{}.

The governing set of equations will be written after rejection of the
stiffness principle (the second order theory). This makes it possible to account
for the influénce of plane stress (“disc”) forces (camsed by prestressing) on
the plate deflection [9, .10]. The equilibrium equations of the hotizontal
1y, Mo and verticdl forces g, and moments n1,, mg, with vectors tangent’ to the
deflected surface of the plate, can be written in the form

1 .
(2.2) ng,g—l-wgr (n,—ng)=0
(2.3) 044,04 = 04,
1 _
(2.4) m&g%‘E (mg—m@)“}"ng W’g = qg,

where § and w denote the dimensionless load and deflection functions.
According to the theory of thin plates, the constitutive undtIOIl 2.1)
wﬂl be ertten just as for the plane stress and stram states,

(25) Sy = S (28 83)"‘80 (8Q+39),

3
5 2
2.6) - Se=-3 5 S. (2eg—2,+ 8o (5,4 20),

where, to simplify the notation, the integral operators have been defined:

Q.7  S.9)= G@s@—] s@) G @) R, (5, ¥) v,
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23) S0 ()= Eo ()5 (9)—{ 5 () Eo (¢) Rz, ) d
A 1

The magnitudes s,, 5, and &,, 69 denote the radial and circumferential
components of stress T (7) and strain E (1) tensors. The dimensionless ma-
terial function G (7) and E, (1) are given in the paper [5].

"The inverse form of the physical equations (2.5) and (2.6) wﬂl be partl-
cularly useful in the analysis of the plane stress state

1 1
(29) - ) 89 = ? Lc (259 —Sg) "{“3 LD (Sg + Sg),
1 1 |
{2.10) By = 3 L (2sg—s,) +? Ly (s, +59).

This form has been wr1tten usmg the 1ntegral operators inverse to (2.7)
and (2.8),

(2.11) L.{s)= —G—l(—ﬂm[s (1:)+js () K, (z, 7} d'c’il,.
1
(2.12) Lo (5) = Eol 5 [s (1) + Js () B, (1, ©) d’c'}
. : 1

A nondilatational K, (r, ") and dilatational K, (t,7) kernels depend on
Poisson’s coefficients u (t), v (r, 7'), and the general kernel of Eq. 2.1}

T4v(r, ) - _ 1-2v{r, 1) -~

(213} K.(z,7)= T4 () K(t,7), Ky(z,7)=

The analytical form of the kernel K (r, ') will be further referred to the
commonly applied creep theories of concrete T11, 12] and chosen plastics.

The material functions R, {r,7"} and R, {z,t) will be calculated as the
resolvents of the integral equa’uons {2.9) and (2.10) for the assumed form of
the kernel K (z, 7).

3. DIFFERENTIAL-FUNCTEONAL PLATE BQUATION

Neghglble dependence of Poissor’s ratios (2.13} on tlme for most of the
constructlonal materlals ylelds the assump’ﬂon

(3.1 . p (7)) = v (1, 7) = u = const,
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what leads to ,
(3.2) B R.(t,7)= Ry (t,7) =R (z, 7).

In this way, practical application of the solutions is not too narrow.
Equations (2.5) and (2.6) for the plate state, after additional éxpression of
the components of the strain tensor by the function of deflection w {the
Kirchhoff assumption), can be written in the integfal form

: 4 ) 1N
(3.3) m, = _—!.3 a0 S. (wggg+,u5w,g), 1
4 1 :
34 —_— —_-—— — W A
( ) m@ 3 (1'_#] SC (Q W;Q+MW,QQ)’
where

i

1
4 _ SQ
' m@} - j-ga} e

(3.5)

The transversal force expressed by the function of deflection w results {rom
the equilibrium Eq. (2.4) after substituting 'm, and mg for (3.3) and (3.4);
A L
31—
The differential-functiopal plate equation will be obtained as a result
of introdgcetion of Eq. (3.6) into Eq. (2.3). Taking also into consideration
the constant plane (disc) stress distribution across the thickness caused by
prestressing Eq. (2.2), S '

(3.6) . g, = S, [(V2 W) g1+ 1, ..

Loal L
g s Sg = Mg,

a7 ' 5T = :

the differential-functional plate equation can be written as
' g2 u2 e o S 2 o 26T 7 1
(3.8) V2V w—z(l-—p,)Lc q—i—ES@w!ﬁ— Sp Woe 1= 0.
In this equation, besides the unknown function of deflection w{g,7), the
unknown dis¢ stresses s, and sT appear. Since the equilibrium conditions

of forces acting in the middle surface of the plate (22) afte independent,
the solution of the disc problem will be presented first. ‘

4. PRESTRESSING STRESSES

The solution of the disc state problem of the plate, caused by prestressing,
will be presented by applying the statical approach. This method has been
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discussed in detail in paper [5]. In the considered plane, axially-symmetrical
problem, the elastic-viscous-clastic analogy "takes place [11]. The funcfion
of the radial stress is the solution of the equation v

4.1) 05,00+ 355, = 0.

The algorithm of the solution presented below will be illustrated by an
example of creep analysis of an annular plate in compliance with the
scheme shown in Fig. 1. The geometry of the plate is determined by: the
radius of the cantilever column Ry, the external radius R, and the constant
thickness 2h. The magnitude g (r) is a function of the useful load, whereas
p® denotes the pressure exerted by the i-th prestressing cable (i=1,2, ..., n)
the route of which coincides with a circle of radius RY.

A static scheme of division of the plate along the i-th cable route
is shown in Fig. 2. The load functions of the external edge (a).and hole (b)
of the plate, after assumption that the cables work in the linear elasfic region,

(4.2) P =atad (@)

have the form

4.3) P (@) = af +af) Tl (1) +a ()],
(44) P (@) = afy +ath [ufe ()+a (o).

A sum of the components: @ () (the function describing the creep of the
plate under the influence of one cable the routé of which coincides with a circle
of radius r = R%) and 7 (the function of displacément ‘produced by other
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cables) of the vecfor 7 (r) is presented in Fig. 3, The dimensionless
magnitudes in Egs. (4.2)-(4.3) dre expressed by | ] '

. . ; 1 .
@)= 0@, 0=,
So h '

(4.5) . ' . oo
@)= —df @ Q="
S() SO
where
(4.6) u® (1) = u(R®, 1).

Two algebraic equations for the coefficients of the load distribution dfy are
given by the relations o o
(4.7)

Two further equations for the coefficients @) are written on the basis of
the continuity conditions for the function of radial displacement at the
points r= RY. Assuming, at this stage, the values of these coefficienis as
known, the static boundary conditions can be presented separately for

the region (4) o

& (g1, = —00 (9,

4.8 o g
49 00, "~ @),

and region (b) of the plate

SO (e, 1) = B (1),

49 .
( ) S(J}(Qz,"?)=0,

where p¥ is reaction pressure produced by the i-th cable in a fixed point,
Fig. 2 . ' ' ' '

(4.10) PP =-—pf (1),
So
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and g, 0, denote dimensionless internal and external radii of the plate

(4.11) Q1= 2=
From the solution of differential equation (4.1), with the bouhdary
conditions (4.8) and (4.9), the radial and circumferential stresses can be
obtained in the regions of ' ) ‘ |
the plate (a)

(0 FO — g — g i 2 .
8 1—| @ 4
Qm -

and the plate (b)

s —ay —ath [ad+ i o \? ; A ;

{4.13) Szi) = PO 1+ 2 +afy +aty [+ a1,
1—15

[ 02 ] '

The relations (4.12) and (4.13) indicate the dependence of stresses on the
displacement, functions afc and @ at the points of the plate where the
cables are placed. These functions will be determined by means of the
constitutive equation (2.1) written for a fixed value of radial variable g = g%

3. FUNCTION OF RADIAL DISPLACEMENT

The material function K (r, ') is usually found to be nonlinear (14, 15, 16].
In the present paper it is taken as a nonlinear, degenerated function [12, 13]

(5.1) - K, O) =, (1) g1 () +1, (1) g3 (2,
where

fl (T) =E (T)a fz (T) - E(T) E_VTT,

62 1 dE({) dj(v) _ | do(z)

g1 (T) - E_Z (T’) dT’ Ta d» (T) - dT’

The dimensionless ageing & (¢r) and Young’s modulus E (r) functions

appearing in Eq. (5.2) will be taken into as follows [15]:

+9p (r’)] er.

63 qB(r’)z'Cl-(;%'é, 'E('c):Eo(l—ﬁef“)‘

The physical properties of the material are identified by means of the
constants: Cqy, A, Eg, %, f and y. o
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The integral physical relation (2.10), in case of the kernel determined by
the formiula (5.1), after double differentiation, can be replaced by a differential
equation. This equation with two initial conditions constitutes the initial
problem [5] for unknown functions of displacemént il and Teaction pressure

7
59 @0, -nE Py I+ E 6 @l
| 5 ¥ (c)} (2.5 (0, 9 =05 (@291 =
— @ B— #i0 e, 0+ 0.1 )}
(5.5) 'E(l)f;—a‘“(g, 1= s (@, D115 (@2 1), |

_ , . . 1 - .
(5.6) E(1) ; 2,7 (g, 1)= 2. s (¢, D—pd, 87 (e, 1)+? @ (1) B2 (1) a% (e, 1)-

The stresses s and s§ occurring in Egs. (5.4)«(5.6) are determined
separately for the regions (a) (4.12) and (b) (4.13) of the plate. In particular,
two initial problems for two unknown functions: P and afc from the
interval {a) follow. The first of them will be formulated by substituting
into Eqgs. (54)5.6) the stresses (4.12). Taking into account the boundary
condition :

(5.7 - i (pg,T)=10.

Equations (5.4)4{5.6) can be written in the form

: ; L 2ag I . . .

(58 2 410,70 = - 107 Be 02 W 4S () (0o et 0],

. 1 ‘ - . !

; 2a3) . ,

(59) 0. 79 (1) = [0, W 1)+, 7 (1],

. 1 .

; 2 . ; ; .
- (5.10) R (1) = 5 (ah [ (0-+30 D)+,

i

where

(5.11) f)=7v [1+E0 (CO+§) (ilﬁﬁe—“)]—-.-l-“_ﬁ—;;;.
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The second initial problem for the region (a) of the plate follows from
Eqgs. (5.4)H{5.6) after substltutlon of Eq. (4.12) w1th the flxed value of the
ladlu:, o =o%

a) by

(12 G PO (906" = =55 {02 W+ 02 T +/ () [0, e+
3

: E Lo
i1} + Q{_” (07 W+ 0, il T
3

(5.13) 2,58 (1) = — 2222 [3, ald () +0. i@ ()] +

po
+ L (02,7 (=g () i (1],
514 1) = ~2o5 ([ ()+79 () + ),
where _
(5.15) g (c) = yE2 (Co +f) (1~ pe—),

In both sets of Egs. (5.8)(5.10) and (5.12)-(5.14), the magnitudes chaiactenzmg
the geometry of the interval (a) of the plate are denoted by

(5.16) 1.+(%)2
DY = — 8

N
21
()

The obt'uned form of Egs. (5.8)45.14) describing the adjoint initial
problems for unknown functions p’ and uf} allows — by subtracting the
differential equations (5.8) and (5.12) and initial conditions {5.9), (5.13) and
(5.10}, (5.14) — for the fmmulauon of an mdepcndeut mmal plobiem for the
radial displacement i),

. 1 E
(17) 02 i —W—E{a tﬂ,?c["grdz‘) A“’f(r)]
T e
: a4V 02 40,58 01,
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- 1 {gma® +ad af (1)) 49
(5.18) 4, uf- (1) = {g( ) [ag) + a3 w (1)]
: air 40

B (1) E (1)— —(21)2 A(r) () .
" +aty a9 0. @},
A(i) . . .
(5.19) (1) = ET——f—JW%+£MWG&
1 —an AD.
) 22
e
where
- . 2D§
Wy — pl)
(5.20) AD = DP Do

In consequence of the division {Fig. 2), the particles identified with the
position of prestressing cable g = ¢ belong simultdncously to the external
edge of region (a) and to the hole edge of region (b) of the plate. A parallel
initial problem for the function i} can therefore be formulated in region (b),
once the stresses (4.13) are substituted into the set of Egs. (5.4){5.6), at the
fixed value of the radial variable ¢ = ¢®. The equations of the initial
problem in the interval (b) can be found in the paper [5]. The continuity
conditions for the function of radial displacement @ are also given in [5].
These conditions with the relations (4.7) form the set of algebraic equations
wherefrom the unknown coefficients can be obtained [5].

The solution of Egs. (5.17)(5.19) and Egs. (5.12)-(5.14) will be possible
after determining the function #f describing the action of the other prestressing
cables (Fig. 3). To this end, the function @ (g, ) due to the action of one,
arbitrarily located pf_estressed cable in the whole region of the plate will
now be determined. As the results of substitution of the stresses (4.12) and
(4.13) into Eqgs. (5.4)<(5.6), the initial problems in the regions (a) and (b) will
be obtained. After transformatmns the problem in the reglon @) (g, e <
< %) has the form

(5.21) 2% (g, 1) = —y8, 4P (g, )+ F¥ (g, 1),

9 (W)+5e0- 7 (l)}

(522) @4 (g, 1) = _ﬂ
e )
x[(l—,u}(é%) +( 1+u)( )] ash (v (1)+a u (D) +

. ) zly
+ 2D g s, e+ | -0 () i

E(D)
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(523) @ (o, 1)= s {ﬁ“ (1) [(1—,@ (%) ¥
sl i-( 5] :
[a

o VL
e (2)]-

2
A0+, (7 (1)+ 9 ()] [1 (4 (%) ]}
where
(5.24) 50D =71, 0 ife(e, 1) =k (0, ).

To simplify the differential Eqs. (5.21)+(5.23), the following notation has been
intraduced: ) ' ' ‘

/ 2 2
(529 10,9 =22 1) [(1_@ (ﬁ%) ris ﬂ).(%l) }_‘

(1)
e 220 e N g (i}
a A® 0"—F [URC (3’ f (T)) d; ug —f(v) 8, ux] X

2 O\ N
X{TJ”‘{T [ (%) +{+n) (—‘Z—) J~.(I—u)-(l+u) (%1—) }

The above set of equations describing the disc state of the plate subject

to the action of an arbitrarily chosen i-th cable contains the unknown
function 4§ (z). To calculate the function 4y, the iterative procedurc discussed
in the paper [5] should be applied.” o :
. The analytical solution for the displacement function can be obtained by
neglecting the phenomenon of ageing in the description of material properties.
The kernel form (5.1) of the physical equation ini that case may be obtained
by substituting - into the formulae (5.2) the boundary magnitudes of the
ageing function @ (1) and Young’s modulus E(t) at 1t w. ‘According to
the algorithm given carlier, the displacement @@ and reaction pressure py
should be determined fist. In this manner, the initial problems formulated
at points ¢ =g, and ¢ = o® (by analogy with Egs, (5.8)(5.10) and (5.12)-
(5.14)) enable us to obtain the analytical solutions for the functions i,
and p§’. In particular, the radial displacement ke has the form given in
paper [5], whereas the function of reaction pressure can be written as

. S el 2 By e
(526) P (1) = pff (1) e~ "+ {T_}uw [em ™6 D gmoainy

(i

+ ; rt _e"’_‘f“ﬂ]+B§,") [71(19 (1:)—17},}" (1) eu&(z—1)]+

z T i T .
HBY 3B e T f @R ()" BP e [ eI [ (1) e g dr},
] : 1 1



344 I BIALKIEWICZ

where
(5.27) 0=y (l—CO E (1)).

The instanianeous reaction pressure p§ (1) is determined by ‘the relation.

(5.10); however, the coeffwlents 19, M® and BY for j=1,2,.,5 are gi'ven
in [5].

" The solution of the initial problem with rtespect to ‘the dlsplacemem
7 (¢, T) is shown in paper [5]. Nevertheless, in the present paper the functlons
K for the regmn (a) should be taken as follows:

(5.28) KV (o) :W{ 2)[ ( 2 ) ]Bm

The calculated components of the radial displacement vector ifge (1),
¥ (1) and the reaction pressure pj () allow to determine the radial and
circumferential stresses according to the relations (4.12) and (4.13). The function
of the disc stresses of the plate presiresséd n- tlmes Wﬂl be calculated | by
means of the principle of superposmon

(5.29) ST = Z SO sp =3 s¥.
i=1

6. ITERATIVE SOLUTION OF THE PLATE EQUATION

As we know, there exists no general method of solving the differential-
functional Eq. (3.8). In order to present the 1terat1ve method proposed,
q. (3.8) w1!l be Wntten in the form

2 )
(6.1) VAV2 :?(1_ W L [q ty 53 W o»+255 <W,QQ>]._

Triangular brackets contain the expressions which appear in the plate equation
in' consequence of rejection of the stiffness principlel These expressions
take into account the influence of eccentricity of the disc stress on the
plate “deflection W (g, 1). :

As far as the kinematic boundary conditions are concerned, one should
not expect large changes in deflections caused by the disc stresses. However,
the changes of deflection lead to considerable redistribution of the plate
stresses. Let us now take into account the stiffess’ principle and calculate
the deflection W (g, t) of the plate. Initially the disc stresses will be disregarded
(sg =5 =0), and the f1rst dppl‘OXImdtIOﬂ of W (g, 7) will be the solu‘uon of
the equatlon

6 ViV (0, ) = (1—4) L. @,
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with the boundary conditions (Fig. 1):
- for the fixed age (¢ = 0,) ‘

(6.3) : W,le1,71}=0
(6.4) W (e, 7)=0
and for the free edge (0 = g,)
(65) M, (QZ’ T) = (3 3) (W QQ+ g -9) ( - 0’

(@>=g3,7)

66) g0l D) =05m [—jm(f_—m (V2 ) g+ Lo (5] w,e)} o

(e=g3.1}

The function w (g, ) calculated in the first approximation is introduced
to the expressions in triangular brackets of Eq. (6.1).” The second approx1—
matlon (j = 2) follows from the soluhon of the equdtron

(67 VY (0,0 = o (1) Lo @)
with the known nonhomogeneity
(6.8) &ﬁ:44ugs§<w&y+mg<m@>.

The third and further approximations (j = 3,4, ..) result from the solution
of Eq. (6.7) with the boundary conditions (6.3){6.6), while in the expression
(6.8) the magnitude w(p, ) calculated in the previous iteration is used.
This procedure is repeated until the differences between thé succesivé appro-
xithations become comparable with the error of numerical integration.

. According to the criterion of testricted prestressing, tensile stresses in the
material should not be gréater than the admissible values As. This condltton
lor cantilever plaie can be written in the form of inequalities:

(69) g(@lar)—l_sg(gloé— - T) g'AS,
(6.10) 53 Qs T80 (0, € = —1,7) < ds,

where s, and s, are the plate stresses, the magnitudes of which are expressed
by the function of deflection in view of Eqgs. (3.3), (3.4) and (3.5). The
radial coordinate ¢, is connected w1th the maximum -of c1rcumferent1a1 ‘
- moments (3.4). ‘

The finite differences method has bcen applied in numerical solution of
the iterative problem (6.7), (6.3){6.6). Convergence of the iterative algorithm
is found to be good. The differences between the second and thlrd
approximations are smaller than 1%, o
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In the numerical analysis of creep process of the plate shown below,
the material constants will be taken as follows:
Cy=36-1073, E,=625-10>, A4 =685-10"%,

o =14, B =06, 7y =0.728,

These data correspond to. the creep behaviour typical for concretes made
from Portland cement. ' '

(6.11)

As an example, consider the prestressed plate (Fig. 1) with six cables and
¢y =25 and ¢, =175, The cable routes coincide with circles of radii:
oM =5, g =75, g% =10, % = 125, o = 15, 0 = 17.5. The prestressing
is characterized by the magnitudes

al) =a = ad) = iy = ad = al® = 0.05,

612 a6 ap=4, =3, aP=24, =2 FF=172

The radial s, and circumferential stresses sq at the upper surface (£ = —1)
of the uniformly loaded plate (7=125-10"%), for the material function
(5.1), are presented in Figs. 4 and 5. Solid lines illustrate the solution in
which the stiffness principle is disregarded (6. 1), contrary to the centre lines

002t

~-0.04

-0.08

—~0d2

-046

Fig. 4.

"D

-0.04
-no8

-012

Fic. 5.
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. where  this principle is included (6.2); the influence of the disc stresses on
the plateé deflection is disregarded. At th¢ same time, light lines concern
the functions at ‘the instant (t = 1), while heavy lines show their shape at
the instant t =6, when the creep process is finished. The stress disconti-
nuities appearing at the points of location of the cables are marked by
dashed lines. ° : ]

- The stress redistribution caused by the loss of prestressing during creep
may lead to tensile strésses in some regions of the plate, In the case of
the considered cantilever plate, such a /pQSSibility takes place for both the
radial and circumfetential stresses. In particuldr, for the assumed method of
prestressing (6.12), the radial stresses change their sign and do not exceed the
admissible magnitude 4s at time 7 = 6 (heavy solid line for ¢=125), Fig. 4.
The figure shows that the efféct of disadvantageous stress redistribution’ may
be neglected in calculation provided the stiffness principle ‘is assumed
{heavy centre line for g = 2.5). _ i o ) )

The changes of radial and circumferential stresses plotted against time 1
of creep at the upper surface of the plate { = —1 and ¢ = 2.5 are shown
in Figs. 6 and 7. From the asymptotic behaviour of these functions it
follows that, after time 7 = 6, no further changes in the stress distribution
~appear. Solid lines ‘illustrate the functions corresponding to three different
values of the uniform load . The other curves show the shape ‘of the
function for §=1.25-10"* under the simplifying assumptions: the stiffness
principle {centre lines) no cable interactions @ (r)=0 (dashed lines) and
nonageing model ‘of the material (doted lines) The analogous graphical
convention is applied in Fig. 8 where the relative deflection as a function
of time 7 for the load 7= 1.25.107* is presented. ) _

The relative deflection at the midspan referred to the instantaneous
deflection of the edge ¢=g, (for §=125-10"%) is shown in Fig 9.
Solid lines, light and heavy, are connected with the respective ‘deflections
for’t=1 and 7= 6. Disregarding of the cablé interaction in the disc state
i () = 0 leads to an additional loading caused by change of prestressing,
and thus to a greater deflection (dashed line for © = 6). If the influence of
the disc state on the state of bending of the plate (6.2) is disr¢garded, the
deflections are smaller (centre line for ¢ =6). - : o

From the comparison of the formulae (6.1) and. (6.2), it follows that the
omission of the stiffness principle is formally equivalent to the additional
load g" in the plate equation ™ S o

' ; 2
(6.13) g = . S35 W ot 257 W 4y

This function (for the useful load = 125-10"%) is presented in Fig. 10.
Solid lines, light and heavy, correspond to instants 7=1 and 7= 6. The
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inciease of the additional load g" will take place if, in the solution of the
disc state, the interaction of cables is neglected, i = 0 (dashed lines). !
" The applied constitutive relation of linear visco-clasticity is’ valid for
stresses smaller than 50 per cent of the ultimate strength of the cohcrete.
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In the case of plates, this condition is telated to the reduced. stress,
calculated according to the von Mises hypothesis:

(6.14) ~ Se = (s2—5, Sg+55)* <€ 0.5, !
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* The reduced stress function (at the lower surface of the plate {=1 and
at a fixed point ¢ =g,), and radlal stresses plotted agamst t1me T, are
presented in Flg 11.

7. FINAL REMARKS

The method of the solution presented in this paper makes it possible to
carry out the creep analysis for any préstressing program determined by
technological conditions. In. programming the digital computer, on€ should
take into account the properties of thé material of the plate, the operation
of_ prestressing and the sequence of stretchig of the prestressing cables.
These data connected with the time scale are the steering magnitudes for
the calculation programme. The rnumerical example solved in the preceding
chapter shows the creep process of the plate, under the ipitial conditions
formulated for simultancous application of both the load and prestressing,

Similarly as ‘in the case of prestressed discs [5], disregarding of [the
ageing “effect in “the description of the matérial propefties inéreases the
loss of prestressing (doted lines, Figs. 6 and 7). ThlS 1nd1cates that the
nonageing model leads to a safer design.

The mechanical properties are represented by the nonhnear degenerated
function (5.1). This assumption does not limit the practical possibilities of
applying the method of solution shown above. According to the Mercer
theorem [17], all kernels having a norm can be written as

71y K(r,7)= Z fi(0 g ().
In practical calculations, the sum of a finite number of products (7.1) is

taken [18], what ehables to replace the glven kernel approx1mate1y by
a degenerate function.
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"STRESZCZENIE

STAN NAPREZENIA WE WSTEPNIE SPREZONEJ PLYCIE PIERSCIENIOWE]
W WARUNKACH PELZANIA

Przedstawiono rozwigzanic zagadnienia petzania plyty pierscieniowej sprezonej wstepnie
uktadem kabli koncentrycznych. Metoda rozwinzania oparta’ Jjest. na pedwéjnym algorytmie
iteracyjnym. W sposéb iteracyjny rozwigzano Zagadnienie wspoldzialania ciegien sprezajacych, -
Jak réwniez problem wplywu tarczowego stanu naprezenia w plycie na stan naprezenia przy
zginaniu. )

PEzioME

HAIIPAXEHHOE COCTOAHUWE B IIPEJIBAPUTEILHO HANPSOKEHHON
KOJNBUEBOH TUJIATE B VCIOBUSX [IGJI3YYECTH

Ilpescrasneno pemenne 3anaun [QIIYHECTH KOABUEBOH IUIHTHI, TPCABAPHTETLHC HAHpS-
KEHHOH cncTeMoH  KoHmewvpuueckux xaesneir. MeTan PEINCHHS ONHPpAeTcas Ha  ABOHHOM
HrepduounoM  ansropuime.  Mrepanuondeim  ciiocoboM  pemena sajaua BIAUMOJIRHACTBHA

QOPAKAFOMIMX CBH3CE, KdK 7TOXE 3amava BAMSHUA [OUCKOBOTO HANPAKCHHOIO COCTOSHUA
B NIKTE HA HAOPSTKCHHTCE COCTQSHHE 11py uarube.
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