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ON THE CONVECTIVE MOTION OF CONDUCTING FLUID IN
MAGNETIC FIELD

NGO ZUT KAN (HANOI

The problem of convection in a conducting, viscous and incompressible liquid subject
to a magnetic field is considered. The uniqueness thecorem is proved and the structure of
the [uctuatipn spectrum is defermined. It is proved that the action of the magnetic field
increases the stability of motion of the non-uniformly heated, conducting, viscous and
incompressible liquid. This conc!usxon complies with the expenmcnral and numencal results
concerning the behav:our of a horizontal layer of liquid.

1. FORMULATION OF THE PROBLEM; FUNDAMENTAL EQUATIONS

In the Boussinesq approximation, the linear set of equations describing
the convective motion of a 'nomlniformly'heated conducting, viscous dnd
incompressible liquid contained in a cav1ty and subject to magnetlc ﬁeld
has the fol]owmg form [1]

) ~,
(1.1) 22— _V (p+ MaH)+ Ao+ RTks + M (aV) H

ot
T
(L2) PO 4ty (vks),
ot
13) P, %Iti = AH+M (aV) v,
(1.4) divy =0,
(1.5) divH=0 in Q.

Here v, p, T denote the respective dimensionless fuctuations of velocity,
pressure and temperature of the liquid, H is the dimensionless magnétic
field intensities, R = (gBAL)/(vy) — Raylelgh namber, P'= v/y — Prandtl num-
- - h 12

ber, M = CO %‘J — Hartmann number, P, = (4nov)/c* — magnetic
Prandtl number, L — characteristic dimension of the cavity, g — acceleration
of gravity, v, x, § — coefficients of kinematic viscosity, temiperature conduction
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and thermal expansion, respectively, — Ak, — the equilibrivm temperature
gradient, k;—a veitical unit vector directed upwards, H, = hy a— field
intensity in the state of mechanical equilibrium, ¢ — a unit vector paraliel
to the external field, ¢ -—light speed, g, v — density and electric conductivity
of the lignid, & — region filled by the liquid. ' ' o

The "velocity, température and field fluctuactions are assumed to vanish
at the boundary of the cavity, what yields the following boundary conditions
at the boundary S: ' ' ' .

(1.6) p=0, T=0, H=0 .on &.
The problem (1.1}{1.6) is considered under the initial conditions
7 theo=10), Thoo=T0), Hi=o=HQO)

7 (OPERATOR FORMULATION. EXISTENCE THEOREM

Let us denote by L,{(@) the Hilbert space of the vector functions
square summable in £, and by L, o (€) its subspace consisting of solenovidal,
vectors with vanishing normal components at §. Let us introduce the space
Wi, (€) which ‘s obtained as the complement of the set of infinitely
differentiable, finite in Q solenoidal vectors in the metric space corresponding
to the scalar product o ' '

' (u,v) = [ Vu Vo dQ+ [ uvdS.
Q S

Denote by H, () the Hilbert space consisting of all scalar functions
which are _square-summable in @, and by Hj () —the S. L. Sobolev space
with the norm ' '

uﬂ@m=5@MTﬁm+yNM&
(23

Let HL , () be the subspace of H 1 (Q) consisting of functions vanishing
at S. Let JT be the orthogonal projector from L, (©Q) onto L, o (£2). In papers
[2, 3] it was shown that the operator A in W, (£2) may be extended to
a self-adjoint, positive definite operator A,. Tt is known [4] that operator 4
may be extended, dccording to Triedrichs, fo the self-adjoint, positive-definite
operator A,. ' e ' o o

Equations (1.1) and (1.3) are now projected onto the space Ly o (£2).
From thé equations (14) and (L.5) and the boundary conditions (1.6} it
follows that : o ‘

dv

2.1) ~=—A10+RB1 T+MBy; H,
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dH
(22) Pmu(*i“;"= —Al H+MB_13 v.

The eguations (1.2) with the boundary condltlon (1.6) assumes in the space
H, () the form

T '
(23) P—E = —Az T“‘*"Bz; .

Here
B12 T=11 (Tks}, B21 U= (Uka), BI3 u=1II (aV) u

The set of Egs. {(2.1){2.3) may be considered as a smgle ordmary
dlffercntlal equatlon in the Hilbert space ’

Lo (Q} XH, ()x Ly, ()

and, namely, it is reduced to the problem

dx

2.4) : T — A~ Bx, Kj=o=x(0),
where
v Ay 0 0
x=T, =0 P 'A4, 0 4,
0 —RBy, —MBy,
-@ = '—‘P_l B21 0 0
—P, ' B, 0 0

TueoreM 1. Equation (24} is an abstract parabolic equation; the corresponding
Cauchy problem is imiformly correct, and the corresponding semigroup is analytic
in the sector containing the positive semiaxis.

Proof. It was mentioned before that the operators A,, A, are self-adjoint,
pOSItNe definite in L, (Q) and H, (), respectively; P and F, are posilive
parameters. Consequently, operator .« is also self-adjomt and posmvc dcﬁmte
in Lo (R2)x Hy ()X Ly o (£2). '

" From Eq. (2.5) it follows that

(2.6)  |9Bx[> <R® By, T|*+M* |Bys H|>+ P~ | By v|* +
+ B2 M*|Bys of*
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Operators By,, By, are bounded, and operators A,, A, —unbounded. The
following estimates are true

[Biz TI? <oy ITN? <oz |42 T,

2.7
@7 1By, oll? < as foll? < oq 14, vl ol

Moreover, due to the condition (1.6) we obtain

|Bys HY? = | (aVH) (@VH) d2 < |af? j[VH;Z 49 = |a? | |AHH| dQ
2 o]

whence

(2.8) B3 H”2 <us || Ay H”I,z‘,,(a}-
Slmﬂariy, '

(2.9 IBy3 vl < s A1 L, o 1202, o0

Using Egs. (2.7H2.9), we obtain from Eq. (2.6)

| B2 <oy {4y o] o]+ 142 T INTH-+ (A HI NH{} < o 2] %],
[Bx| < adf? [ fx]| M2 [x]]*72.
Here
oy = max {R? 0y, M? a5, P72 0g+ Py 2 M* 06}

il

The latter inequality proves that operator # is éubject to </, so that, in
view of the results of [5] (theorem 7.2, p. 183), the theorem is proved.

3. NORMAL FLUCTUATIONS

Let us now consider the normal fluctuations problem and find the
particular solutions which are exponentially tirme-dependent,

(u, T, H) = exp (= 46) (uy, Tr, Hy)

Here u,, T;, H, are functions of the coordinates only. From Egs. (2.1)}42.3)
we obtain for these functions the relations

(31) /’I.U]_ Al Uy — RB12 Tl_MBl3 Hl’
(3.2) AT, = P! A, TI—P—lsﬂvl,'
(3.3) ' AH,=P7Y A H — Py ' MByy v,




ON THE CONVECTIVE MOTION OF CONDUCTING FLUID IN MAGNETIC FIELD 405

Let us consider the set of Egs. (3.1)-(3.3) as a smgle equatlon in the
space L, o (§}xH, ()% L, ,(£2) and namely

(34) N /IX]_ = <9¢X1+=@x1.

TueoreM 2. The whole spectrum of the problem (3.4} consists of normal
eigenvalues. Independently of their number ¢,e> 0 all of them lie (except,
probably, a finite number) within the angles

—g<argA<gE, Tm—e<argA< mwte.

The system of eigenvéctors of the problem (34) is complete in the space
Wi () x Hj o () x Wi (€).

Proof It was shown in papers {2-4] that the operators A,, A, are
self-adjoint, positive-definite and possess compact inverse operators, what
means that their spectra are discrete.

Consequently, operator .« is self-adjoint and positive definite with
a discrete spectrum and possesses the compact inversé operator which
acts from L, o () xH; (@)% Ly (Q) to Wi'o (Q)x HE 4 (@) x Wi, (Q).

Owing to the results published in [67], operator o7 ! is of finite order

Sp (Y < en~ V2,

Operator uﬁﬂ ! is bounded, what follows from the cham of contmuous
transformations
Lzo(Q)Xﬂz(Q)XLzo(Q)‘—’Wzo(Q)XH )szz,ﬂ(g)—*
4 Wz o (Q) x H3 0 (L) x Wzl,o (€).
As a result, operator o/ ! B/ is compact | in Wl (£2)x H o (@) x Wiy ()
cmd is of a fxmte order: '
S AT B ™Yy < || B Y s, (Y S0y nT R

Thus all the conditions of Theorem 10.1- of the book [7] are satlsﬁcd for
the operators &/ +4, what proves our theorem.

THEOREM 3. If the liquid is heated from above, that is if the Rayleigh
number R is negative, the spectrum of the problem will lie in the right-hand
halfplane.

Proof From the set of Eqs. (3.1)4{3.3) it follows that

(A=) Ty = P! [(Bay vy, T1) (Byy vy, T)* ]
(35 W=D lvll® =R [Bry Ty, 00)—(Biy Ty, 0¥+
+M [(Bys Hy, v1)—(By3 Hy, v1)*],
{(4*—4) iIH1\|2 = MPmml [(Bis vy, Hy)—(By3 v, H 1,
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(AF+2) o * =2 A2 0 |2 =R [(Biz Ty, 0¥ +(B12 Ty, v4)]—
. —M [(By; H1391)*+(_B13 Hy,vi}l,
A*+ ) | T2 = 2P~ |AS2 BlIP =P ! [(Bay v1, To* +(Bag vy, W),
(A +2) |H. 2 = 2B P [|AY2 H || —MEB; ' [(Bya vy, Hy)* + ,
+(Bi3 vy, Hy)l.

(3.6)

Let us observe that
(37 BT, v)= [ky T vt dQ = f ks vy)* Ty dQ =
a a

= r{((kz, v), TFY* d2 = (Byy vy, T)*.

The boundary conditions (1.6) yield the result
(3.8) {B13 Hla T)l} = j (G«V) Hl 'sz dQ = — j. (((JV) Uy HT)* dQ =
2 Q2 - .
= —(By3 vy, Hy)*.

Let the Rayleigh number R be negative; then from Egs. (3.5-(3.3) it
follows that ' ' '

. —|R| {Jm (B;1 vy, T3)—Jm (Byz Ty,vq)}+2M Jm(Bys Hy,v4)

39  Imi= ,
' oy 12+ P IR | Ty >+ B, | H1 |1
(3.10) Re J— 1AY2 04|12+ 14, T1)* IR+ I A1 Hy|?

o2+ P IRHIT 0+ B | HL

Relations (3.9), (3.10) indicate that the spectrum of the problem lies in the
right-hand halfplane. - -

TusoreM 4. If the fluid is heated from below, that is if the Rayleigh '
munber R is positive, the spectrum of the problem will lie in the right- and
left-hand halfplanes. If the Rayleigh number satisfies the condition

R < '?1 ?2+C,
where
|41 H|?

:)"min A ] :)‘min A 1) ¢ = ]
7= A (A2)s 92 = Ao () 172 T ILI R

then the spectrum will Tie in the righi-hand halfplane only.
Proof. Let R be positive; then it follows from Eqs. (3.5H3.8) that

_ —2M Jm (By3 Hy, vy)
" loP+RP Ty [ +B, [Hl*”

A2 0,17+ ] 4, TR+ iA}'* H;|| —2RRe(By; Ty, v4)
o2+ PR T2+ B, | H L))

(3.11) Jm A

(3.12) Rei=
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Relations (3.11), (3.12) show that wzth R >0 the spectrum hes in both
the halfplanes.

Operators A,, A, are self- ad]omt and p031t1vc defmlte and, hence the
estimates hold true

(3.13) ' 1AL 0y])* 2 1 o),
(3.14) 452 T2 2y, 17302,
where

Y= A'min (Al): Y2 = /’Lmin (AZ)

It is casily seen that
(3.15) Re (B2 Ty, vy)l <|(By2 Th, ) < ||T1 | ol

Equations (3.13)-(3.15) make 1t poss1ble to estlmate the numerator of the
expresswn (3.12)

[A442 0,2+ 452 T2 R+ 141" H{||* 2R Re (By; Ty, py) 2

=y o2+ R IR+ 14T Hill*— 5 /R -
YR 12 o177 (FEY ?2/ RY Itv1i|?

It follows that

141% Hy|? |
(3.16) R<yipa (1
1,!2 "2 o I3 \/(

then Re A = 0, what means that the spectrum hes in the left-hand halfspace
and the 1heorem is proved.

If the magnetic field is absent, conditions (3.16) will be reduced to
R < 'yl 75, what secures the stability of motion, as shown in [8].
~ The results of Theorem 3.4 indicate that heating [rom above leads to
vibrational fluctuations in the liquid and all the vibrations are damped,
contrary to the case of absence of the magnetic field; héating from below
produces vibrational fluctuations due to the magnetic field. Undamped
vibrations are produced in such a case due to the action of the operators
B,, and B,;, independently of the magnetic field. Action of the magnetic
field increases the Rayleigh number, what meéans that the motion of the
fluid becomes more stable. These results commde w1th the expenmental and
numer 1cal data glven in [17.
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