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PROBABILISTIC APPROACH TO RELIABILITY-BASED OPTIMUM
STRUCTURAL DESIGN

ANDRZEJ BRAND T, STEFAN JEND O and WOJCIECH MARKS (WARSZAWA)

In the paper foundations are given for the design of structures and structural optimization,
based on the theory of probability. Tn this approach, loads, dimensions and material propertics
are.considered as random values. The safety of the structure should be assured and the constraints:
should be satisfied with acceptable probabilities. A programming method is proposed with random
constraints to reduce the probabilistic optimization problem to a deterministic one, The theoretical
considerations are applled to an example in which optimal dimensions of a frame box beam are
determined.

1, DESIGN AND OPTIMIZATION BASED ON THE PROBABILITY THEORY

The first attempts to take into account in an actual design the probabilistic
character of the quantities involved date back to the 1930, when the papers
by Strzereckt [39] and WisrzBICKT [42] initiated this new and important field in
the theoty of structural design, For a historical review of main approaches and
solutions the reader is referred to the papers by EmeR [7] and Murzewskr [27].
Below only a short outlook of these works is presented,

In structural optimization, propabilistic considerations have appeared in papels
by Prot [31; 32], RzHANICYN [35, 36] and Wikrzsick1 [43).

M. Prot proposed to optimize the probatility of the safety of a structure by
considering its overall cost, incloding the cos:s of tests and investigations reahsed
to obtain information necessary for the design and also the i insurance costs, }

"In Rzhanicyn’s concept the cost covered only the cost of the struciure itself
and the cost of failure muliiplied by its probabilivy.

‘Papers by FREUDENTHAL [9, 10, 11] and JoHnsoN [16] stimulated a large de-
velopment of the investigations in probabilistic optimization. As a result, valuable
works in this field were published by Hiton -and Frigen [13], KaLapa [17),
TurksTRA [41] and HAUGEN [12]. Among Polish authors a book by MurzewskI [27]
should be mentioned, where two main categories ol optimal probabilistic problems
are formulated.

All the achievements published in the above mentioned papers do not mean
that almost all variables were not considered as random before 1930.

The admissible stresses or loads prescribed by design codes and regulations
were always based, to a greater or smaller extent, on probabilistic estimates derived
from observation of real scructures and their loadings or from laboratory tests,
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However, no consistent probabilistic approach was used, and the codified parameters
were largely due to experience and intuition rather than to the concepts of mean
values and dispersions of loads and material strengths.

This state of the methods of structural design and optimization resulted above
all from the lack of data which would allow a complete statistical analysis. Even
at the present time the observational or experimental data are insufficient; ihis
impeides the development of application of probabilistic methods. Also, as it has been
pointed out by Linp [20], the traditional views and habits prevailing in building
practice have hindered the introduction of prebability into design. Unlike other
processes, m which mathematical statistics and the probability theory can be. used
throughout, structural analysis must lead to deterministic conclusions deﬁmng
precise dimensions of structural elements and their configurations.

‘This situation in building practice has changed to some extent for the last twenty
years since in most countries codes of practice and design recommendations are
now based on probabilistic assumptions. The use of limit states design methods in
all their variety is gencrally accepted both by code—makers and even by profes-
sional civil engineers. The present development of experimental mszthods of testing
and observation of sftructures and their loadings, new facilities for data collection
and data processing, and also the development of suitable mathematical methods,
make it possible to replace intuitive handling of the fact that the inputs in a design
problem are nondeterministic by a rational application of probabilistic methods.
The quantitative development of the building industry and the increasing sizes of
individual special-purpose engineering structures stimulate further the search for
safe and economical solutions on these lines. It is therefore more justified than
before to formulate the optimization problems and methods using probabilistic
notions,

2. PROBABILISTIC APPROACIH TO SAFETY AND RELIABILITY OF STRUCTURES

The safety of a structure can be estimated and represented by the probability
of its failure, i.e. the occurrence of an ullimate limi¢ state manifesting itself as, say,
the formation of vield hinges, tupture, overturning, etc. In addition to ultimate
limit scates, we also distinguish limit states of serviceabiiity, involving phenomena
such as excessive cracking, displacements or vibrations, which do not cause a struc-
tural failure but make it impossible to use the structure according to its intended
function; states in which a given building is unserviceable for reasons independent
of its structure are not included in this category.

The concepts of safety and of serviceability so understood make up jointly What
we call the reliability of the structure. Let us note that these terms are not always
used in the sense given above. Depending on context, various authors define thom
in a somewhat different manner.

The probability of the occurrence of a limit state in a given structure can be
calculated from the probability distribution of the loading and strength of the
structure and all the other relevant parameters. The probability distributions of the
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random variables characterizing the loading can be determined by observation and
measurement, and those of material and structural strength by Iaboratory - or field
tests. S _ : :
-~ In the present study we are concerned with the ultimate limit states; extending
it-to the limit states of serviceability does not present any serious conceptual or
formal difficalties. o :

Failure of structure may concern the structure as a whole or may be attributed
to the failure of its individual members. Depending on the kind of the structure,
the relationship between the failure of a single member and that of the whole struc-
ture may be different. In statically determinate structures, for example, -a failure
of the weakest member causes a failure of the whole structure (weakest-link struc-
tures), while hyperstatic structures fail only if several members reach their capacity
simultaneously (fail-safe structures), _ _

The probability of various failure modes and the influence of the statistical
correlation between them on the overall probability of failure P, were examined
theoretically by StEvENsON [38]. The relationship between the failure probability
and the optimum weight of a structure was also investigated by Lovp [21]. Moses
and KiNser [26] showed that the effect of the correlation of the optimal design
depends largely on the load to strength variation coefficient ratio and only to-a smaller
extent on the chosen allowable failure probability P,. S

SHIRAISHI and FURUTA [37] presented the safety analysis for the design of rigid
frames using the minimom-weight criterium. Considering various failure modes,
upper and lower bounds for a solution were defined. The optimal solutions were
obtained by the proposed iterative method.

Let us consider the simplest case of probabilistic safety analysis, in which the
structure consists of a single bar of strength R, loaded by a tensile force P, where
R and P are random variables of known distributions (Mosrs [23, 24].) The prob-
ability Py of failure for such a model, i.e. the probability that P> R, may be com-
puted from

@1 P= [ Bl fp =1~ [ R0 £ @) b,

where F () denotes the probability distribution and f(¢) the density or frequency
distribution. It was assumed, for simplicity, that both the Ioad and the strength
are normally distributed; in this case P, can be computed as it is shown in example
given in [23] and also discussed in [{]. This example is useful as an illustration
of a manner of 1easoning and a way to compute the failure probability. For a real
structure, all structural members aund their possible failure modes under various
loading conditions during the entire lifetime of the overall structure must be taken
into consideration.

In this approach a coefficient n=R/P is introduced, which, corresponds to what
in a deterministic approach is termed the safety factor; here R and P are mean
values of R and P, respectively. The conventional safety factors in most specifica~
tions have been developed in an evolutionary manner according to experience based




60 . ANDRZEJ M. BRANDT, STEFAN JENDO I WOJCIECH MARKS

on the existing structures. In recent years a great deal of work has been done on
deriving safety factors from probabilistic safety analysis; their definitions vary de-
pending on the parameters they relate to and aim at computational facility. A set of
partial safety factors accomodated to semi-probabilistic limit state design was
proposed in 1970, by the European Committee of Concrete and the International
Federation of Prestressing in the form of International Recommendations [44]. A new,
improved version of the Recommendations was published in 1978, [45]. For lack
of sufficient statistical data, only conservative estimates were given for most of
the coefficients, but underlying their derivation was the probabilistic concept of
reliability; hence the term “semiprobabilistic method”. This approach permits the
results of new investigations and observations to be introduced gradually as they
are acquired and elaborated statistically.

Further developments of this approach in standards and recommendations are
aimed at more complete exploitation of the probabilistie concept and of the stat-
istical data: At preseni these developments named “level two™ and “level three”
methods are not yet eatirely operational for effective stractural design and are
used for calibration of the above described “semi-probabilistic method”, which
is also called “level one™ method — the numerals reflect the degree of consideration
of the probabilistic concept. In this convention the deterministic method is the
“level zero” method. '

3. RELIABILITY-BASED STRUCTURAL OPTIMIZATION

The classical formulation of an optimum design problem reads (Moses [23],
BrANDT, ef al. [1]):

Minimize F(x,} subject to g, (x)=0; i=1,2,...n, j=1,2,..,m, x; denote
design variables, F(x,) is an objective function and g, (x;) are constraints.

The design variables x; represent the geometrical and the mechanical properties
of the structure that must be determined. The objective function F (x;) measures.
the volume, weight or cost of the stiucture, or some other quantity chosen as a cri-
terion of optimization, e.g. elastic strain energy. Counstraints g; (x;) follow from
strength and strain limit values, but may also include fabrication or functional
requirements, Those constraints which limit the stresses or strains o some permis~
sible values involve the conventional safety factors which, in the best of situations,
are determined from probabilistic and statistical analysis. Consraints imposed by
the conditions of execution or use of the structure are regarded as deterministic..

In the reliability-based approach the numerous constraints on stresses and
strains are replaced by a single condition on the failure probability P, as a function
of the design variables:

Minimize F(x,) subject to Py (x)<P, permissible.

Technological or other side constraints can also be imposed oi the form g; (x))2 0.

“The limit value of the failure probability should be determined with regard to
all possible failure modes, the value of the structure and the cost of its failure and
iis consequences; The probability Py is derived from the staiistical distributions of
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the random variables representing the loading and strength of the structure. The
optimization problem consists in determining the values of the design variables
such that the objective function F, e.g. volume or cost, will be minimum and prob-
ability of failure will not exceed the allowable value.

For multi-member structures the failure probability P, can be approximated
by the sum of the probabilities of failure of the individual members; these can be
deermined in a manner similar to that mentioned above in the fundamental one-
-mamber one-load case. The approximation is good if all the probabilities involved
are small. The optimal structure has its members proportioned so that the overall
objective function I is minimoem and the failure probabilities of the individual
members add up to an overall probability of failure not exceeding a prescribed
permissible value. Problems formulated in ihis fashion were considered by Hiwton
and : FerGeN [13], SwirzkY [40], KHACHATURIAN and HAmEer [19], Moses and
Kivser [26] and PArRmvI and CoEN [30] among others.

Now we consider, following DAVIDSON, FELTON and HART [5] and Moses [25],
a formulation which includes constraints on individual failure modes as well.

The minimum-weight op‘imization problem for a structure with random para-
meters may be stated as follows:

Minimize the objective function

3.1 F(x)

subject to the constraints

(3.2) P=Py (X)<Po,

(3.3 P, (x)=P[g; (x)}>G, X]<p, i=1,.,M,

where XT=(Xy, X3, vc. Xny .0y Xy) 18 & vector of N random variables, the first » of
which are the design variables; P, (x) denotes the overall probability of failure
and p, is the allowable limit for this quantity; g, (%) is the i-th response quantity
of the structure (e.g. displacement or stress) and G, () its allowable limit. Note
that in many cases the allowable response G; may be independent of x, The expres-
sion P[...]<p, in Bq. (3.2) means that the probability P, (x) of the ith response
being greater than the allowable limit must not exceed a specified failure probability p;.
The probabilities p, and p; will generally have to be very small for the constraints
(3.2) to be active and sensitive to the particular distributions of the individual
variables. ' S

Assuming all the random variables to be normally distributed, we may relate p,
to response (uantities by

(3.4) L p=l=0(e),

where @ (g;) is the cumulative normal distribution function for which
|G, (x)—Z; (®)I

6.5 1 (0—2; (%)

4o, @, GT
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is t’hg' coupling equation between response and allowable response. For a piven
Py, €, may be obained from ®-tables and the original constraint (3.3) replaced by
the equivalent condition - : '

(36)  a®teldl, @+ @16 ®<0,

where ¢, is required to be positive.

An important factor in the reliability analysis of a structure is the relationship
between the overall probability of failure and the probabilities of the individual
failare modes. For multiply-loaded hyperstatic structures which are assumed to
fail wheni any constraint is violated (“weakest-link™ model), failure modes are
usually neither completely statistically dependent nor completely statistically in-
dependent and exact correlations are difficult to determine, However, these two
extreme cases provide a lower and an upper bounds on the overall reliability:

M
3.7 max P; ()< P, (X)< 2 P, (x).

i=1

If the design involves relatively few active failure modes, which is often the case,
the upper bound can reasonably be used for actual evaluation of Py:.

M
(3.8) Po ()=} Pi (X).

i=l
Tn this relation P, (x) is obiained from a modified form of Eq. 3.4
(3.9 P (x)=1—2 (&),

where & is the value of e; satisfying the relation (3.6) as an equality.

The above considerations allow the original optimization problem to be
restated as:

. Minimize . _
(3.10) Fex)
'subject to
M
(3.11) D Pi(0—po<0,
: i=1 .
&, (0)-Fe; [02, (®)+02, (¥)]?~ G, (x)<0,
i=1, .., M.

It was shown above that the solution of reliability — based structural opti-
mization with random parameters has been transformed to the deterministic in-
equality-constrained minimization problem which can be solved using well-known
nonlinear programming methods. .

If the function F (x,) represents the cost of the srtucture, it can—in the simplest
case — be taken as proporiional to the volume or weight. For more realistic design,
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however, it is necessary to include in it both economy and safety components,
One ahernative formulation (F. Moser [23]) defines the total cost C as the sum

(3.12) C:C!—I—Pf le,

where C; is the initial cost of erecting the structure and Cy is the cost associaied
with structural failure; the failure cost consists of the cost of reconstruction assumed
to be equal to the initial cost and another term ¢” expressing the consequences
of fatlure (damage):

(3.13) C‘fzc}"l_cf.

Another approach to reliability optimization is to set a permissible vaiue of
F(x,), e.g. the material volume of the siructure, and to seek the distribution of
material over different parts or members for a minimum of the failure probability P;.
If the optimum P, is too large, then either the assigned volume or the feasibility
of the kind of the struciure adopted must be re-evaluated (HrEToN and Fricen [13],
Moses and Kinser [26], Moses [23], RoseNBLUETH and MENDOZA [34], Mau and
SexyMITH [22]). ‘ '

Both approaches to reliability optimization — design for minimum total cost
subject to a failure probability constraint and design for minimum failure prob-
ability with a volume constraint — are discussed and illustrated with examples
in recent papers by FRANGOPOL and RONDAL [8] and by Bury [2].

An instructive example of a minimum-volume reliability-based design of an
isostatic truss was given by KHACHATURIAN [18]. The problem is solved for cases
where both the concentrated load and strength of each bar of the truss follow the
Lognormal or the Gamma probability distributions, with the overall probability
of failure prescribed as 1072, 107* or 10~% and for several different values of the
coefficients of variation of load (y,) and strength {¥y0). The results show that the
validity of the optimal solution depends on the degree of knowiedge of the load
and sirength probability distributions and on the choice of an appropriate level
of safety.

Let us note, after Khachaturian, that the design considered in the exampie
ignores cerfain important factors, e.g. deformability or serviceability requirements,
that the type of structure and its geometry are fixed and that the structure is ideal-
ized to a pin-jointed truss,

STEVENSON [38] comsidered reliabilicy-based optimum design of hyperstatic
structures. His analysis can be applied to frames, trusses and grids, and even to
plates treated by the yield lines method, that is, to all cases where the ultimate limit
state function can be represented as a linear combination of the random variables
of load and strength. '

An example of relation between the optimum material cost, the overall probab-
ility of failure and the coefficients of variation of material strength and load in-
tensity was presented by Moses [23] for a single story frame. Figure 1 shows that
cost increases considerably when imposed probability of failure decreases and
this is an obvious effect of the additional structural safety. Cost increases also with
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the coefficients of variations, which reflects the influence of the material quality
and of the characteristic of the load. The influencs of assumed distribation normal

or log normal is negligible in this example.
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Tic. 1, Cost function plotted against overall probability of ;failure [23].

By analysing optimal solutions obtained under various assumptions it is possible
to observe and formulate certain relationships between different parameters of
an optimum structure. Such relationships can be useful in simplifying specific opti-
mization problems. As an example, let us mention a result obtained by SWITZKY
[40] - developing the ideas of HILTON and FrGEN [13]; he showed that in an
optimum structure under a single load the following relationship holds:

weight of member 1 Py éf member: 1
total weight ~ P, overall allowable

Bury [2] has considered minimum weight design with reliability constraints
under sequential random loads dnd has derived the relations between reliability
and design variables, ' R o .

CARMICHAEL [3] has derived the frerative equations for structural systems modell-
ing based on the Bellmaa principle of optimalicy and contirol theory, DAVIDSON,
FrrroN and HART [6], NiGaM [20] and NARAYANAN and NIGAM [28] have considered
structural optirmzation under dynamic loads using nonlinear and stochastic pro-
gramming, |

4. A GENERAT, NONLINEAR STOCHASTIC PROGRAMMING PROBLEM

The problem can be stated as follows [14, 15]. Find a vector X=(X1, X2, -.» x,)
which minimizes the objective function F (y) subject to the constraints

“.1 Plg; M=01=ps,  J=1,2, .., m,
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‘where y is the vector of N random variables vy, y,, ..., ¥y, Which include the design
variables xy, ..., x, and all other parameters involved in the problem and considered
to be random variables. The case where x is deterministic is 4 special case of the
present formulation.

In what follows we shall assume that all the random variables are independent
and normally distributed.

The stochastic problem stated above can be converted into an equwalent deter-
ministic problem by a chance-constrained programming technique (see e.g. CHARNES
and Coorer [4] or Rao [33].

We begin by resolving the objective function into a Taylor series about the
expected values of y;:

N a F . .
4.2) F)=F(y)+ 2 ( _) {y:—7)-higher order derivative terms.
S\l

If the standard deviations of y;, g, are small, F(y) can be approximated by the
first two terms of Eq. (4.2), ie.

. G OF. > [ OF
@y roxre-3 (T U ok 3 (o
i=1

Being a linear function of normally distributed variables y,, w (y) also follows
normal distribution, The mean value and the variance of y are given by

)ys—w(y)

(4.4) ¥=y (y)
and ‘ :
(4.5) 62_2(6),‘ y) %5,

i=1

because all y, are iﬁdependent.
A new deterministic objective function can be defined as

(4.6) ' F (=ky §+k; 0y,

where k, and k, are nonnegative weights indicating the relative importance for
minimization of the mean and the standard deviation. Setting k,=0 would mean
that the expected value of F is to be minimized with no regard to the standard
deviation, while the choice 4;=0 would imply that we are only interested in mini-
mizing the dispersion of F about an arbitrary mean value. The case k,=k,=1
attaches equal importance to both characteristics of F.

An alternative possibility is to chose the mean value y as the objectlve functlon
and to introduce the additional constraint ax<ks yw, where k5 is 2 constant.

The inequalities constraints (4. 1) can be written as

@n f foy @) dgi=ps  J=1,2, 0 m
0.

where f;, (g) is the probability density function of the random variable g;, whose
range is assumed to be —co to o; to within the first order terms of its Taylor

Rozprawy Inzynlerskie — 8
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series expansion about the mean y, the constraint function g; (y) can be repre-
‘sented as

: : Ty ‘ ) ]
(4-3} | ) 8 (y)égj (y)+;=§1,1 (6—%" ) =)

Hence the mean value §; and the standard deviation o, are calculated as
(4.9) \ ' =g,

i 12
aw e ST A

The 1nequa11t1es constraints {4.7) by standard:zatlon can be written in the follow—
ing form:. o ; . L

~F :
@iy - P[ LI U’]>p,, ;._12 o

631 :4)

where (g;— )0, is a standard normal variable w1th Zero mean a.nd unlt vanance
If e, denotes the value of the standard normal var;able at which the standard normal
dlstr;butlon functlon

4.12) o g @ (éj):=pj,

then the inéquality constraints (4.11) can be stated as

s _
@.13) @ (—H‘_)zqs ) J=1,2, . m.
Oy 7

These inequalities will be satisfied only if

_ & e,

o

or , S N
(4.14) : . : g:—l—ei O'gJSO jﬂl, 2, ey

‘By Substituting Bq. (4.10) in the inequalities (4.11), we obtain
] N g, 2 1z N ‘
(4-15) ’ gj“]“ej I:Z (Fy:' ;) Ufﬁ]. . -..<..0, j:l, 2,l aany m

Thus the original stochastic optimization problem has been transformed into
the deterministic problem of minimizing the objective function (4. 6) subject to
constraints (4.15).

As an illustration of the above stochastic programming method let us consider
the following example.

ExaMPLE. Design the cross-section of a steel frame beam shown in Fig. 2 so
‘that it may carry the load unifoimly distributed p and has a minimum volume. -
"All the dimensions of the frame beam as well as the load and the perm1531b1e stresses.
are dssumed to be random variables with normal distributions.
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Crogs- section
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FI¢. 2. Dimensions and load of the frame.

The objective function, i.e. the cross-sectional area, is given by
A~2x2 (3x1 2x,), '

where x; is the width of the beam’ and x5 denotes the flange and web thicknesses.
The depth of the beam is equal to 2x,. The design variables are the mean thickness
%; and %,. The standard dev1at10ns of X and xz are assumed to be related to the
mean values by

ot gy ey By coand Oy, =0 X3,
where o; and «, are constants,

A minimum of the function. 4 is sought subject to the following constrainis:
stress constraint at the cross-section edges

Mx1+H <0
BETTT SO

ie.

2%, ‘pl
ot W L
i6J - 84

- /<0,

where

2 . .
J=_§‘ xf_? (o1 =22) (o6 = x2)°
apd f is the p'ermissible étreSS'

side constraints, i.e. limitations on the minimum and maximum thicknesses
of the web and the ﬂanges

 82=— X1+ X1min<0,
g3=x1'—x1max£0s_
. gd-z._xﬁl_!_xzmmsos

85 =X3—Xomu<0.
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Each constraint is required to hold with a probability not less than a prescribed
probability p,.

The random variable vector y has the following components, each assumed
to be normally distributed with the mean and standard deviation as indicated;

uniformly distributed load

y1=(B, 0,),
permissible stress
7 y2=(f, o5,
beam length o .
ya=(l, a1), _

beam width
Pa=(F1, 04,),
: flange -and web thickness
| . | Vs =(%,, Gy} -
To construct a deterministic objective' function we find the derivatives at y=y
of the function L
F=4(3)=2% (3%, ~2%))
with respect to the variables y,: 4 '
o4 oA oA

= =0,

dy; 3y, 0ya

dAd
s

ays
Thus the new objective function takes the form
A=y -k oy=ky [28, 3% =280
- s 1367 (o %7 +H(65: ~8%,)? (22 %,)7].

To obtain the deterministic constraints for the function A we compute the partidl

and use the formula (4‘.15),- ie,
y-.

. dg;
derivatives of the constraint functions, viz. ——

E oy,
- >y [ Ogs
ke 3 (52

i=1

>

2 if2
_.) az] <0, j=1’ 2’ seey 5.
¥ .

The resulting constraints are:
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For j=1:

PP % .
’ — =4
167 Tsxr e

16J 84 8J

AT A% p)
( +L) 2+o‘2-!-( ¥ a2+ -

p-iz. ) 1 'z ‘ 3 pixz 2 =2
g TE S (xl—xz)Z(ax1 4 % - 20) |- | AR

PR L yil) _ B 1fz
+i— 24j2 (xi "'xz)l (Sx_l —8-22)—‘21:{7 (3_}(1 "'4x2) “% x"g SO-

For j=2: g,= ‘—fljl‘xlmin_ez oy X0,
For j=3: g3=Xi~Ximx—e3 % %<0,
For j=4: g,= _:jz“'}"xzmin'"ed- %) fzgos
For j=5. ge=%;~Xomu— €5 063 ;<0

The deterministic problem so formulated has been solved with the following
numerical data:

P=800kN/m, 0,=40kN/m, f=200MPa, o,=10MPa, I=5m,
0'1=0.25 m, 051=d2=0.05, a.nd pJ=0.9S (j:]_, rauy 5),

with the corresponding valoe (from normal distribution tables) e,=1.645.

The presence of only two design variables has allowed a graphical solution.
The feasible region and objective contours are shown in Fig. 3, when ky=1 and
k;=0. In other cases, when k;=0, k;=1 and ki=1, k;=1, the feasible region
is the same and objective contours are similar,
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1. 3, Graphical solution of the optimization problem,

In ali cases, the minimum of the objective function is realized at the intersection
of the g, and g,. It corresponds to an allowable minimum thickness of webs and
flanges equal to %,=21.8 mm and to the width of the box cross-section determined
by the strength condition and equal to %,=363 mm. The values of the objective
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function 4 in the three cases considered are 0.045579 m?, 0.000008. m? and
0.045587 m?.

If all the quantities involved in the problem are treated as deterministic, the
optimum solution is found at the intersection of the same two constraints, with
%;==334 mm, x,=20 mm and the minimum cross-sectional area equal to 0.038480 m?.

The total cross sectional area is shown in Fig. 4 as a function of the probability
of failure., This area increases when the overall failare probability decreases.

Afm? A

0.060 — S OIS SN 1

0.040

Total cross-sectiond! area

0.030

T 3 . 1 L.l -
01 0050005 pp

Probability of failure

" Fic. 4. Cross-sectional area plotted against probability of failure Py.

5. PROSPECTS OF RELIABILITY-BASED STRUCTURAL OPTIMIZATION

The goals to be achieved by exercising a probabilistic approach to safety are
easy to formulate, although their realization does not seem possible in the near
future. The first objective is to base the code safety factors which relate to strengths,
loads and other random variables determining the safety of a strocture, on a firm
probabilistic foundation. An important issue is also to eliminate the inconsistencies
present in deterministic design. The general objective is to reach economic gains
by designing structures cheaper than those based on deterministic premises but
equally reliable or, alternatively, to increase the safety of structures without increas-
ing the cost.

Reliability-based optimization leads to designs in which structure and member
sizes are optimal with respect to an adopted criterion, say of minimum volume
or cost, the overall failure probability being equal to a prescribed allowable value,
The safety factors of the individual members in such a design are not equal and. -
depend on the degree of statistical correlation between the failures of those members.
Also, to different failure modes of a given structure there correspond different
safety factors. ' s
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The efforts which are being made to incorporate a probabilistic approach to
safety into structural optimization should stimulate studies of random variables
encountered in structural engineering. As we have indicated before, the choice of
probability distributions and their parameters for a design strongly influences the
optimal solution; the lack of sufficient observational and experimental data makes
it impossible to choose correctly, and hence to obtain a useful result. Empirical
studies of load conditions are particularly desirable as the exisiing statistical data
in this area are much poorer than those reladng to the sirength of material and
structural elements. As pointed out by LiNp [20], small failure probability limit-
ations and very meagre statistical data on load and strength probability distributions
do not allow probability statements of the same confidence levels that statisticians
usually. have in other fields.

There is also the difficulty to provide a rational basis for determlmng the aflow-
able probability of failure for a given structure. Although complete elimination
of the subjective elements and intuition is hardly conceivable, detailed statlstlcal
data are indispensable if serious errors are to be avoided. The data sh0u1d=1;lciude
detailed information about the safety of ihe existing structures of the kind con-
sidered; information on safety in other areas, ‘¢.g. transport, would. also be useful
for comparative studies.

‘Main obstacles i the development of the probability approach to structural
safety in general and particularly to the reliability-based optimization are formu-
lated by FrancoroL and RONDAL [8] in the following form.

The first of them is the lack of complete information on the statistical data of
loads, strength and other characteristic values This question has been mentioned
above in more details. ‘ -

The second obstacle is. the reaction of public opinion against any poss1ble de-
crease of the structural safety which may be suspected in this formulation of the
optimum design. People are prepared to accept much more risk in other activities
like sport or transportation thaa while living at home. This attitude may be reflected
to some extent in the behaviour of professional designers of building and civil
engineering structures. ' '

Another obstacle is based on economical aspects: if in the optimization of struc-
tural dimensions exceptional actions are taken into account, the cost of structures
should increase considerably, There actions like forces due to earthquake or to im-
pact of a vehicle are already considered in the limit state design, codified in several
countries. There is, however, no adequate optimization criterium which should
be based on the simultancous consideration of both: the probability of the appear«
ance of such exceptional actions and the consequences of this event.

At the present state of knowledge the value of the existing soluiions of probabil-
istic structural design problems is primanly theoretical. They allow verification
of the design procedures used and give an insight into the possibilities of their. fur-
ther evolution. Above all, however, they make it possible to re-evaluate determin-
istic design solutions and to assess potential advantages of further work 111 tI:us
direction, based on thorough statistical studies.
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Thus, although structural design and optimization continue to rely on deter-

miaistic methods which have indeed led to many interesting and important solutions,
it séems more rational even at the present state of knowledge to treat loads, strength,
deformability and other relevant quantities as random variables, We can thus
expect a further development of structural optimization methods based on a prob-
abilistic approach to safety and an analogous evolution of load standards, matemal
specxﬁcatlons and methods of observation and testing of structures.

L
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STRESZCZENIE .

OPTYMALIZACIA KONSTRUKCH Z UWZGLEDNIENIEM ICH NIEZAWODNOSCI
METODAMI FRCGRAMOWANIA STOCHASTYCZNEGO

W pracy omdwiono podstawy projektowania i optymalizacji konstrukcji na podstawie teorii
prawdopodobiefistwa. W takim ujeciu obciazenia wymiary 1 wielkosci charakteryzujace materiat
moga byé wielkodciami losowymi. Bezpieczefistwo konstrukeii 1 warunki ograniczajace musza byé
spelnione z dostatecznie duizym prawdopodobiegstwen. Preedstawiono metede programowania
z ograniczeniami losowymi, umozliwiajaca sprowadzenie preblemu stochastycznego do determi=
pistycznego. Rozwagania zilustrowano przykladem wyznaczenia optymalnych wymiaréw przekroju
rygla ramownicy, ' .

PeszwmMme

OITIMEBALIIS KOHCTPYKITHI C VMETOM ¥X HAHEXHOCTH
METOHAMHE CTOXACTHYECKOIO IIPOTPAMMUPOBAHUA

B paGore oBCyXEeHEl OCHOBE HPOGKTHDOBAHUA ¥ ONTHMEIAIEH KOHCTPYKIEH HA, CCHOBS
TCODER BEPOATHOCTH. B TaxoM IOAXON¢ HATPY3kH, PasMEPHl W BEIMIHESL XapAKTEpPHIYIOMHAC
MaTepuan MOryT OLITE Cy4aiREIME BETIHTHHAME. Be30macHoCTh XONCTPYXIHE B OT paHETHRAoNme
YCHOBHA HOJDKHSE GHITL YHEOBFNETBOPEHSI € JOCTATOYHO GONBDIOH -BEPOATHOCTEIO. TIpencrasneH
METO NPOrPAMMEPORAHES CO- CIYIAHEEME OIDAHEICHHAMH, KOTOPSIH 1aeT BOIMOKHOCTE CBEAE-
HE® CTOXACTHYCCKOM mpofneMbl X HeTepMuHECTIdeckoli npodneme. PaccyXueHHA HJITHOCTPU-
POBAHL! HPHMCPOM ODPE/CIICHNS ONTEMAILEEI PA3MEpOB CCTCHHA PUFCTH PAMEL
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