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IMPROVED ERROR ESTIMATES OF SOLUTIONS IN THE LINEAR
THEORY OF THIN EBLASTIC SHELLS '

Z.RYCHTER (BIALYSTOK)

DaneLson [2] has shown that the difference between the classical linear shell theory solution
and the solution of the three-dimensional elasticity theory is in the L norm a dquantity of relative
order ¢ In this report that difference is proved to be of relative order §<s, and in some cases of
practical interest even <z,

1. INTRODUCTION

A rigorous mathematical proof that the classical linear theory of thin elastic
shells provides a valid approximation to the threedimensional elasticity theory has
been given by Korrer [1] and Danierson [2]. From the supposedly-known solution
of the twodimensional equations of the shell theory, these authors constructed
a three-dimensional statically admissible stress field and a kinematically admissible
displacement field. The latter was in [1] distributed linearly across the shell thickness,
in accordance with a so-called modified Kirchhoff-Love hypothesis, and was in
[2] a third-order polynomial with respect to the thickness coordinate. Now the
question at issue was to find how close the kinematically admissible displacement
field approximated the actual (unknown) solution of the threedimensional elasticity
problem. This was answered using the complementary variational principles. Both
the energetic and the Z, norms of the error displacement field were shown to be
of the relative order /& according to [l], and ¢ in accordance with {2]. Here e=
=h/R-+H?/L? is a small parameter related to the shell thickness h, to a characteristic
radius of curvature of the middle surface R and to a characteristic wave length of
the deformation paitern of that surface 7. A major advantage of these results lies
in the fact that they make possible a precise quantitative comparison of the shell
theory (approximate) solution with the elasticity theory (exact) solation without
knowing the latter. In fact, given 4 and R, ¢ is fully defined aftec obtaining L from
the shell theory solution.

At a glance the estimates [1, 2] seem to be the best possible for. the classical shell
theory. They state that the shell theory fails to yield an adequate description of the
shell behaviour when 4/R orfand k/L are close to unity, i.e. for thick shells orfand
shells whose deformation variation is rapid. This is claimed to hold true irrespective
of the bending to membrane strain ratio hply, i.e. for the membrane, bending and
isometric deformation. Consequently, all the most significant modes of the. shell
behavionr appear to be covered. : R
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In this presentation we shall prove that the error estimates [I, 2] can still be
improved. Qur argument is based on the simple observation that, in general, the
characteristic wave length of the membrane strains Ly and the characteristic wave
length of the bending strains L, need not be equal. Then a generalized, small
parameter d is introdaced related to ¢ by &<z, Moreover, in some cases of practical
interest a strong inequality d<e=1 is proved to be true. In such a case the shell
theory solution fails in terms of ¢ as an approXimation to the solution of the
three-dimensional elasticity theory problem. At the same time, in terms of § this
approximation is satisfactory.

2. EQUATIONS OF CLASSICAL SHELL THEORY

The notation used in [2] is generally retained here. We shall consider the same
classical variant of the linear theory of thin elastic, isotropic shells as in {1, 2]. Nev-
ertheless, other variants can be treated similarly.

The shell theory in question is specified by the virtual work principle
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written in the usual normal coordinate system (x% z) ascribed to the midsurface §
with the bounding curve S and the unit vector #; of the outward normal to 45;
b? is the tensor of curvature of S and the commas denote partial differentiation
with respect to x% The reduced tangential and normal Ioadmgs per unit area of §
are denoted by p* and p®; the symmetric tangential stress resultants ap, the trans-
‘verse shear stress resultants Q, and the symmetric stress couples m,, are assumied
to be prescribed at S.

The symmetric tensors of the membrane strains y,, and the bendlng strains
Pap arc Telated to the tangential and normal dJsplacements , tfy of § as fOllOWS
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where a vertical bar denotes covariant differentiation with respect to the metrio

of undeformed S.
The constitutive equations have tne form
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where E is Young’s modulus, » — Poisson’s ratio, # — the shell thickness and a‘;-g
is the first metric tensor of S.

The equations of equilibrum and the static boundary conditions can be deduced '_
from Egs. (2.1) and (2.2) by standard technique. It is pertinent to note that these’i_
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equations are fully exact in the sense that they ensure the overall equilibrium of

a shell element of finite thickness &. The constitutive equations (2.3) are evidently

approximate, but for our purposes there is no need to know the error involved.
Let the surface coordinates x* have the dimensions of length such that

2.4) lagl<1, la”|<1.

Then both the covariant and contravariant components of a surface tensor have
the same dimensions as the physical components. A generalized radius of curvature
R is now defined as the largest number such that
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In practice, R is equal to the minimum principal radius of curvature of the mid-
surface. The inequalities (2.5), 5 express the assumption that the wave length char-
acterizing the curvature and thlckness variations is not less than ]/ BR in order
of magnitude.

The stress resultants, couples and the strains can be represented by their maxi-
mum absolute values LR ie.

(2 6) - : . Inntﬁl(ns _ imaﬂ]<m, lyaﬂ].‘sys ]pa.ﬂ]fgp.__
Owing to the constitutive equat:ons (2.3), these values are interrelated in the form
2.7 ' n=0(Ehy), m=0 (Eh®p),

where the symbol 4=0 (B) means that there exists a dimensionless positive constant
k such that |4|<k|B].

The characteristic wave lengths of the membrane and bending strains Ly and
Ly are the largest numbers satisfying the following inequalities:
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In view of Eqs. (2.3), (2.6) and (2.7), it becomes evident that the variations of the
stress resultants and couples can be evaluated by the same wave lengths. Thus
we have

n n m m
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To shorten notation we also introduce two auxiliary nondimensional parameters
of the form

I -
RTZ> ~RT

In accordance with Egs. (2.5)-(2.9) the two-dimensional shell theory problem
and its solution have been approximately characterized by a set of numbers con-
taining %, R, Ly, Ly, ¥ (or ), p (or m). Given k and R, we find from Eqs. (2.6)-(2.8)
the remaining quantities after the solution of the shell theory equations. In contrast
to the previous approach due to Korrsr [1] and Danierson [2], our description

(2.10) oy =
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allows for two different wave lengths of the membrane and bending strains Ly
and Ly, It is readily verified that the characteristic wave length L of [1, 2] is the
minimum -of (Ly, L,,).

3. STATICALLY AND KINEMATICALLY ADMISSIBLE STRESS FIELDS

All expressions appearing in this section were derived in [1] or [2].. However,
their error terms are estimated here more precisely., This is achieved by the use
of the two independent wave lengths Ly and Ly, instead of one quantity L.

The three-dimensional statically admissible stress field &;; (%%, z) constructed by
Koiter [1] is rewritten in a slightly modified form: .
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The expressions (3.1) are valid for no body forces. It is also assumed that the reduc-
tion of the loads to the middle surface introduces no surface couples. The error in-
volved in the relations (3.1) is of relative order O (#/R), [1]. The same error results
from our replacement of Koiter’s pseudo stresses by the actual stresses &,. For
future use it is-sufficient to take the relations (3.1) in a simplified version [2]
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It must be stressed that the statically admissible stress field in a three~-dimensional
body is entirely defined by the shell theory solution. :
DANIELSON [2] constructed from the shell theory solution a klnemat:cally ad-
missible displacement field #; (x%, ) that we record in a more explicit form:

(3.2)

fl, (X%, Z)=u} —z (u; o -bB #y—

3 (149 z
3.3) T Men~ :?,Eh

[2 (A-+9) nfyy—vmty [2 (1-+v)mfyy—vm 1,

Ek3

» L
R e




IMPROVED ERROR ESTIMATES. OF SOLUTIONS IN THE LINEAR THEORY... 119

when the terms containing n,, and m,, are absent, then Eqgs. (3.3) define KorTer’s
[1} so-called modified Kirchhoff-Love displacement field. If also y, and p, are
rejected, we get the original Kirchhoff-Love hypothesis.

A suitable form of the strain-displacement relations in the three-dimensional

body reads [2]
1 . . . i i
Pup (x°, Z)=? (fyptBig10) — bap B+ O o) z+40 = 2,
(3.4 _ )
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where # denotes the maxitmum value of |#; (x%, 2). ' Substituting from Egs. (3.4)

into Egs. (3.3) and bearing in mma Eq. (2. 2) a klnematlcally admissible deformation
field s (x z) is obtamed
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The well-known Hooke's law of elasticity theory reads

- E P
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where g;; (x%, z) is the metric tensor in the three-dimensional shell space. Within
an error of relative order O (hB/R), g;; can be replaced by the midsurface metric
tensor, 1.6. Zup=0aep+0 (A/R), gaz=1. Then, substituting from Eq. (3.5) into Eq. (3.6)
we get a kinematically admissible stress field &;; (x% z). It is no use recording that
lengthy expression. Comparing it to the statically admissible stress field (3.2), we
find that .

ney msM)
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Setting e=&y=2¢, this result reduces to that of [2].

4., FRROR ESTIMATES OF SHELL THEORY SOLUTIONS

To accomplish. our work we need some obvious inequalities for energetic and
L, norms in function space. Following {1, 2] it is assumed that the actual distribu-
tions of the sttess o, (x% z) and displacement u; (x%,z) in the three-dimensional
body coincide at the bounding surface with the statically admissible stress field
&, and the kinematically admissible displacement field &,

(4.1) ¥ nj:&u ny, u,=ﬁ,-,
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where n; are the components of the unit vector of the outward normal to the boand-
-ing surface. In other words, the boundary conditions (4.1) are “regular™ [1]. As-
suming the relations (4.1) the following inequalities hold true [2]:

4.2 G, [61~ 03] Cy [843~81), Py [h—u]<Cy[8,—6],

where for any symmetric tensor Sy (x? z) the complementary energy funct onal
C; [5;,] reads

1
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¥V being the volume of the body. The elastic energy functional P, [#;] can be obtained
from Eq. (4.3) using Egs. (3.6) and (3.4) with v,=, Sj=8,,. Since C, [5,] is
a positive definite homogenous quadratic functional, it can be chosen as an ener-
getic norm for the stresses, Similarly, P, [v;] becomes an energetic norm for the
displacement provided rigid body motions are deleted. It follows that the estimates
(4.2) for the energetic norms can be transformed into inequalities for the L, norms
of the error displacement and siress fields

4.4) - allgy;— oyliP< Cy [8, =0yl blli—ulP<Cy (6 = Gil,

where, for any S;; and v,, we have

(4.5) ISuli?= [ 8} S{aV, |od?=[ o'v, d¥
and ’ ’

(4.6) a=inf C,[ ], b=infP,[].
Substituting from Eq. (3.7) into Eq. (4.3), we find that
“.7) C2 y—5,)=0 (5 npd, & mp 4),

Wlie;;c A is the area of the midsurface. Now, Egs. (4.7), (4.2) and (4.4) imply that
both the energetic and the L, norms of the error displacement and stress fields
are of relative order & where

B B hp B

a=E+L—§+71§— for y>hp,
4.8) PRI L k
(4. "}7+1§+—EE Iz or y<hp,

e h R f P

—-R+L§,+L§, or  y=hp.

In order to elucidate this final result we recall the erro1 estimate obtained for
the same variant of the shell theory by Danielson [2]. It reads

2

@) =RTE

Lemin (Ly, Ly).
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A general conclusion to be drawn from comparison of the relations (4.8) and (4.9)
states that in any case <¢, l.e. our estimates are never worse than Danielson’s.
Actually, these estimates are equivalent only when y=hp, 1.e. in the case of bending
deformation orfand if Ly=Ly. Moreover, there can be the shell theory solutions
of practical interest such that d<€e=1. In terms of & these solutions fail to yield
an adequate description of the shell behaviour whereas in terms of ¢ their accuracy
is still sufficient. As an example to this effect we can choose the case (#/R<1,
holy<1, B*IZ <1, k*[L%,=1) of a thin shell in the state of nearly membrane defor-
mation, with a slow variation of the membrane strains and a rapid variation of
the bending strains.

5. CONCLUDING REMARKS

The error estimates obtained in this paper of the solutions in the linear classical
theory of shells are the best possible for the invariant form of equations that have
been dealt with. In contrast to the form of [1, 2], our estimates are precise for any
deformation of the shell. It is readily verified that the Sanders—Koiter shell theory
solutions bear the same relative error-4 as the solutions of the classical theory. Also,
when instead of the kinematically admissible displacement field dae to DANIELSON
[2] we take a modified Kirchhoff-Love displacement field due to Korter [1], the
error will again be given by the relations (4.8) with & replaced by &%
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STRESZCZENIE

ULEPSZONE SZACOWANIE BLEDU ROZWIAZANIA W LINIOWEJETEORII WIOTKICH
POWEOK. SPREZYSTYCH

DanteLson [2] wykazal, Ze roinice pomiedzy rozwigzaniem rzagadnienia klasycznej liniowej
teoril powlok a rozwigzaniem przestrzennego zagadnienia teorii sprefystodci charakteryzujo
w norimie Ly blad wzglgdny rzedu e. W niniejszej pracy wykazujemy, Ze blad ten jest rzedu
J <2, a w niektérych praktycznie wainych przypadkach zachodzi oszacowanic d<€a.
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Pesmome

VIAVYIIEHHAA OIEHKA ONIHUGKH PENIELA
B JTHHEHRHOM TEOPHUH IMEKUX YIPYIUX OBOJIOYEK

Hamemucon [2] norazan, wro pasEENy MeXZy PEINEHEEM 3a/audl KHACCHYEcKol Immeitmoi
TeOpHE OCOMOYER W TOYHEIM pEmIERWeM TPEXMEpHOH 3a7aYM TEOPHH YIPYTOCTH XapaKTepH3yeT
B CpeNHCKBanpatTH¥HOl RopnMe L, oTHOCHTENBERAN omubra mopamka & B parHo# paGore moxassl-
BAEM, YTO 3T4 OMMOKA TIOPANKA /< ¢, 4 B FOKOTOPHX, MPAaKTHYECKA BaKHBIX CTYYasK MMEeT MECTO
ouenka J<é. : :
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