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THE MOST FAVOURABLE SELECTION OF THE DISCRETE MODEL
IN FEM

P. KONDERLA (WROCEAW)

A theorem and proof of the best, in the enerpetic sense, selection of a discrete model FEM
for the linear elasticity problem were presented in the paper. Tt was proved that the best approxima-
tion is obtained if the ratio of the umit elastic strain energy to the density of nodes has a constant
value. Proof of the theorem was verified on numerical examples.

1. INTRODUCTION

The material elastic body occupies a region % in n-dimensional Euclidean space
& (n=1,2,3), approximated by the set of Cartesian coordinates x=(x", ..., ¥},
Under the term discrete model, a division of a region 2 on finite elements or topo-
logicallocation of nodesin the regionis to be understood. Under specified conditions
imposed on the base functions, as the element mesh is refined approximate, mono-
tonics convergent solutions to the true solution are obtained. Proof of this theorem
was quoted for instance in the papers [1, 2, 3]. In practice, we are forced to limit
the division into a finite number of the elements. The question follows in what
manner should the region % be divided into the number of elements specified in
advance in order that this division be the best from all possible ones. '
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The theorem and the proof of the best (in the energetic sense) selection of a dis-
crete model FEM for linear problems of the theory of elasticity were inserted in the
paper under the following conditions of the problem:
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a) the region % was divided into simple elements (lincar base functions)

b) mechanical loads are limited to an active load at the same time; nodes in
which static equivalents caused by this load occur are contained in the bounded
sgbregion g< & (Fig. 1).

2. THEOREM AND PROOF

The region % was divided into simple elements connected in nodes x;;
i=1,2, .., E. Then E subregions %; were separated in this region so in order to
every from theirs contained node i together with corresponding parts of elements
adjacent to inode (Fig. 1), at the same time the following relations are valid:

E
A=) B,, F,0F;=0 for i#j.

i=1

DerINITION 1. Let p (x) be a scalar function in the region 9 and stand for the
density of subregions @, on the region . The function p (x) can be interpreted as
a node density in the region 9.

The solution of the theory of the elasticity problem consists in searching a vector
function # (x), which belongs to the space @={p; (x), ..., pr (x)}, where @, (x), ...
oy 0 () are base functions. The space @ is the Sobolev space H* (%) with the
definite scalar product

@2.1) u@) o= [ u() v (x)
@

and norm

(2.2) : fie oMl ==<u ()7, w (D
The function

(2.3) u (x)=u’ p; (x}

minimizes the functional of the form

24 J [ul=V [u]+L [u],

where J [u], ¥ [u], L [4] are potential energy, elastic strain energy and the variation
of external forces energy respectively. For the given approximation (2.3), the basic
equations of FEM have the form

e ()= [u ()= [p; ()] #'=B; (x) o',
o (x)=D (x) & (x)=B; (x) D (x) ',

where ¢ (x) — the strain vector, o (x)— the stress vector, B; (x) — the matrix of
geometrical relations, D (x) — the eclasticity matrix.
Substituting Eqgs. (2.5) into Eq. (2.4), we have

(2.6)  J[ul=%3<{[e X", o D<@, FxH=
' =1 ()" {[B; (%)]", D (x) B, G W () o ()7, f (x)>_=
=1 )" Ky w'— W) fi.

(2.5)
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Minimizing the functional J [u], we obtain

aJ [u]

2.7 o

=0=K,; w=fi>uw'=N" .

DEeRINITION 2. The finite dimensional space ®={p,(x), p;(x), ..., px(x)} = H (%)
together with the density function of the nodes p (x) is considered here as a discrete
model .#; this is written as M={D, p (x)}.

DEFINITION 3. The class of the discrete models G ={M={®, p}, MA={B, 7},
M={B, p}, ...} will be the set of models M, M, &, ... with the following properties:
1) the space dimension @, &, @, ... equal to E

D={p, (x), p2 (x), .., 9= ()},
B={p, (), P> (x), ..., Pz (%)},
. D={ps (x); P2 (%), s @& (O}, ...
and
[ o) aa= [ p(x) dn= [ 7 () da=E;
k3 ] &

2) the system of the elements connections with nodes is identical in each of the
models M, #, 4, ..., € G 4. This means that every finite element and the node belong-
ing to 4 has its own equivalent in the model 4, etc.;

A

3 P(X)=p(xX)=p(x)=... for xed;
4) the distance of the models M, # € G, is
d4, H)=(p (x)—p ).

THEOREM. In the class of models G, the model 4 € G, is the best one in the
energetic sense if in the whole subregion &* the ratio of the unit elastic energy and
the nodes density p (x) is constant.

Proof. Let us assume that in the model .#={®, p (x)} the space @ has been
chosen in such a manner that

28 , Vi [ul=const for x,eg8%,
Wheré
(2.9) Vi ful= [ [e (0] o (x) d22.

@

Equation (2.8) is an approximate realization of an assumption contained in the
proof essence. .

Let us next discuss another discrete model .#={®, p (x)} € G, close in the
sense of the norm (2.4) to the model .# where

6={¢1 (X), fﬁz (JC), At (BE (X}} »

2.10) P(x)=p (x)-+4dp ()
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at the same time according with the assumption

2.11) I4p Gyl <llp (- -

For the new model .# we can write similar relations to those written for the
model .#, so

7 ()= 5 (%),
& (x)z-El‘ (x) ai’
12 & (x)=D (x) B, (x) #,
' J [a]=1 @ Ky &~ @)" fi,
3.;;] =0t =1 f.

Assuming Eq. (2.11), one can assess the difference J [i]}—J [¢]. Isolated parts
of a discrete division of the region # in the i-node surroundings are depicted in
Figs. 2a and 2b. The functions ¢; (x) and &, (x) differ from each other as a result
of a change of the nodes density in the inode surroundings by the value p,=p (x;).

plxt

Fia. 2.

In view of the FEM properties the p; (x} and @, (x) functions have nonzero values
in the surroundings of the i-node only (%, and 2, regions in Fig. 2). if we assume
that p,=p (x;) and p;=p (x,) are mean values of the p (x) and p (x) functions in the
regions %, and Z,, then

(2.13) f ddt=y, [ d,
213 s
where y;=p/p;. 3
Introducing in the regions %, and Z; the local coordinate systems
(2.14) y=x—x;, J=y"(x-x),
we have

(2.15) 0, (D=0 0, F)=0.0).



THE MOST FAVOURABLE SELECTION OF THE DISCERTE MODEL IN FEM 139
Since #=4, is every time a differential operator of the first order, in that case
P [ g,

| ox dy *

= — =] | .= n o
% [ax] [ax 32
Availing onesclf of the relations (2.16), we have

@17} K= [ {#: 15 OV D () B, 5, 0] ... d"=

" = f (B [0 OV D () 8- Tp, O] 95" " . 5.

(2.16)

If in the last expression we perform a formal substitution $—y, then R~ R,
we have

(2.18) : K—“: (zi,f)nml K, ﬁjig,yé)—zthji.
Since Ap (x)=0 for x €4, in that case
2.19) F=t.
Availing oneself of the relation (2.19), we. have from Eq. (2.12)
(2.20) ' =" figyd)—zm NHE,
Since fi=0 for x,€ #*, while y,=1 for x,e %, then
(2.21) weyt,

Evaluatmg the functional J [] as a sum over regions lying in the vicinity of the

node #= U 9,, we have

i=1
1- £ .
(2.22) I [al= D@ [ dRy -t f,.
I=1 5' )
Availing oneself of the relations (2.21), (2.17) and (2.18) we have in continuation

(2.23) J[u]'"— Z (uh)T p2in=1 f dK; ul— 1t f,.

P
Expanding the function y2/"—1 =(1+Api/pt)2"" ! in the Taylor series in relation
to the increment Ap; in the surroundings Ap;=0, we have

2 - Api 1(2 )(2 )(Api)z
: 2fn—1_ —— e _ —_ 3
(2.24) 2 _1+(n 1) Tl 2 ) rowm.

Hence

12 x
(225) I [i#]= ZV} L+2(——- 1)2

i=1

142 2 E 1 dp,\2
ik [k P RO
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Availing oneself of the relations

E

4
Hp—iz pr(x)d.%,
=

¥, []=const,

we have

(2.26) J[a]:J[uH%(-i—— 1) Vi [dl [ 4p(x) dB+
. a2
12 2 E 1 Api\2
+E—(-*;z‘~— 1) (—n—-* )FZ: (-*;)‘—) Vi [ul+ ...

Treating the second term from the components as the variation 4/, while the
third as &2 J in view of a variation of the function p(x), we have

12
6J=3—(7—- 1)14 [4] [ 4p (x) d2=0,
(2.27) Lo ) 2 y
' : . 4P\
62.]'-—:1"(—”——'. 1) (‘;'—' )igl (—;T) V; [1]=0.

for any increment Ap (x). Hence the conclusion that the functional J [1] assumes
the stationary value and for threc-dimensional problems assumes the minimum value.

3. NUMERICAL VERIFICATION

Pertinence of the theorem already presented was confirmed numerically on some
numetrical examples for one, two and three-dimensional problems. The optimum
model was searched for in the iterative way. For the given space % and the nodes
number F the class of models G, was assumed. Through the change of the nodes
Tocation in the subspace #* the optimurn model was obtained, for which ¥;=const
for x;e #*. '

Example 1. One-dimensional problem

A simple bar of the lincar variation of the cross-section area is located by the
concentrated force (Fig. 3a). The space was divided into 10 finite elements. The
subspace % is comprised in the space of the first upper elements; therefore the
optimum model was looked for in the class of models for which location of the
nodes 10 and 11 was fixed. Figure 3b presents an optimum discrete model. Figures
3¢-3f present an other models for the purpose of comparison. The value of the total
elastic energy was determined for every model as well as the comparative coefficient
=V TulfV? [ul.
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Example 2. Two-dimensional problem.

The bar from example 1 is treated here as a disk with the unit thickness where
A=L/10 and »=0.3 (Fig. 4a). Thanks to the symmetry, half of the disk was divided
into 10 triangular elements. An optimum model was searched for in the class of
models G, =G, for which the location of the 4 upper nodes is fixed, while the
rest of nodes exists in pairs on the same level. The results are given in Fig. 4, si-
milarly to the first example.

Example 3. Three-dimensional problem.

The bar from example 1 is treated here as a three-dimensional body of the scheme
and the load as in Fig. 5, for »=0.3. Taking advantage of two symmeiry planes,
the space was divided into 20 tetrahedral elements. The optimum model was sear-

a 100 o b ¢ d
& 4

10+

04 -
62
o i d
B8y )~ 554333 552039
- k= 100000 0,99586
FiG. 5.

ched for in the class of models G, <G 4, for which the location of the 8 upper nodes
is fixed, while the rest of the nodes were situated in fours at each level. The results
are presented in Fig. 5 in the same way as for examples 1 and 2.
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STRESZCZENIE

OPTYMALNY DOBOR MODELU DYSKRETNEGO W METODZIE ELEMENTOW
SKONCZONYCH

Zamieszezono twierdzenie 1 dowdd najlepszego w sensie energetycznym doboruy modelu dy-
skretnego MES dla zadan liniowej teorii sprezystodel. Wykazano, Ze najlepsza aproksymacje otrzy-
muje sig, jezeli stosunek jednostkowej energii sprezystej do gestodci wezldw ma wartosé stala, Dowdd
twierdzenia zostal zweryfikowany na wybranych przykiadach liczbowych.

PeszmomMme

OOTHUMAJIBHBIA IOABOP AHCKPETHON MOMENHM B METOIE
KOHEYHLIX 9JIEMEHTOB

B pabore nOMEINEHB! TCOPEMA H 0XA3ATENLCTH0 HAWIYIIHETO MoaGopa, B SHEPIETHICCKOM
CMBICTIE, HACKPeTHOH Mozenmdm MKD 1a sapat mmEedno# rTeopum yupyrocrm. Iloxasawo, wro
HAMAYTHIYIO AITPOKCHMATHIG TIOAYYAETCA, SC/IH OTHOMCHUS STUHMTRON YIPYTOM-DHepTHE X TONOT-
HOCTH Y3IIOB MMEET {IOCTORHAOE 3HaueHHE. JIOKA3ATENLCTEO TEODEMH NMPOBEPEHO Ha W3OpAHHEBIX

MHCIIOBHX ITpEMEpaXx. :
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