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AXISYMMETRIC STATIC AND DYNAMIC BUCKLING OF ORTHOTROPIC
SHALLOW SPHERICAL CAPS WITH INITIAL IMPERFECTIONS

P.C. DUMIR, ML GANDHI and Y. NATH(NEW DELHD

- This study deals with the static and dynamic axisymmetric buckling of elastic orthotropic
thin spherical caps with ‘initial imperfections. A simple type of axisymmetric imperfection’ is con-
sidered. The governing equations are formulated in terms of hormal displacement w and stress
functiont w. The orthogonal point collocation method is used for spatial discretization .and, the
Newmarkwﬁ scheme is used for time-marching. The uniformly distributed static and step functlon
Pressure loads arc considered in this study. The solutions of perfect sphierical caps under step loading
are in good agreement with previous fmdmgs The infiuence of initial impetfections on- the static

and dynamic buckling loads of isotropic and orthotropic shallow spherlcal caps has been’ mvestl—
gated for the shell rise to thickness ratic up to ten. .
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NoTaTION

radius of the base of the cap and thickness,
apex height and radins of the spherical cap,
shell ﬁarameter, )

elastic moduli; Poisson’s ratios,

mass density,

orthotropic parameter,

time, nondimensional time,

By B3 12 (B—v)),

normal and inplane displacements; stress function,
nondimensional displacements, stress function,

initial position of the middle surface of the spherlcal cap above
the base,

initial imperfection, nondimensional initial imperfection,

initial imperfection at the apex,

radius, nondimensional radius,

uniformly distributed pressure load,

nondimensional Ioad,

average deflection, maximum average deflection,
buckling load,

inplance forces,

bending moments,

transverse shear,

strains,

stresses,

parameters of Newmark-£ scheme,
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Ar  time step,
(Y,(") differentiation with respect to p and =,
N, p; number and radii of coflocation points,
a;, by coefficients of power series expansion of w and ¥,
Ag, Az, As coefficients in quadratic extrapolation,
Subscript J step of marching,
Subscripts p, i -predicted value, value at the i-th collocation point.

1. INTRODUCTION

Nonlinear axisymmetric static and dynamic buckling of elastic shallow thin
spherical caps have been intensively studied [1-11]. Most of these studies consider
clamped perfectly spherical isotropic caps. For a more realistic prediction of the
load carrying capacity of these shells employed in practice, the effect of initial im-
perfections should be considered. The practical manufacturing and assembling
techniques always result in some deviation from the ideal geometrical configuration
of the shell. The initial imperfection so induced is regarded as a major factor to
lower the load-carrying capacity for shallow-spherical shells and partly explains
the discrepancy between experimental data and theoretical solutions for perfect
shells. Bubiansky [1] and UeMURA {8] have presented static load-deflection response
and buckling of isotropic shallow spherical caps with axisymmetric initial imper-
fections in the form of the deflected shape of clamped circular plate under uniformly
distributed load. Koca and Horr [4] gave the value of static buckling pressure for
isotropic complete spherical shells with dimple type imperfections. Ko et al. 110, 11]
analysed the effect of initial imperfections on the static and dynamic buckling loads
of isotropic elastic and elastic-plastic shallow spherical shells for few values of the
shell parameter 1.

The object of this study is to investigate the effect of initial imperfections on the
axisymmetric static and dynamic buckling loads of orthotropic shaliow spherical
shells subjected to uniformly distributed load for apex rise to thickness ratio of the
shell (k) from 2 to 10. The dynamic load considered is a step function load. This
work is restricted to axisymmetric buckling since it is critical in a certain range of
shell parameters and the understanding of symmetric buckling is the first step even
when asymmetric behaviour is critical.

The governing equations for the axisymmetric response of a cylindrically ortho-
tropic shallow spherical shell with initial imperfection are formulated in terms
of normal displacement w and stress function w. The normal displacement w and
stress function y are expanded in finite power series. The orthogonal point collo-
cation method is used for space-wise discretization and the Newmark-f scheme
for time-marching. Detailed convergence studies have revealed that for the range
of shell parameters considered in this study (H/h<10), nine collocation points and
Ar=0.002 lead to accurate results. As an additional check on the accuracy of results,
at every step the sum of the kinetic and strain energy of the cap is compared with
the sum of the initial kinetic energy and the external work done up to that step. It has
been found thai this balance of energy has been maintained very well at all steps.
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The present isotropic results are in good agreement with the available results.

New static and dynamic buckling results are presented for orthotropic shallow
spherical caps with initial imperfections.

2. MATHEMATICAL FORMUGLATION

The middle surface of a shallow spherical cap (Fig. 1) can be approximated
by the paraboloid

Fic. 1. Geometry and free body diagram for axisymmetric clamped spherical cap with initial imper-
fections,

@.1) | w2=H[i— (5)2]

where a is the base radius and H is the rise of the middle surface at the apex. The
radius of curvature R of the shell is

2.2) R=a?[2H.

Neglecting inplane and rotary inertia, the equilibrium equations for inplane stress

resultants and moments are

N} —Ny=0,

(2.3) (Ve), =N
(M), —My—10,=0,

If w is the initial imperfection, the equation of motion in the normal direction is
(24) [N, (W W] —w)) A1 Q] A rg=yhrw’, .
This can be integrated from 0 to r to yield

r

25 N, (W*+Wf—wo*), 0= _f r (q—thj‘“) dr..

0o
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Neglecting normal shear strains, the strain-displacement relations for moderately
large deflections are

w*
HE=u" —'?—FEW 2w’ W W,
2.6
(2.6) w*  w* oz
g —— ————— W
* . R r T

*
a,m—‘gf-—va-;—:, 6::)3%::_ (2175 €4) »
@n o o . B
' WS TR % "-?F_—,?(Vs &+ Beo) 5
where
E, ¥,
& B L

hi2 R Eh w* 1 u*  w*
M= | =g | Tz vt
Q8
re Egh w* 1 u*  wr
*
Ny= ‘{ o, dz:ﬁ[%(u:'_?“{_iw -I-W“, ,,-)‘E‘ﬁ(_"?)]
~Hja [

The moments are given by

K2
M= f zafdz-——D[w."+—-*w ]

—hlz
2.9) Wz o 8
My= f za, dz=~—D [v,, W+ - w:",] ,
—ifz
where

D=E, h¥f12 (f—

Equation (2.3) can be satisfied if stress resuliants are expressed in terms of a stress
function y* as follows:

(2.10) Ne=y*jr, No=vl,.

Substituting Q, from Eq. (2.3) into Eg. (2.5) and making use of Egs. (2.1), (2.9) .
and (2.10), the equation of motion becomes

B ' ZHr .
(2.11) D [rwfm—l—w:"",— _F_ w:] —_- !l/* (wf,-{—w:'_ .+ ?) == f r (q—i'kw:kn) dr.
¢
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Bliminating «* from Eq.-(2.8) and using Egs. (2.2) and (2.10), the compatibility
equation can be expressed as

Ji] hE, 4Hr
(2.12) e | 42w, 1=0.
= r 2 MM -
Introducing the: following dimensionless parameters
w ay* r
S YT o
Wy [ D T2
2.13 am b = m_]
(2.13) w=—s, T " t,

P A2atg 301 2“2( )2 qa*
2E mh - BA=a P\ 8E, h*

the governing equations (2.10) and (2.12) reduce to the following dimensionless form:

2 "__ ' : ! 2_H —_
pEw " pw' = Bw' —pyr\w' +w, + 7

1 %6B—)  (H:
a9 v = R

[H
4H ,
PPy +pw' — By--6 (B—v3) pw’ (W’ +Tp+2wi)=0,

where ()’ and () are derivatives with respect to p and 7, respectively. The initial
conditions are assumed as w (p, 0)=w (p, 0)=0,
The boundary conditions at the centre and outer immovable clamped edge are

p=0: w (0)=0, y(0)=0,
p=1: w)=0, w(1)=0, y' (1)~ w(1)=0.

The axisymmetric imperfection adopted in this study is of the dimple type which
was also used in [4, 10, 11]. This type of imperfection is cxpressed mathematically as

(2.16} . w.i=Wg() (1 _pZ)S N
where

@15)

wio=w] (0)/h
is the maximum imperfection which occurs at the shell apex.

3. METHOD OF SOLUTION

The time is incremented in small steps At and the nonlinear Egs. (2.14) are
solved iteratively at step J by linearizing them for each iteration by writing the
nonlinear terms as

(3.0) whr=wy, vs,  (W)i=w; w).
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where the predicted term w)  is taken as the meéan of the previous two iterations.
For the first iteration, the predicted value is extrapolated quadratically from the
values at three previous steps,

(3.2) Wy = Ay (W_ ) Az Wy 5) T4 (Wy—3)>

where A4, A,, A5 for the different stages are: 1,0,0 (J=1); 2, —1,0 (J=2}; and
3, —3,1 (J3). The orthogonal point collocation method is used for spafial dis-
cretization. For N collocation points w and . are expanded as polynomials in p,

N+3 N+2

(3.3) w (p)= 2 it wp)= Z piih,.  Osp<l.
m=1 #=1

The differential equations (2.14) are collocated at the zeros of the Nth order Legendre
polynomial in the range 0 to 1.-The inertia term in Eq. (2.14) is discretized using
the Newmark-§ scheme with parameters corresponding to the average acceleration,
method [12] |

C wy—wi_y  er [0S ) .
o9 e e P L

with :
Wy=w;_1+[(1—8) &1—1‘1‘5‘;%] (4d7),
Wy==wy_+Wr_y (A_T)‘|‘ [(0.5— o) W — 1+°¢‘;’J] (47)*.-

The collocation equations for differential equations (2.14) are:

N+3 1
2 [(m— DA {n=2 =B o P’i‘“] n =

m=1
Ni2p o L ga . 2H \ 48 (B—v))
[(WJP)I: — 6w i (1 _P;) + T Pi] P b,= WWX

w=1i

(3.5) o\ oir W . 0.5
B i s T-1 Wr—1 L T _
( 7 ) 7 Prtp; f [OC(AT)Z + = (47 +(——oc 1) W.J’--l]p dp,

o

N+3 , 4H 1
> 16 (B3 (m=D1 A1~ {(w,,,,)t = 1200 (1= ot
m=1

N+2

+ 2 P [(n—=12=pl b,=0, i=1, .. N.
n=1

The five equations for boundary conditions are solved for ay, a,, @; and by, b,
in terms of the remaining N a and b, respectively. Hquations (3.5) are the 2N dis-
cretized equations for the coefficients a and b, The iterations are continued until
w(0), w' (0) and w’ (1) satisfy a relative convergence criterion within 0.1%, accuracy.
After getting the converged solution for the coeflicients a and b at step J, the pro-
cedure is repeated for the (J-4-1)-th step. ‘ :
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3.1. Dynamic buckling

The criteria suggested by Bupiansky and RotH [13] is adopted in this study.
The peak average displacement in time history w,,,,, is plotted against the load,
where ‘the average displacement % is given by

[ o 1 N+3 2
3.6 p=| 2mrwdr/ | 2nrdr=2 dp= e
(3.6) W 6[ FW r/af nrdr 0fpw I ,,g': i1 ®

If there is a load where a sharp jump in ,,, occurs for a small change in the load
amplitude, than this load is taken as the buckling load. If, on the other hand, there
is gradual transition from low to the high range of w,,,, the buckling load is taken
as the load corresponding to the lower knee of the ,,, versus P curve [6,10].

3.2, Sratic buckling

The average deflection is incremented in small steps and the first maximum
in the curve of P versus  is taken as the static buckling load. However, if the sol-
ution fails to converge in 100 iterations, the corresponding load is also taken as
the buckling load.

4. RESULTS AND DISCUSSION

The results are presented for static and dynamic buckling of isotropic (f=1)
and orthotropic (#=3) shallow spherical caps with values of shell parameters H/k
from 2 to 10 for several values of initial imperfection. Uniformly distributed static
and step pressure loading have been considered. Poisson’s ratio has been taken
as 7,=0.3 in all cases. Convergence studies, not being reported for brevity, have
revealed that up to nine collocation points and 4v=0.002 are sufficient for accurate
results.

The effect of initial imperfections on the static load deflection response of an
orthotropic cap with Hfh=4 and f=3 is shown in Fig. 2. The buckling loads de-
crease with an increase in initial imperfection. The static buckling loads of shallow
spherical caps are plotted in Fig. 3 for f=1 and 3 for w,,=0.0,0.1, 0.3 and 0.5.
The results of BUDIANSKY [1] for perfect isotropic caps and of XKao et af. [10] for
isotropic caps with initial imperfections for 1=5 are also shown in Fig. 3 for com-
parison. The present results are in good agreement with these results for the iso~
tropic cap. It can be observed from Fig. 3 that the qualitative pattern of results
is not affected by initial imperfections but quantitatively there is a drastic reduction
in buckling loads with initial imperfection.

The effect of initial imperfection on the dynamic buckling is analysed for uni-
formly distributed step pressure load. The typical average deflection response to
step load for an orthotropic shell with H/A=10, w,o=0.3 and =3 is given in Fig, 4
for two values of step pressure. The maximum average deflection has a sharp jump
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when P is increased from 0.537 to 0.545. The effect of initial imperfection ofw. .
versus P curve is shown in Fig. 5 for a cap with H/h=4 and f=3. It can be notéd”
from Fig. 5 that for smaller values of w;, the buckling load corresponds to the 'shafp"
jump in the curve whereas for larger values of w;, the buckling load corresponds
to the lower knee of the curve,

In order to have a further check on the procedure the present resulis for an
isotropic perfect cap are compared with the available results in Fig. 6. It can be
seen that the present results fall within the range of the results reported by other
researchers and are in close agreement with some of them. The dynamic buckling
loads for f=1 and 3 are given in Fig. 7 for w;,=0.0, 0.1, 0.3 and 0.5. The initial
imperfections have little effect on the qualitative variation of P, with H/h but
there is a drastic reduction in the buckling load with increase in initial imperfection.
For comparative evaluation of the effect of w,, on static and dynamic buckling
loads, P,, is plotted against the imperfection w;, for caps with H/A=4 and 8 and
p=1 and 3. Tt is evident from Fig. 8 that initial imperfections reduce shell buckling
¢apacity at a faster rate for static loading than for the dynamic case.
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F1o, 8. Static and dynamic buckling loads vs initial imperfection.

The new results reported herein for orthotropic caps with initial imperfections
using the simple and efficient method of orthogonal point collocation are of interest
to the designers of these shell structures with initial imperfections due to manufac-
ture and assembly.

mix
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STRESZCZENIE

OSIOWO-SYMETRYCZNE WYBOCZENIE STATYCZNE I DYNAMICZNE MALOWYNIO-
SELEJ ORTOTROPOWEJS POWLOKI SFERYCZNEJ Z DEFEKTAMI WSTEPNYMI

Defekt wstepny powloki spreZystej ma posta¢ zaglebienia osiowo-symetrycznego. Rownania
problemu wyraZzono przez przemeszezenie pormaine w i funkcje naprgzenia w. Zastosowano me-
tode ortogonalnej kolokacii punktowej do dyskretyzacji przestrzenncj oraz schemat Newmarka-f§
dla krokéw czasowych. Rozwazono przypadki cidnienia réwnomiernego oraz obciaZenia W postaci
funkeji schodkowej. Rozwigzanie dla idealnic sferycznej powloki pod obciaZeniem przylozonym
skokowo pokrywa sie dobrze z wezedniejszymi wynikami. Wplyw wstepnego defekin na wielkodé
statycznych i dynamiczaych obcigzen krytyeznych przeanalizowano dla stosnnkéw wysokosci
do grubosci powloki siegajacych wartodci 10.

PeswmMe

OCECUMMETPUYHEII CTATUYECKHAA W JUHAMWYIECKUI {TPOOOALHEIA
W3rWE TIOJIOroi OPTOTPOITHOM COEPUIECKOU OBONIOUKU CO BCTYHMTEIS-
HEIMHK JEDEKTAMEA

Berymartensastit fedext ynpyroi oDONOYKE HMEET BHA OCCCOMMETDHIHOIO sarny0aenma.
Vpaprerms npofieMsl BhPAAECHE! 9€pe3 HOPMATIFHOS NePEMEITICHHE W H DYHEKIEI0 BANDDKeHEAA 1.
TpuMenen Mercil OpTOFOHANBHOH TOUCYHOH KOJHOKAIRE A OPOCTPAHCTBEHHOH JHCKPOTH=
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sampm ® cxema Huiomapra-f AIM BpeMeRHRIX maros. PaccMoTpesss CIY9aE PABHOMEPHOr'O Ha-
BrRefEd H HATDY3KH B BANS ckasxoobpasnoi dyneumm. Pemerns mia wieansso chepmaeckoit 0650~
JIOUKH HOA HaTPY3KoH MpHAOKEHHOH cxawxoo0pasHo cosmamaioT xopomo ¢ Golee paHHHAMH pe-
3yipTaTaMA. Bimamme ncrymrrensHore medenTa HA BENRUMHY CTATHYECKNX H IEAAMAYECKAX
KPATHIECKEX HATPY3OK HPORMASHPOBAHO il OTHOINSHNH BEICOTHL K TOMMIAHE OGONOTNH, FOCTATA~
¥OUIEX 3HEadcHms 10,
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