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FUNDAMENTAL SOLUTIONS TO THE COSSERAT TYPE MODYIL OF
HONEYCOMB GRID IN A PLANE-STRESS STATE

T.LEWI NS K1 (WARSZAWA)

In the paper fundamental solutions to the continuum Wo#niak’s-type model of elastic arid
disk of honeycomb structure are found; the singularities of displacements, strains, stresses as well
as couple stresses are displayed and examined. In a particular case when constitutive equations
are decoupled, the solutions obtained reduce to the well-known components of the Green tensor
for an isotropic and centrosymmetric Cosserat medium in a plane stress state,

. 1, INTRODUCTION

The subject of this paper are fundamental solutions to the theory of elastic plane
grids of hexagonal (honeycomb) structure. A Wozniak’s approach is applied: the
structure’s behaviour (in a plane state of stress) is described by means of equations
of a two-dimensional Cosserat medium with a fibrous structure, cf. [1-4]. A charac-
teristic feature of a honeycomb plate is its noncentrosymmetry; constitutive equa-
tions are coupled by a so-called B tensor. Thus, the governing equations, i.e. the
equilibrium equations expressed in terms of displacements and rotations have
nontrivial form, more complex than that well-known (see [5]) from the theory
of a plane stress state of an isotropic and centrosymmetric Cosserat media. The
equations considered in this paper have not been the subject of consideration in
the hitherto existing literature; in particular the relevant fundamental solutions
(describing a response of an infinite plate under point loads) have not been exa~
mined either.

2. GOVERNING EQUATIONS

Consider an infinite hexagonal grid (Fig. 1) constructed of elastic bars connected
by rigid nodes. Internode distance is denoted by 1. A family of so-called main nodes
is chosen as in Fig. 1; the choice is made under a fixed observation, i.e. at the
fixed global coordinate system x°. The functions u* (x°), ¢ (x°) are assumed to stand
for displacements and rotations of nodes, respectively. A set of equilibrium equa-
tions in terms of displacements takes the form [2}
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(1) ta—d)d 3 ut+[Qut2) B+ (ut-0) 31w+ [-2Bd; 8,~22 1] p-+
eont,] +p2=0,
[B (92~ 82)—2a 8,} u'+ [~ 2B 3; 8+ 20 0,] P +]C (92482 ~4a] o+
+ ¥3:=0,

where the densities of external forces and couples subjected to main nodes are
denoted by p* and Y3, respectively. It is assumed here that the other nodes are
free of loads.

x* 4 1- main nodes
2-infermediate nodes

4

(=]
e |

Fia, 1.

The moduli 4, g, «, B and C characterize elastic properties of the structure. The
constants A, u and « depend on the slenderness ratio of lattice rods only, whereas
the moduli B and C are proportional to / and /2, respectively. Therefore, if the
slenderness of rods is constant and [ tends to zero, both moduli B and C vanish.
The effective moduli are assumed to satisfy the inequalities

2.2) >0, «>0, ptix>0, C>0, B*<Cu
resulting from positive definiteness of a strain energy of a lattice, see [2}

By substituting B=:0 into the system (2.1}, one obtains known equations describ-
ing a plane stress problem of an isotropic and centrosymmetric Cosserat medivm,

In order to simplify the further procedure, it is useful decouple the system (2.1).
After tiresome rearrangements we arrive at equations of increased order:

(2.3) PP+ Py p=0, Lo+Fyp'=0, p=1,2, i=1,2,3,

where p*=Y?3, The operators &; read

QA L1104, B)={—4e [Qu+3) 8+ p}1+C 2u+2) V? (gd14-2]) — _
—4B? 32 32,
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@A) - P22 (01, S2)={—4« [Qu+71) S} 41+ C 2p+4) V* (502-4-6%) ~ _
- - B @3-},
P a3 (01, 02)=Qu-+ 1) (u+2) V4, g
F12 (91, 02)={200 BA-}- 4ot (A1) 8y 93~ C (A p— ) V2 5, 9,1
+2B2 3, &, (2 -0%)},
& 21 (81, 0z)={~20 BA+-4a (A4 1) 8, 8,— C (At pu—a) V2 5, 8,+
+2B% 8y 0, (32— 0%},
P13 (01 02)=—2e (2p1-7) 3 V2+B [~ (put+ o) 8, A-Qu+2) 8, *A4],
F31 (91, 92)=20 Qp+-2) 8, V4B [—(p-+0) &y A+QuA-3) 8, *4],
F23 (91, 82)=2a Qu-+-2) 81 V=B [(Qu+1) 8; *A+(u+) 8, A],
#3281, 92)=~2a 2pu+-2) 8, V> =B [(2p-+2) 3, *A+(u-+a) 8, 4],
where ‘ '

pt-e

2u+2”

The high order operators &;; impose strong regularity restrictions on the functions
P* Y*® which stand for densities of external loads subjected to the nodes of the grid,

The canonical operator % defined as determinant of differential operators in-
volved in the system (2.1} can be rearranged to the form

@5 L=QpD) (0 C V=B [(uta) A%+ Qput-1) * 42|~ dap Quut-3) V.

A=d, (2-302), *A=3, (32-307), Viegiioe,  g=

Because of the essential importance of the % operator, it is worth displaying below
its alternative forms. Bearing in mind that

V6 42 + * 42 s
the definition (2.5) can be written in the three following equivalent forms:

Z=(uta) [CQut-1)—B*] 4*+Qu+7) [C () — B2} * A2 —dopt (2u+

+2) V4,
(2‘6) 2 6 2 2 74
&=(u+a) [C(2p+-1) - B?] [Vo— w %42 —&% V],
L=Qp+7) [C (p+5)~B) Voo £2—(s')? V4],
where
B+ B (u-o)
T WrICurN-BT T @A €t )—B

. 4op (2u+ 1) na Bap
Cwralc@tn-B V" Chra—m
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By virtue of the inequalities (2.2) the quantities , @, e and & exist('). Moreover
the estimations

(2.7) w<l, o>l
hold true.

The geometry of the structure of the grid is invariant under rotations at angles
2/3 nn, n=-+1, +2, ... The operator & possesses the same kind of invariance

property. To prove this it is sufficient to show that the operators A4 and *4 do not
change their forms under rotations of the coordinate system x* at angles 2/3 nn.
This is easy to disclose when the complex coordinates z=x*-}-ix*, z=x"'—ix* are
introduced, namely

A=4(a}+3D), *A=—4i (32 —23),

where
1 . 1 .
az=7(al—lal), a{::? (31 +.Ia2).

In the rotated coordinate systern x* we have
' Z'=Ze§n.ni’ 7' =ge—imi
D3 =(0z'[dz)® 87 =™ O} =03’
P =(07'/Z)? 02 =™ 53/ =03’

and finally A="A, *A==*A’, Thus the desired invariance property of % has been
proven.

A new look at the & operator yields from its definition expressed in terms of
complex differentials

#=16 B (A-+ p— o) (35 +2p03 73-+-09)— dap Qu-2) 32 021,
p=12C Qu+2 (ute)—B* But-A+a)}/[B* (itp—a)l, aFutid

and its real counterpart

(2.9)

1 _ ,
£ =5 B (rbp—a) [p+1) 8543 (p—5) 61 843 (p+5) 81 93+ (0 1) 851 -

— Aoy (2 ) VE,

The latter formula can also be obtaimed from Eq. (2.5) by a more complicated
procedure. ‘

Notice that the complex definition (2.8) is invariant under the interchange of

complex variables: £-»>z, z—Z Thus the complex description seems to be more
suitable to the considered problem than the approach involving real variables.

{") Notice that & is a generalization of [~* constant, which is widely used in the literature on
micropolar isoiropic media.
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3. THE FUNDAMENTAL SOLUTIONS

Consider an infinite plane, hexagonal grid subjected to concentrated tangent
forces p*=F* é (x*) 6 (x*) and normal moment ¥3=M3 (x') 4 (x2) in point 0, 0;.
The displacements caused by the force F# and moment M are denoted by @, ¢*)
and (u], p*), respectively. In order to obtain the fundamental solutions (uf, ¢5),
K=1,2, 3, the standard method based on the integral Fourier transform will be
applied.

By performing the transformatlon of Eqs (2.3), then solving the obtained al-
gebraic equations and carrying out the inverse transformation, the sought set of
functions

+00  +toe

(051: ;)
211; f f

—i(a.x1+u2x3) dal d&z,
A A T

uK
3.1 l (x4, x2)
'

k=1,2,3,

are finally found. The Fourier transforms of displacements due to the tangent forees
F? and normal moment M

Far {21, x3) & ax (g, o)
BRm i x prl TR T sk 4 K=1,2,3,
T Wenw) T T Wi w) i

where & (o, cy)= 5 (91— —ioy, Sy=r — mz) and W{x,, d})=—% (8, —ia,,
¢,— —iwy), play a role of integrands in Eq. (3.1). The following form of the function
W will be used (cf. (2.6),):

W (1, ap)=(n-+) [C Qu+2)—B?] {23+ a2) — o (s — 3 a4
+e* (e 4-a2)?}.
Let us define the nondimensional variables &, § by means of the formulae g= oy e,

f=a,/e and then introduce the polar coordinates =y cos y, B=y sin w. Now the
function ¥ (v, ) can be displayed in the form

W (s w)=(put-2) [C Qut D) —B?] & y* [14+?  (w, p)],

#{w, wy=1—wsin? 3.
By virtue of the inequality (2.7) the function x(w,¥) is positive for any o
and y € (0, 2r). After introducing the polar coordinates new expressions of S up

(ce—>&y GOS W, oty — ey sin ) determine the transforms ¥, ¥ dependent on v aud w.
Equations (3.1) take the form

82 2n oo [ ~K

ull
=§0fof qﬁK(y,t/f)

where x'=rcosd, x*=rsin, F=re,

uf .
(3.2) L;c (r, #) g1 en =9y gy dy,

Rozprawy Inzynierskie — ¥
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If one inserts the transforms #* and @¥ into Eq. (3.2), the :_fundamental
solutions associated with the force p'=4(x*) é (x?)
EIRIED W 1“@!{@6“'}'@5—“‘%?‘5}” '!

u1 (f‘ 15‘) k [hC'u (f‘ 75‘) Cz (i" 15‘)]"‘ [ (1+8)Js (r, N+ ~-g) T2 (?‘ 15‘)]— |
B2 .
"W [ (7, ﬁ)—-fo (?‘, N,
(r:é);—icS (r, ﬂ)+——£—_i)1( (; 19)+—L2——.K7 (r ;5*)+
e R
—_ 652
ot (rs ?5‘)_ K1 (r, )+ E(g 1)J, (r, T5‘)+(g~~l~1) J2 (r, D],
the force p 6 (xl) 8 (x?)
_ C(l-g) B? SRR
uf (r, 9= < kS, (i, ) +-—2—=m ng K; (r, 19)-1-2(—_5_)7 K4 (r, -

+W‘fsff‘,ﬁ);

C
u (r, )=k [hC, (r, N+Ce (r, A= (148 Jo (r, B+ —.g) J2 (s Dt

2

m [Vo. (T B)+-J, (i" ?5‘)],'

2
327 pu
and the moment ¥3=4¢ (xi) 8 (x%).

¢<m~£ 79+ e~ K ()~ (1-4) Ko (9]

82

iy (r, = g K 19)+ [(g DI, (e, H+H(e+1D I, (7, P,

6
umm—ﬂﬂam>+ [@nm@m(ﬁn&&w

—(u+)

A -fro(?'s?ﬂ)

p° (r, )=

are finally found, where
_ pta _ pta _ 3pta
602 u@uray > 8 242 T uFa
A=4r? [C Qu-+t 1)~ B?]

é=Ble,
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and
jZn o0 an COSZFIW é«iy;cns(:{r &)
r, G — Ty dy dy,
{Kz,,( )] c,f;! sin 2nyr Lo (o, y) 9 reray

éivr ?05 (Fr—9)

1-+2 (w, ) y?

2n41 — z coS(Z}H—DW
(3.3) |K (r, *’)} Of [ sin (2n+-1) y

2141 [H

dydy,,

dy dy . |

o0 2% €08 2HW ) é—i'rir“cos(:,:r—s) -
o1

0 sin 2my| ¥ [14% (o, p) »*]

The integrals- C,, and S, ougth to be understéod in a generalized sense, Slmple
rearrangements Iead to the formulae

Czn l ] _w Jzn,_]_ilje—zn +_“{ J5‘+2n
Szn I(:m 4 1= Ks—-zrl 4 Kﬁ-;-zn ‘ '
where the integrals a - o
00 2m -h'r cos (= 9) :- cos zﬂw . L
20 -
=Re a
' zn] f f 'sin 2my dy dy

are divergent (in a classical meaning): parts ‘of C,, and 8% By iiitérché.ngihg an
order of integration one obtaing

2n
! l ff(y,r,%ﬁ)'os g

sin 2ny/
where
0o ei'}'(—; cos (¥ —8)) 1 oo ety(—; cos(w;s))
fony,®=Re [ —u g T,
5[ Yo T2 '_[o Iyl ¥

_'-—= —In}F cos (w—&)|+const.

The last equality results as a particular case of the known formula of the theory
of Fourier transform cf. [6]. Tables, Eq. (27), p. 449. Hence

271:62,, oln# cos 2nd
—2nb_,{ s
. sin 2nd

where d;; denotes Kronecker delta and b, — coefficients in the expansion (cf. {7],
p. 383)

—1112, m=0

+o0
_ - 2im (- 8) =
Injoos (y—9)i= 3" bye ’ 0.5 (=™ im|,  mx0.

=—00
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The above considerations allow us to express the fundamental solutions uy, ¢f in
terms of the functions J,, and K.

4
ul (r, #)=¢ In r--7o cos 20+ Z (@ EY I (r, #)-i-const,

m=0 -

1
ul (r, B)=m sin 20-+EL J5 (1, #-+ 2 mpl Koy (r, #)--const,

=1 !

2
o (r, H=0n} Ky (r, D+ ) OV L (5 9),

m=1

m=1

4
#? (r, =, sin 20+ E2 J;5 (r, D+ my2 g, (r, )-+-const,
1 1 i 1 .

(3.4 s
w2 (r, 9)={ In r—mp cos 29+ 2 (2 g2 J, ., (r, 8)+const,

m=0

2
@2 (f', ﬁ)=(1)§§ JI'1 (T, '8)+ 2 (2’")';!% KZm (I‘, 19)7

m=1

2
w3 (r, ) =03 Ky (r, )+ D) O8] Taw (9,

m=1

2
w0 (r, H=WE J (r, N+ Z Cmig? Kom (r, 8),
m=1

9* (r. =D I (r, D),
where the coefficients involved in the relations (3.4) are defined as follows:
__—Cuth I xR ~(2p+4
drp (Qut1) ’ o= g QutA) SR [CQu+)—B""
OF = 2= (2g C (2ut A —B? [(u+2) Qut-2+(u-2) Gu+AI}/N,
Dgl= — D2 =2 (B2 (u+4) Qpt 2+ 0)—2Cx 2u+A°JN,

1
Bl = ~ g2 — D= —— B2 B a) (D) H YN,

ButdHw

OFt = (@2 = T
1677 p(2u+2)

N=16n% g Qu+4) (u+=2) [C2p+D B,

(Bt (O g2 — _(8)”2=M,
' 2 13277 p Qut)
p— 2
e B 3 g2 8z% (1+g)

17 8m2 n (Qut+-4) T2 R2rcyu

L —
3¢ (g—1) (1’§§=-“)rﬁ= £

@3 = 3

2 2t 8n* p
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The other coefficients can be calculated by means of the formuylae
(m)ﬂg ={) , (m) g:}:(__ ])m (m\g:‘ s (m)ﬂ;"_..__(_ I)m (m)”;i .

In order to make the paper clear, the procedure of expanding J,, and K, functions
into power series with respect to r and trigonometrical series with respect to the
angular variable & is presented in the Appendix.

It can be shown that in the case of B=0 the functions uy (B=0), p¥ (B=0) take
the form of the well-known fundamental solutions of the theory of a plane stress
state of isotropic and centrosymmetric micropolar medium (seee.g. [5]. Section 3.1 1)
Moreover the functions uf (B=0) tend to fundamental solutions of the couple-stress-
theory, provided a— oo, Such limiting cases are of theoretical interest only because
the B modulus cannot tend to zero, while € remains constant. As it was pointed out
in the 2-nd section, the modulus C vanishes faster than B if the internode distance 7
diminishes. Nevertheless, this paper is not devoted to hexagonal grids only, but
its aim is rather to examine a mathematical model which can be useful for another
media with microstructure, like perforated disks of triangular layout, for instance,

4. SINGULARITIES OF FUNDAMENTAL SOLUTIONS AND RELEVANT TO THEM: STRAIN,
STRESS AND COUPLE STRESS COMPONENTS

From both physical and mathematical points of view it is worth considering
singularities of displacements, strains and stresses due to concentrated forces and
couples. The main aim of the analysis is to disclose the influence of the noncentro-
symmetry of the lattice on the singularity intensity factors.

Let us focus our attention on the behaviour of the components uy, p* of the
Green tensor in the vicinity of point r=0; the first terms of the expansions (3.4) read

ul ul u ‘AiInr ‘Air?Inrsin2d ‘A3 rinrsing
uy uy uy [~ AL r2Inrsin 29 ‘AZInr ‘A rlnrcos#|,
gt 9* p? ‘Ayrinrsing A2 rinycos ‘A3Inr

where

41 42 2‘3’6 (0) £1 2 2 1j2 ) (6) 1
A1.= A2=C+—(I:;)W 51— ;"—l —;(l—w) 51 N

e w

2—w

— e T
Ay=—Aj= A= =gy A= 8

If B tends to zero the quantities ‘45 converge to the following values:

| I 1
lim "4l =lim ’A2=“‘( * )
820 geo © 4w 2ut-2 B
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052

lim ‘Ale=lim 'A2=———F7"7""z lim 'A3=—1/2=C,
lim "A3=lim A= " Gt @ /

o
lim ‘At = —lim ‘4%=—lim ‘A5=lim A3 = ——————
B0 5 o ! B0 ® soo 2 2rC ()

identical with the results yiclded from the theory of a micropolar isotropic medium
(cf. I3).
Consuier the singularities of strains and stresses due to the concenirated force
=6 (x‘) 5 (x%). Appropriate calculations give

~ cos® N sin & k (9) —sin & 1 (9)

')’11%“_-"141 p ; s YuRTTTT T
sin®  cos Kk (P) cos & 1 (#)
YR A] PR ’ 5 Vez z"_—";_——a
sin & s (& . —cosds (@
VLG 2D i,

t o
where '

k (?9)=2 Z bi,.m m Sin (Zm?fi), b]_ m_'al m ﬂo_l— 2 (2p)§1 (JO 2m O —2m.
=1

1($)=2 2 bl mcos2md, b} =m0 b1t 2 Cogt K22, — K3 L),

r=1

5 (#)=2 2 by, m sin 2mb, ~Z gL (F22,, T

The introduced functions k, 1, 5, are dlmensmnal [k}=m|N, |[N=m/N, [si= 1/N.
Finally, by using constitutive equations [1, 2] we arrive at

1q ~{(2p-A) T AL cos H--(2p4-2) sin & k (#)+4 cos ¢ 1{H)+Bsind s ()} %,
63z~ {—(ta) sin & 1 () (u—o) 4 sin P~ (u—o)cosd k (?5‘)+
+Bcos® s (P} -———B ’A1 Inr,
01~ { = (-t @) K (8) cos B-+-(4-2) 'A] sin ?- (p—o) sind 1(19)4*

4+-Bcos & s (M)} —-—-B ‘Allnr,
Game {2t 1) 1 (§) cos F+2 "Al cos 0-|—A k (%) sin # — Bs (#) sin 79}

1
my & {C s () sin B ['4] cos 9+k (9) sin ¢ —cos & I ()]} s

i
my~{—C 5 () cos 3+B [—'4] sind+1 (9) sin 9k () cos 9} T+ C'diinr,
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The coefficients standing at the right-hand sides of the above. formulae are ¢alled
singularity intensity factors. The coefficients underlined are diménsional, whereas the
other are nondimensional. The underlined factors B 'A% relevant to tangent stresses
depend explicitly on ™ and Bfu constants which have dimensions of length. The
factor B A} itself has the dimension of m~'. The underlined factors associated
with couple stresses have the dimensions of . '

Thus it can be seen that the honcentrosymmetry of the structure does not in-
crease an order of stress singularities, but it changes their character. In particular,
logarithmic terms appear. However, a coupling of constitutive equations (resulting
from the noncentrosymmetry of the lattice) increases an order of couple stress
singularities since new terms of the order O (r~*) occur. Nevertheless, these terms
are multiplied by the coeflicients of the dimension of length; thus they vanish, pro-
vided the parameter 7 tends fo zero.

Similar formulae and conclusions result from an analysis of the grid subjected
to the concentrated force in the x? direction. Thus this case will not be considered
kere and now an influence of the concentrated couple ¥*=4(x') 6 (x*) on the
strain and stress distributions will be examined. It is réasonable to analyse strains
and stresses referred to the polar coordinate system (r, #). Appropriate computations
lead to the following formulae which express deformation patterns in the vicinity
of point =0 P

- w ()

lim y,, is finite,  pu (' d3+'A3) In -+ s Y= (A3 AD Iy,
=0 .
1 1 1
4.1) Yoar— =t (9),  mm'A] T P,
where

W=~ D [(6/—3) u, ;4ug j]sin (6,—3) 9,

J=~-x

t (9= Z [(6/—3) sy, y4-u,, 5] cos (65 —3) #, _

J=—00
—{(2)g3 ¥2 4)£3 ¥4
ty, y={ )51 Jo,sj—z+( )‘51 Jo,61-4s

. .
Uy, 5 =BE T o1 PETE (i,
oo -
» (=6 Z bg,m m sin 6m @, B} =g (Jg,m—|-13, —em)-
m=1

By substituting the expressions (4.1) into constitutive equations, singular terms
of stresses ' : :

1
Orp R [A 2 (#)-+B '43 cos 36— B p () sin 39],
(4.2) |
Tra R (=) w (#)~B 43 sin 30— B p (9) cos 3¢]—2a (A3+'AHInr,
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4.2 1 .
fcum,)j O [(+ ) w () —B "4 sin 39— B p (9) cos 38] 12« (A3+'4)Inr,

1
Gag R~ [(2p5-2) t (8)—B ' A3 cos 391 B p () sin 39],
and couple stresses

1
mym— [C ' A5 — B  (8) cos 38~ B w (9) sin 39],

1
My 1C p (@B t (#) sin 39— B w (#) cos 3]

are found. The singularity intensity factors of couple stresses are nondimensional,
the other coefficients which determine the singularitics of stresses ,, are of dimen-
sions m~1 and m~2. The laiter factors +2a ("A3+'A3) depend explicity on the
parameter s

2

—&
Ty =

20 ( A3+ A=

the others depend on £~! and (B/y) constants, which have dimensions of length.

If one inserts B=0 into the RHS of Egs. (4.2) and (4.3), all the not underlined

terms disappear. Thus the existence of B#0 introduces new singularities of order
O (r~*) to stress components and to circumferential stress couple.

In the case of B=0 the stresses are axially symmetrical, whereas the terms re-
sulting from noncentrosymmetry of the structure produce stress patterns which are
of triple symmetry, what immediately results from the definitions of functions
w (®), t (%) and p (9. '

CONCLUDING REMARKS

The results of this paper can be treated as a generalization of the fundamental
solutions to the theory of isotropic, centrosymmetric micropolar medium- in the
case of a specific medium (in a plane-stress state)} with a noncenirosymmetrical
honeycomb microstructure. One aim of the work is to examine the influence of the
lack of centrosymmetry of the medium on singularities of displacements, sirains
and stresses relevant to tangent concentrated forces and a normal concenirated
couple.

The triple symmetry, which is tevealed by coupling of constitutive equations,
does not incréase the order of displacement singularities; however, it essentially
increases the orders of stress and strain singularities. In particular, a tangent force
F' produces a singularity of the couple stress m; of order O (r~'), while in the
isotropic medium this couple stress is finite in a vicinity of the point in which the
force is applied. Similarly a concentrated couple creates a singular state of stress o,
and singular circumferential couple stress my of order O (r~1), whereas in the
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isotropic case the same point load induces weaker logarithmic singularities to shear
stresses oy, 0y, and a singularity of order O (r~!) to the couple stress m,.

The effects of singularities which result from the triple symmetry of the medium
are to some extent weakened by the fact that their intensity factors are dimensional
ones; they depend on effective moduli of dimensions of length and they vanish
when the internode distance / tends to zero.

The results obtained are characterized by a triple symmetry (which comes from
a similar symmetry of the “microstructure™), hence they are far more complicated
than the axially symmetric results following from the theory of an i1sotropic axi-
symmetric medium. Thus one can reduce to closed forms neither the fundamental
solutions nor their singular parts.

A Cosserat approach applied in the paper is the simplest well-established math-
ematical model among other models of a better accuracy than the zero-order asymp-
totic theory, cf. [3]. It is thought appropriate to formulate a high order approach
which would not introduce singularities to Green tensor components because the
fundamental solutions for the initial discrete model take finite values only.

APPENDIX

1. The integrals S*

1 zP dz
|
mr Iui : (z—z)"(z -z, 0"’

where z=—e %, z;=—¢" 9>0, p, m,ne N,y denote a contour which traverses
around a point z, in the clockwise direction and does not surround a point z,,
cf. Fig. 2.

Xzﬂl

FrG. 2.

With the aid of the residue theory (for details see [9]) we find
1 m—1

St =TT 2

=0

(m;l) (P, l) (—gi’l, m—l%l) (__e_y)p—-t (2S;I,a)—~n—m+l+l:
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where

b—1
(a,b):”(“"l‘"s) for iié aeR, beNu{0}.
s=0

2. The integrals K™

2% 2mi!|,£r dw

K= cNU {0 1.
f(lwwsm rgy e eV, meN {0}, w<

It is easily seen that
a) ImK2"=0, b) K=K 2, ¢) KX*=0 for m3¢NUL{0}
and therefore it is assumed further that m=3p, p € N U {0}. The integral |
) } nr 2n 6pu,!r dw 2 n T epiw dw
wn xee(2) ] emde _(3) 7 v
" (a+-cos 6y) @ ! (a+cos y)

can be found by the residue method. Introduce a complex variable z=e' which
lies on an arc €, provided € (—x, 7). The denominator of the integrand can be
rearranged as follows: :

1
(a-+cos p)'= (z>+2az--1) 3 (z—z)" (z—2z2)",

1
(2 )rl
where

) 2
Zi=—e7 ", zy=-—¢°, Cho=a, Shw=}-o~(1—w)”2,

[— — i/2 - +— 1 — )2,
" " (1—w)/?, ¢ - ” {1 — o)

e v=

Let o be positive, hence a>1 (if @ <0, then one can set Ch o= —a, Sh p=(g?—1)1/2;
23, 2, are defined as before). Thus z, € R_, |z1| <1 and |z,| > 1. The integral (A.1) reads

4\ 1 PALaE
6p I pHa-1 Sptr—1_—
Kn 2z ( @ ) Sln, " ] Sn, " i f (Z""Zl)n (Z z?.)n

By virtue of the single-valuedness of the integrand, the integration along the arc C
can be substituted by the integration along the 9 contour, particularly for p a unit
circle |z|=1 can be chosen. Thus S =87 . and hence

mHn

4 n
Kgp=2‘f€ (_60“) Sf:;‘;l"_ L,
3. The integrals L™
am g2mid In (1~ e sin® 3y)
(1 — e sin® 3y

2m
L=
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By using the expansion

o0

(A.2) In (1- o sin® 3p)=— 3

n=1

o™ sin?" 3y
n

the definition of K", and assuming that the series (A.2) is integrable term-by-term,
We arrive at

L2m__2 Z Qn Ki"’%(—i)m+l, Q;:I:Q—Zn(mz_;fn)_

n=1l m=-—pn

The mtegral considered can also be reduced to a closed form {cf. [97) which wilt
not be reported here because of its complexity.

4. Expansions of the functions J, (r, 9) and K, (r, &)
In order to perform y~integration in the RHS of the relations (3.3), the following
formulae will be applied
g ze“’* dx

s
—REf =E,(pg) —Ref AT =0 L(pa),  q>0,

where
E, (x)=0.5 [Bi (x) e"*+Ei (~x) ¢*],
E, x=0.5[Ei (x) e=*—Ei (—x) e"].

Ei(-) denoted the exponential integral function, cf. [8]. As a result of y-integration
in the relations (3.3), we have

Jau 2% [ cos 2mp) Fs (I 85 ) _
{ ¢ ﬁ)} 6f {Sian;/} %(w W) —dy, n=0,12, ..,

Janp1 _feos @ut+-yw) Fulr, 95 9)
{Kz,.ﬂ @ ﬁ)}‘{sm @n+1) w} [ (w, p)]2 V>
where

r cos (y—9) )
CICR7 N

By integrating the RHS of Egs. (3) term-by-term the following expansions

F';(I‘,'ﬁ'; W)=Et(u

7* "
JotiKay= N =7 [rtlnitfi k) 422 (9) 1 B2 (8)-0.5 C2* (9)],
h=0,2,4
* o
D, i WtinF—fkl) 4272 ()4

lmed
k=1,3,5

J2p—1+i K2p—1 =

+B2P-1 (9)—0.5 €271 (8)].



240 T. LEWINSKI

are found, were y; means Euler’s constant and

1 s B 1 (_1)n—k+1
fo=0, fi=1, and ﬁ:+1__(;?1}|(nﬁy Z kkl (n—ki1)!’

The functions 47, B and C{ are expressed by means of the integrals

p j," cos’ (&) exp (isy) dy

T [ (w, )] L1+ ’
) 2 st (y—9) In | cos (y —9) | exp (isy) dy
=] [ (0, y)] D12 ’
2% cos! (-9 In | % (w, w) | exp (isy) dy
=] [ o, )] TS |

4]
and can be rearranged to the form
n

AZD_ 2 " K2(7r1+p) e—2urr.1

2n ntl
Mz —n

Az2r—1— Z P Kz(m-t-p}e (2m+1) i P;:|=2_2"+1 (2!1—1),

an—1"" m+n
W= — 1
[ [
2r,__ 2_1 n 2(m4p} ,—2imB no._.. : "
BZn dm Kn +1 € * dnl Q,p bm* P
= —od : p=-a
o] n—1
2p—1_.. § 1 o 2 {me+n) —(2m+1)|9 n
B?.r! 17 m K € m -P bm B
#H=—00 pr=—p

2n m a1

n
2P 2 Qn Lz(m+p) e*aniS

m=—n
n—1

CZ’D'— Z Prt L2(m+p) e—(2m+l)|9

Zn—1"
m=—i
where the coefficients @7, and functions K7, L7 are defined and analysed in the pre-
ceding sections of the Appendix. Now the functions J, and K, can be written as
follows:

-2ri o0
Jop (r, 9= }j @) [ln 3 f 20 €08 {2mi) - Z J 3P 0 COS (Zmﬁ)] ,
n= D m=—00 m=—o0
=2n—1
Japa (r, D)= Z ) [in Z S22t ety €08 (2mA-1) O+

+. Z j;ﬁ:ll,zm+l cos (2m+1) 19]9

= —00




FUNDAMENTAL SOLUTIONS TO THE COSSERAT'S TYPE MODEL....

o F 21 +oo . . ’ OE‘
2 (23’1)' [Il'l F Z Ki::, 2m sin Zm’ﬁ—l- 2‘
n=90 "

— 3 .
Kz, (r, 9)= K2z . sin Zmﬂ],
= —00 mM=—00 .
oG P—.zn-»l o0 .
. - e F >ap—1 :
sz—l (i', 'ﬂ)— 2, (211—1)' [II] ¥ 2, K2r1—1,2m+'1 S11l (2m+1) 4
n=1 - M= —00
[s.9] .
: E 2r—1 :
+ KZJJ-I.2M+1 s (2m+1) 79] ¥
m=—og
where
Zp — __J2p — 2P 2p—1 — _ K20-1 22— 1
2m2m ="K =050 1 jZn—1,2m+1"“ Kz;z—L 2m4+1 % 1, amb 1

Fr . _ %20 g 2p 2p _ Zp
J2n, 2mT KZH, Zm_(?E"—zni-fZ") a2n.'2m+b2u, 2m 0.5 cZu, 2m?
¥2p—1 —_ F2p~1 — _ _ 2p—1
Jz:.-1,2m+1" Kzn—1,2m+1"'(?’E (2’1 1)!f2"_1) a?.n—‘l, 2m+1+
2r—1 _ 2p—-1
+b50 f 2me — 0.5 Con—1, 2m+1-

An asterisk at the signs of sums denotes a finite summation. The coefficients a'

Jym?
bt and ¢! are defined below:
dm dm
2{m+ p) —
a2p o ::!Ku+mi fOl' me [ fn, n]:
2n2m 0 for |m|>n,
2 (m+p}
BV gn g2mip) P QLT for me[~n,n],
2n, 2 m n+1 » 2nr, 2m 0 fOI‘ |m,>n’
2 (m+p) — —
a2P=1 - er:: Kn " for mE[ H, R 1]’ pr-1 —e" K—z(m+p)’
2n—~1,2m+1 0 for m ¢ E_n: n~—1] 2n--1,2m+ 1 m -t
oo _[PnLzo®  for me[—n, n—1]
26—1, 2m-+1 0 for mé [_n, n-—l].
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STRESZCZENIE

ROZWIAZANIA PODSTAWOWE W TEORII TYPU COSSERATOW TARCZY SIATKOWE]
O STRUKTURZE PLASTRA MIODU

W pracy znaleziono rowwiazania podstawowe kontynualnego modelu Wozniaka opisiizcego
rachowanie sie tarczy siatkowej o strukturze plastra miodu. Wydzielono i zbadano osobliwosci
tych rozwigzan oraz osobliwoci odkszialeed, napie¢ i napigé momentowych, W szezegoinym
przypadku rozdzielonych rowaan konstytutywnych otrzymane rozwigzania sprowadzaja sig do
znanych skiadowych tensora Greena w feoril izotropowego i centrosymetrycznego ofrodka
Cosseratow w plaskim stanie naprezenia.

Pesiome

OYHIAMEHITAJILHBIE PE]IIEHPIH B TEOPUI THITA KOCCEPA
CETOYHOIL'O JUCKA CO CTPYKTYPOH ITYEJIMHOI'O COTA

B pabote naiineHEb! GyHIAMEHTATLHEEIC PeIEHA KOETHHYANLHOE Mozenn Bpsi;ma, onEcH A
FOTHEi HOBCOCHEE CETOYHOFQ JMCKA CO CTPYRTYPOH HYEIHHOIO ‘COTA. BEINENERE B HCCASHOBAHLL
OCODEHHOCTH ATHX pelnenmii, a Takke ocoOeHHOCTH AchopMalmi, HATPSKSHAH ¥ MOMOHTHEIX
manpakenmi, B wacrAoM ciyvae PACHPMASHHEIX  OUPES/ICHIAEONTEX COOTHOINGHUH MONYHEHHEIE
PEmIeEsst CBOIATCA K H3BCCTHRIM COCTABMSIEONIEM rersopa ['pHHA B TEOPHE HBOTPOUHOH H HeaTpo-~
camerprdHoit cpesst Koccepa B NFOCROM HATP:DKOHHOM COCTOSHMR.
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