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PROBLEM OF THE DECOHESIVE CARRYING CAPACITY OF
A CYLINDRICAL SHELL UNDER A RING OF FORCES AND TENSION(*)

TRAN - LE BINH (HAI PHONG) and M. ZYCZKOWSKI (KRAKGW)

Termination of the process of elastic-puastic deformations of a sandwich cylindrical shell under
a simultaneous ring of radial forces and axial tension is studied in detail, The material is assumed
to be perfectly elastic-plastic, incompressible and subject to the Huber—Mises-Hencky yield con-
dition. The decohesive carrying capacity is in this case determined by an infinite increase of axial
strains &, in the outer Iayer at the point x=0. The relevant singularity is described by generalized
power series and, using those series combined with numerical integration, a concave interaction
curve corresponding to the decohesive carrying capacity is determined,

1. INTRODUCTORY REMARKS

" Processes of small deformations of perfectly elastic-plastic or asymptotically
perfectly plastic bodies usually terminate when reaching the limit state characterized
by a mechanism of unrestricted plastic flow, and the limit load-catrying capacity.

© However, there are many exceptions when the limit state cannot be reached
because of earlier formation of inadmissible discontinnities due to an infinite in-
crease of normal strains e. Such cases were first mentioned by K. SzUWALSKI and
M. Zyczrowskr [15] and the relevant loading parameter was called the “deco-
hesive carrying capacity”. Subsequently, these cases were analyzed in detail for
bar systems by Szuwarskr [11], for disks by the same author [12, 13], for beams
by TRAN-LE BiNH and M. Zyczkowskl [17], Szuwaiski and TRAN-TE Ring [14].
Inadmissible discontinuities may also be encountered in the analysis of finite strains,
though they are then due to an infinite increase of derivatives of normal stresses o.
Finite strains in disks were discussed by Zvczrowskr and SZUWALSKI [20, 16],
in toroidal shells by J SKRzVPEK and M ZYCZROWSKE [10].

The present paper analyzes the decohssive carrying capacity of circular cylin-
drical shells under combined loadings: radial pressure (in general variable along
the axis) ¢'=g (x), and axial tension, p* per unit fength of the perimeter, Fig. 1.
Particular attention is paid to a ring of radial forces combined with axial tension.
The assumptions are as follows:

1. The material is perfectly elastic-plastic with Young’s modulus £ and yield-
-point stress o, incompressible and subject to the Huber—Mises—Hencky (HMH)
vield condition;

(*) Grant No. 05.12—2.9 is gratefully acknowledged.
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Fig. 1.

2. The analysis is restricted to small strains and small deflections;

3. The shell is of the sandwich type, with the thickness of carrying layers &,
the distance between middle surfaces of the layers H, and the mean radius R;

4. The Love-Kirchhoff hypothesis of straight normals is adopted and shear
deformations are neglected;

5. The Hencky-Ilyushin deformation theory is employed. The Prandil-Reuss
theory would essentially complicate the calculations, but — in view of a comparison
performed in [15] for disks — only minor changes in results may be expected.

Rlastic-plastic deflections of sandwich shells, based on the HMH yield condition,
were first studied by Yu. N. RaBoTnov [6], and A. R. RZHANITSYN [7]. P. KLEMENT
[1] solved the problem of a cylindrical sandwich shell under a ring of radial forces.
J. A. KoniG [2] considered cylindrical shells employing the Prandtl-Reuss theory
of plastic flow but approximately assumed that the whole cross-section is either
fully elastic or fully plastic. More exact applications of Prandtl-Reuss equations
are due to H. F. MuensTerer and F. P.J. Rmrorr [3] (with experimental veri-
fication) and to N. A. Scroes and W. C. ScaNosricH [9] (finite element method).
A precise theory of elastic-plastic deformations of cylindrical shells with a solid
cross-seciion is due to Y. Omasar and T. OgoucHI [4, 5]. Simultaneous axial tension
and a ring of radial forces was considered by M. Savir [8], and A. UBAYDILLAYEV
[18, 19]. However, none of the above papers studied the problem of termination
of the process due to an infinite increase of strains.

2. BASIC EQUATIONS

The Love-Kirchhoff hypothesis determines the strains as follows:

N du*® d? w#
e =lx—x,H=“ﬁ"+H“a;;?,
du* d? w*
2.1 _ - g
) R el =Nty H g H TR
w* '
8;. _lﬂ _R »
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where the deflections w are positive inwards, and the superseripts “4* and “—"
refer to the outer layer and inner layer of a sandwich shell, respectively. The dimen-
sional variables are starred, so as to retain the usual symbols for dimensionless
quantities; the expressions for the elongations A and curvatures » are substituted
in linearized form. Now introduce the dimensionless variables

x¥ Eu* Ew*

@2 YEVRE T ayri "ok

and rewrite Eq. (2.1) as follows:

+ i/ L % ~ + r %o + - %o
(2.3) el =@ Aw)—, e=@W-w 5 2y =t =W,
where the primes denote differentiation with respect to x. The bending moments A
and membrane forces & are in a sandwich shell expressed directly by the stresses
as follows:

(24 M=(o7 =o'y Hh, Ny=(o]+o})h,

where i=x, 6, and the positive moments correspond to decreasing curvatures.
The equilibrivm equations for a cylindrical shell with introduced dimensionless
variables (2.2) and neglected beam-column effect take the form

(2.5) N.=0, N.=p-=const., M+ HNy=Rhg".
Expressing now A and N in terms of stresses we oblain

(2.6) ol ot =200p, (o] —0}) 1o +ot)=20,q,,
where the dimensioniess loadings

_ P _ R
T 200k = 200 h

2.7 P

are introduced in such a way as to give p==1 and ¢,=1, corresponding to plasti-
fication under pure axial tension and pure constant internal pressure, respectively.

Further equations depend on the range of work of the cross-section under con-
sideration. We first discuss one-side plastification, of the outer layer only. Then
the stresses o and o must satisfy the HMH yield condition for the case of plane
stress; it is convenient to use a Nadai-Sokolovsky parametrization of that con-
dition, namely

2 T 2

(2.8) U&F:ﬁ oy sin(w+ + -3—), ol 2‘17-3: o Sin @, ,

thus replacing two unknowns, ¢ and o, by one unknown o, only. The first
equation of the set (2.6) determines now the stress o,

2
2.9 a; =20‘op-—-]/—§. oy sinm, .

Rozprawy Iniynierskie — 10
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The Hencky-Tlyushin equation of shape change will be written in the form

20F —ay
(2.10) b‘j ="

+ _ ot
26 —o)

EN
g - -

Hence, after substitution of Egs. (2.3) and (2.8) we obtain the following formula
for the derivative u":
wo V3

2.11) u ——j——————wtg w,—w'

Finally, to the elastic inner layer we apply Hooke’s law for an incompressible body:

4 ~ 1_) 4 (, . w)
O‘x—?E sx-i*a—-sg =3 Co \W W'~

4 1 4 uow
o=y E\e Fy s Ty e\ T T

(2.12)

Comparing the first equation of the set (2.12), where Eq. (2.11) is substituted, with
Eq. (2.9), we obtain

V3 V3 3
213 -i~-———wtg Wy = Slllco_i_—'z
Substitution of Bgs. (2.8), (2.9) and (2.12) into the second equilibrium equation
(2.6} yields

3 3 ‘2 . _
(2.14) w”+]/thg w+~}-~h—w=(w+2 sin w, ), cos @,) 3+

3, 3 3
+Tsm @4 +—4—cos co+—-~i~ q. .
Equations (2.13) and (2.14) are linear in the unknown w and nonlinear in the un-
known e, ; hence w may easily be eliminated. Subtracting Eq. (2.13) from Eq. (2.14)
we first obtain

4
(2.15) W=W(m;2 sin @, — e, cos w,)+cos w,+p—2q,

and the substitution of Eq. (2.15) into either Eq. (2.13) or Eq. (2.14) yields the
governing equation for e, :

§ ' ree . ?
(2.16) m&'=]/Tw+2tg2w++(4m+ w,, -}—3m+2—l/2——co+—w+)tg o,+

! L 3— ! p—
+6w.2 w, — ]ﬁ w2+ (tg wyhy3)—

16 cos w,

V3

SGosco

(V3 tg w.+44,")"
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One-side plastification of the inner layer does not introduce major changes.
Now the stresses o and ¢, are parametrized by formulae of the type (2.8) with
@_.as a parameter, and Hooke s law (2.12) is applied to the outer layer. Instead

of Eq. (2.11) one obtains here
I w —l/g— H
(2.17) 7] =T witg w_-Fw'’,

instead of Eqg. (2.15) we have

4
(2.18) w-——ﬁ(w sin w_ o cos w_)4-cos w_+p—2g,

and the final governing equation for «_ takes the form

w__V3 V3

(2.19) oV= —4—11012‘[,6;2 co,_+(4cu_ o 3w ”2+7w — )tgw +
V3 3p
1 er ¥ Oy .
Féo o+ 4 “- + 16 cos o _ (tg wH—H/B_) -
V3

8cosw_

(Qr' -l/g- tg @_— 4q:-’) .

Two-side plastification introduces some qualitative changes. Now the stresses
“in both layers are parametrized by formulae of the type (2.8). The Hencky-Ilyushin
equations for both layers lead to Egs. (2.11) and (2.17); comparing these equations
we arrive at
]/*

(2.20) w{tg w,.—tg w_)=0,

The equilibrium equations (2.6) yield

sin w, +sin w_=p ]/§,
(2.21)

- . - 1t 3 7; - ﬂ fain—
(sin w_ —sin @) Jsin oyt o) Fsinfo.+ 5 =4 /3.

Eqguations (2.20) and (2.21) determine three unknown functions, w,, @. and w.
However, Eqs. (2.21) do not contain w, and hence the system of equations is partly
uncoupled. We may eliminate o _,

(2.22) sih w_=p /3 —sin @,

and substituting this expression into the second equation of the set (2.21), we obtain
the following second-order equation for e, :

(2.23) cu: = m;_z tgew,+

Vi

4 cos w

{cos w, o+ ]/0032 @4-+2y/3 psin w, —3p*4-p—2¢,) .,
. .
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where the sign before the root depends on the range of w_: one should choose
“1” for o_<nf2 and “~" for o_>n/2. In most practical cases the sign “+4”
should be chosen. Further, substituting Eq. (2.22) into Eq. (2.20), we obtain
a second-order equation for w:

(2.24) Y3 (+ y3pzsin o, ( )
. w'="—w{+ — gy ).
4 }/cos2 w-+2 Y3 psin o, —3p N

Partial uncoupling of Egs. (2.23) and (2.24) facilitates the solution. Equation (2.24),
in contradistinction to Eq. (2.13), is homogeneous with respect to w and hence the
magnitude of deflections can be determined here only by nonhomogenecus bound-
ary conditions or by continuity conditions.

3. EXAMPLE OF A SHELL UNDER A RING OF FORCES AND AXIAL LOADING

The problem of the decohesive carrying capacity of cylindrical shells will be shown
in the example of an infinite shell under a ring of forces 20 at x==0 and axial loading
P, at infinity (Fig. 2). We use the equations derived in the previous section with
substituted ¢, (x)=0.

We first derive the equations of the elastic interaction curve. In the elastic range
Hooke’s law leads to the set (2.12) and to similar expressions for o and o ; sub-
stituting these formulae into the equilibrium equations (2.5) we obtain

2u =3
Wow=o P,
3.1

2wtV -2 — " == 0
and after eliminating the axial displacement u,

3 3
3.9 IV =
(3.2) w¥ - ) W 8 -
The corresponding homogeneous equation may be regarded as a particular case
(»=1/2) of the well-known governing equation for elastic cylindrical shells under
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end loads which, however, is usually guoted without axial Ioadihg. The general
solution of Eq. (3.2) is as follows:

(33)  w=e 5% (4 co5 fx-+Ay sin fix) 17 (A cos fix | Ay sin ﬁx)_;.éi,

where f*=3/16, In view of the symmetry of the shell we consider only its right-hand
side, x>0. The condition at infinity, w’ {c0)==0, yields 4;=A,=0 Two further
boundary conditions are w "{0)=0 and

d* w*

G4 D | =0

where ‘
2ERH? 8

(3.5) D=j__ﬁm:?EhH2

denotes the elastic bending rigidity of the shell, and w* and x* are the physical
{dimensional) variables.
Introducing into Eg. (3.4) the dimensionless variables (2.2) and the dimensionless

ring force

1 E/?

we tewrite that boundary condition in the form

3.7 w' (0)= ~%q

Making use of the above boundary conditions we obtain Ay=A,=—3g4/1653,
and hence

3g
(3.8) w=— ST ~x(cos fx-|-sin ﬁx)+g

The corresponding elastic stress distribution is given by

q% .
= +—— e ¥ (cos fix—sin fx)+pog,

2p
4oy
44
where the upper and the lower signs refer to the outer and the inner layers, respeci-
ively, The stress intensity o, reaches its maximum at x==0, and equating this maxi-
mum to the yield-point siress o,, we determine the elastic interaction curve as
follows:

@0 pog) a0 e ) L.

(3.9)

op=

3
e~ hx [4—}?2 (cos fx-+sin fx)}-+(cos fx—sin ,Bx)],
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These two ellipses intersect at g==0, p= +1, and at p=0, g= i]/Wf: +1.0746,
and describe a curvilinear convex tetragon.

In what follows, we confine ourselves to the quadrant ¢=0, p>0 Then the
_ maximal stress intensity in the elastic range is reached in the outer layer; exceeding
the elastic carrying capacity, we arrive at a certain zone 0<x<x; in which the
outer layer is plastic (except for p=0, when the elastic range is followed immediately
by plastification of both layers, and for ¢g=0, when the shell becomes plastic as
a whole). Under the assumption of the Hencky-Ilyushin theory of plasticity, the
zone under consideration is governed by Eq. (2.23) with substituted ¢,=0. In the
elastic zone x, <x<oo the general solution (3.3) with 4;=4,=0 remains without
change. This system of equations requires a total of 7 boundary conditions which
determine four integration constants for Eq. (2.16); 4;, 4;, and the boundary
coordinate x,. They are as follows:

W; (0)=0, m;'p (0)=q,

W, (X )=w, (X1}, W; ()=, (x1),
(3.11) _ ] . 1 3
(6:)8 (xy)=eay o, eqmvalently, ?Pp (xi) = _i_Gm =T

Py (k1) =115, (x1), Mg, ()=, (1),

where the subscripts e refer to the elastic zone, and the subscripts p to the elastic-
-plastic zone, m, denotes the dimensionless bending moment, and p — the variable
modulus in the Hencky-Ilyushin equations. The last iwo conditions make it possible
to determine the constants 4; and A,:

3 i 2
— — Ax1 — — qi 1 —
A, 55 e L(p ]/§ sin wl) (sin fix; +cos ﬁJ;) “
(3.12) -"‘ﬂ—‘]/é— cu; COs wy COS ﬁx1 N
3 [ 2 . : )
CoAy=— 857 eP L(p— %Sm wl)(sm Pxi—cos ﬁle)w
B W} cos my sin fxq |,

where the subscripts “1” denote the values of the respective functions at x=x,,
and the subscript “~+” of w, has been dropped. In order to use the condition de-
termining the boundary coordinate x,, we first calculate the modulus ¢:

gF—gf ww' w E}

(3.13) pte=- = Vs

of—of  sinw,—)3cosw, E

and substitution of Egs. (2.11) and (2.15) yields
(3.14) (2 /3 —4w])cos c01—|—4-.cu'12 sin @;+py/3=0.
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The conditions at x=0, after some transformations, take the form

3.15) (120, wgy k]/?? cu(;) sl wo--4 (a);z—w;”) cos wy=0,
. s
g= dﬁ @y COS wp ,

where the subscripts “0” denoie the values of the respective functions at x=0.
Finally, the continuity conditions at x=x,; may be written thus:

4, _
- 2sin @+ (% wl—I—Z) Cos —(]/3 —~1) p=0,
(3.16)
(12&); m’l’__l/é" w;—l—i/iﬁ) sin ;- 3 i‘/f’;
+(40* 4w, +13 o)) cos w, =y p=0.

Numerical integration of the governing equation in the zone of one-side plasti-
fication (2.16) requires four initial conditions at the starting point x=0. Since Eq.
(3.15) furnishes only two of them, we have to assume the remaining two and adjust
them so as to satisfy after integration the system of three equations (3.14) and (3.16)
with one additional unknown x;.

4. THE DECOHESIVE CARRYING CAPACITY

The solution of the system of equations (3.2) and (2.16) terminates with infi-
nitely increasing strains 7 at x=0: this condition determines the decohesive carrying
capacity of the shell. Indeed, &, in the plastic zone are larger than ¢, and they reach
their upper bound at x=0.

Making use of Eqs. (2.3), (2.8) and (2.10) we may write

ef w'-Lw' sin (w—n/6)
D A

and hence the condition £ ->co is equivalent to o (0)==/2 at w(0)#£0 (in order
to eliminate ;" (0)=0). This additional condition joins p and ¢ and describes the
interaction curve of the decohesive carrying capacity of the shell. Now Eq. (2.16)
becomes singular at the starting point x=0 and a numerical solution must be com-
pleted by an appropriate generalized power series valid in the vicinity of that point.
It turns out that the following generalized power series holds (for x> 0):

00

4.2) o (%)= Z’ Cy ¥ =Cot-Cy x124-Cy x40, |

J=0
where Co==7/2. The initial condition m’, (0)=g yields
cr

q=_ﬁ5

(4.3)
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whereas to satisfy the condition w’ (0)=0 we have to put

C2=05

4.4) 2
Cﬂi_czc__i.gi___l__cs
ST VP 2 ¢y 720 1

Further, substituting Eq. (4.2) into Eq. (2.16) and equating the coefficients of x//?
on both sides malke it possible to determine the subsequent cocefficients of Eq. (4.2)
in terms of C; and Cj:

V3

C4 15 5
(4.5) c - 4 g/“s“(cg, Y3 cz)
© 105 \ ¢, 4cE 12

‘Now we can describe displacements by generalized power series. Equation
(2.15) with substitnted Egs. (4.2), (4.4} and (4.5) gives

E 4 C'4
SRR AT [

whereas Fq. (2.11) integrated with the initial condition # (0)=0 yields

E 3 4 [Ct
4.7 —U‘—u="l/“§“[ _t( -2, C3)]x”2+
4] 1

12
+[5- V3 2(04

AR D)

x3/2+...),

—-2C, Cg)] X4

The exponent 3/2 in Eq. (4.6) shows clearly that the curvature x, (0) increases in-
finitely in the case under consideration unless

4 [C}
(4.8) = 1/ ( —2C Ca),
because then the coefficient of x*/2 vanishes. But in this case also w (0)==0, and
Eq. (4.1) is satisfied without ¢} (0)—c0. This exceptional case determines the tan-
gency of the interaction curves of elastic carrying capacity and of decohesive carry-
ing capacity. The exponent 3/2 coincides with that found for the decohesive carrying
capacity of beams [17} (under a concentrated force).

The determination of the interaction curve of decohesive carrying capacity is
carried out as follows. For an assumed value of axial loading p and for arbitrarily
chosen C; and C, the subsequent coefficients C; are found from Egs. (4.4) and
(4.5); the series (4.2) is used in the vicinity of x=0 and then numerical integration .
of Eq. (2.16) (the Runge-Kutta procedure) is performed. Finally, the continuity con-
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ditions (3.16) and the condition (3.14) are treated as a system of equations with
three unknowns C,, Cs and x4, and selved by means of the falsi rule. Then the
second coordinate of the interaction curve, ¢, is found from Eq. (4.3).

The procedure described above works for 0.2695<p<0.9720, the corresponding
values of ¢ being g= 1.2879 and ¢:=0.3120, respectively. For p>0.9720 there ap-
pears another zone of one-side plastification, namely plastification of the inner
layer within a certain zone x, <x<{x3; this zone is governed by Eq. (2.19). For p
very close to unity, even fuither zones of one-side plastification are possible. On
the other hand, for p<<0.2695, there appears a zone of twe-side plastification
0<x<x,, governed by Egs. (2.23) and (2.24), and followed by a zone of one-side
plastification x,<x<xz; in the latter zone cither the outer layer is plastic (for
p>0.1) or the inner layer is plastic (for p<0.1). In these cases the numerical pro-
cedures are more complicated ; the details will be given in a separate paper.

pé
19

08 -

Elastic

LEES range

i Ong-side
0z - | gastification

Fig. 3.

A part of the interaction curve of decohesive carrying capacity (concave) is
shown in Fig. 3 together with the convex clastic interaction curve (3.10). Both
curves are tangent to each other at the point

V3! 0.5562

g=-—=—=0.5562,
(4.9) i3

5= 1/2 —1=0.7321,

corresponding to the condition (4.8). Indeed, at this particular pomt of the elastic
interaction curve we have w=n/2, but simultancousty w=0, & =0 and & in Eq.
(4.1) may be arbitrary, not necessazily infinitely great.
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STRESZCZENIE

ZAGADNIENIE NOSMOSCI ROZDZIELCZEJ POWLOKI CYLINDRYCZNET
OBCIAZONE] PIERSCIENIEM SIE I ROZCIAGANE]

Zbadano szczegdlowo zakorficzenie procesu sprezysto-plastycznei deformacii sandwiczowej

powloki cylindryczne] poddansj osiowemu rozcigganiu i jednoczesnemu obcigZenin pierdcieniem
sit promieniowych. Zalozono, #e material jest idealnie sprezysto-plastyczny, niesci§liwy i spelniajacy
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warunek plastycznosci Hubera—Misesa-Hencky’ego. W tym przypadku no$no$é dekohezyina
okredla sie jako nieskoficzony wzrost odksztalcel osiowych & w warstwie zewnetrznej w punkcie
x=0, Odpowiednig osobliwo$¢ opisuje si¢ uogdlnionym szeregiem potggowym, Korzystaiac z tego
szeregn w polaczeniu z catkowaniem numerycznym, okreslono wklesty krzywa oddziatywania
odpowiadajaca nosnosci rozdzielezed.

Pesiome

OPOBJIEMA JIEKOTE3HOHHOM HECVHIIEM CHOCOBHOCTHA TAIMHIPAYECKOIT
OBOJIOTKI HATPYXEHHOM KOJIBIIOM CHUJI M PACTSTWBAEMOL

HMcemenoBano [ETambHO OKOHYAHHE NPOLECca YIPYTO-INAcTHYeckol IedopMmamawm MunmH-
mpuueckoll 0GOIOYKA THIIA CAHEBMY, HOABEPTHYTOH OCEBOMY PacTANCHHIO ¥ OJHOBPEMEHHOMY
HArpyREHAI0 KONLHOM Dafranbaelx o, IIpemmoaomenro, Y10 MATEPHAT HHEANBHO YOPYTO-IUIA-
CTETCCKAN, BECKMMAEMEIM ¥ YHOBINSTBOPAST YCHOBHIO IMIACTHYHOCTE XyOepa—Mumseca—T eHxwm,
B srom ciyvae JeKOTE3MOHEYED HECYLUYIO CHOCOOHOCTE OIPeIenseics ¥ak OeCKORCYHBIH pocT
oceBriX HeGopManEl &, BO BHEUHCM ojioe B Todxe x=0, CoOTBeTCTBYIOMYO OCo0CHHOCTE: OHUCEL-
Bactcr 0ODOOINEHHEIM cTemeHnsM piaroM. MCIoNe3ya 3TOT pAl B COSIAHCHNY ¢ THCIICHARIM HHTS-
IPHPOBAHAEM, ONPEnNeNeHa BOTHYTAS KPEBAA B3aMMOJACHCTBLS, OTBCIAIOHIAN NEKOTE3HOHHOM
mecynmel cuocobrocTa.
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