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STIiESS DISTRIBUTIONS IN AN ELASTIC SEMI-SPACE DUE TO
POINT SOURCES

S. GOZDE and K. L. CHOWDHURY (CALGARY)

Exact closed form expressions for the displacements and stresses are constructed for
a linear isotropic elastic semi-space subjected to point sources applied at a finite distance h
beneath its stress-free plane boundary. Point-sources considered are a single force, a double-force,
a cenire of rotation and a centre of dilatation. Equations of elasto-statics are solved using the
potentialfunction approach of PAPROVITCH and NeuBer [5], and explicit expressions for
potentials are generated when the above forces are placed in an infinite-space. Expressions
for the half-space potentials are developed from the full-space potentials by Aderogba’s
integro-differential formulae. 'I‘hree—d:mensmnal graphs depict variation of stresses in the interior
of the clastic semi-space.

1. INTRODUCTION

Problems of variation of stresses duc to point sources in the interior
and on the surface of a semi-space and the interaction energy of an inclusion
have been of great interest to geophysicists and metalurgists. A theorem
due to MinoLiN and CHENG [2] states that: “If we know the displacements
and stresses due *o an inclusion undergoing a dilatational transformation
in an isotropic homogeneous infinite solid, then the corresponding results
when such an inclusion is embedded in a haif-space with a stress-frec plane
boundary are directly deducible from the homogeneous infinite solid solutions
by the application of suitably defined differential operators”. Inspired by
this theorem, ADEROGBA [3] generalized it for the case of an iaclusion
undergoing a general uniform transformation and expressed half-space Pap-

- kovitch potentials in terms of the full-space ones for an isotropic elastic
solid under any loading conditions. SHARMA [1] dealt with the problem
of point-forces in the interior of an elastic half-space employing multiple
integral transforms and their inversions. A general solution of the equations
of equilibrium was derived for any distribution of body forces and surface
tractions. »

The aim of this paper is to find general solution of elasto-static equat]ons
in a half-space. Explicit expressions for the displacements and the stresses
devqloped due to point-sources embedded in a half-space with a stress-free
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boundary are obtained. The solutions are derwed for the following cases
of loading: i) a single horizontal force, ii) a single vertical force, iii) double
force, iv) centre of rotation, and v) centre of dilatation. The method used
in this work takes advantage of the genera.hzed theorem given in [3].
In Sect. 3, for each case, we obtain the full-space solutions of the equations
of equilibrium in terms of the Papkovitch potentials. In Sect. 4, the integro-
-differential operator formulae given in [3] are employed to generate half-space
potentials from the corresponding full-space results. Further, from these
potentials, the expressions for displacements and stresses inside the medium
are derived.

The method presented in this work is advantageous we believe because
it yields displacements inside the medium of a half-space regardless of any
knowledge of the surface quantities as is the case in the integral t{ransform
method. Moreover, the difficult problem of integral transform inversion Is
avoided. OQur expressions for the surface displacements are in agreement with
the results found in [1]. In addition, we are able to obtain the displacements
inside the medium in the cases of double force; centre of rotation and centre
of dilatation, which are believed to be new.
~ Stress distributions around .the point forces are depicted by various
3-D plots.

2. BASIC EQUATIONS

In a rectangular Cartesian coordinate (x, y, z) the displacement vector u of
an isotropic elastic body in equilibrium satisfies

(2.1) (A+p) VVu-+pVia+gy =0,

where A and y are Lamé constants, and ¢ and y are the density and body
- vector, respectively.

The Papkovitch and Neuber form for the displacement vector u is
expressed as

- (2.2) 2um = (x+1) ¥ -V (P +1¥),

where r is the position vector of a point in space and x—/l+3ju/1+,u
Equation (2.1), in terms of the unknown potentials, becomes

—1
(23) (%—1)V2‘1'+2VV‘I‘—VV2(‘P0+1"I’)+2%ﬁgx=07,

which is a coupled partial differential equation in ¥ and W, Taking the
cusl of Eq. (2.3), we obtain :

(2.4) (x+1) V¥ = —20%.
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Substituting Eq. (24) into Eq. (2.3), we find
(2.5) | VI, = VY

An elastostatic problem with a point source now reduces to determining
the potentials ¥ and ¥, which meet the necessary boundary, continuity
and regularity conditions. For any given point source in an infinite space,
Eq. (24), first, yields ¥ and then ¥, is found from Eq. (2.5). :

The stresses in terms of the Papkovitch Neuber potentlals ¥ and ¥, are
expressed in index notation as

(2.6) 053 = 5 (3 %) 5:} L 4% k+ ~{(x—1) (¥, j,i)_ SFo,ij—xk Yiits

where the usual Einstein summation convention for repeated indices is
employed. Here, Latin indices assume the values 1, 2 and 3.

3. INFINITE SPACE SOLUTIONS

In an infinite elastic space spanned by a three-dimensional Cartesian
coordinate system (x, y, z), the concentrated body force g =(X, Y, Z) is
applied_at (0,0,h). We now construct the potentials ¥ and ¥, from
Egs. (2.4) and (2.5) for the follwing five different point-sources. .

" Case 1. Horizontal point-force at 0, 0, h directed along x-axis
For this case
(3.1) - X =Fo(x)6(»)d(z—h), Y=0, Z=0,

" where & is the Dirac defta function
The solutions to Eqs. (2.4) and (2.5) are given by

F 1
. WO
S 2w (- 1) (Rl ’0’0)’
(3.3) ¥ =0,
where R; = x2+y*+(z—h)* and we have used the result
1 1
(34 o (—4nd (x) 8 (y) 8 (z— h) = R,

and the superscript 0 over the functions mdlcates that the solutions are for
~ the infinite elastic space.

Case 2. Vertical point-force at (0,0, h) directed along the z-axis
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In this cas.é,.
3.5 X=0, Y=0, @Z=Fé(x)do{(y)d(z—h).

Proceeding in the same manner as in Case 1, we obtain the potentials as

F 1
(3.6} (7Y, P9, P9 = D) (0, 0, “ﬁ),
., F h
a7 Yo=oresD) (_R—l)'

Case 3. Double force with moment. M at (0,0, h) about the y-axis

In this case

(3.8) ox= I:{-:F 5(0) 8 (z—h) > (J’+‘°‘/2);5 b= o 0].

If ¢F remains finite and equals M while ¢ becomes infinitesimally small,
then .

39 ‘ o X =Mé(x)8(y)yo(z—h), Y=0, Z=0.
The solutions for this case are given by
, M y
3.10 ‘PO = - ] 07 0 3
(3.10) 2n (x+1) ( R} )
(3.11) v =0,

where we have used the result

Gy T 10 dx=/0

for any continuous function f (x).

Case 4. Centre of rotation at (0,0, h) about the z-axis
In this case
' eX=Mé5(x)d (y)d(z—h),
(3.13) ' oY = —M & () 5 (y)  (z—h),
Z=0.

The solutions for the potentials are found to be

M -y X
3.14 o — . R ,0
(3.14) D) (R? R )
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and
(3.15) Po=0.
Case 5. Centre of dilatation at (0,0, E)
In this case
oX = —M & (x)3 () 8 (z—h),
(3.16) oY= ~M&(x)& (y) 6 (z—h),

0Z = —M 5(x) 8 (y) & (z—h).

The solutions constructed for this case are given by

M x y z—h
0 __
(3.17) = Dt 1) (Ri "R RS )
and ‘
~—M 3 hi{z—h)
0 __
(3.18) Yo = 2m (x+1) [Rl R} ]
wher;: we have used the result
(3.19) xd (x) = —d(x)

and the relation (3.12).

The potentials derived above correspond to various point-forces and the
point-moments applied at (0, 0, #). Here, some of the nonvanishing Papkovitch
potentials generated in the infinite space agree with the results in [4].

4. DISPLACEMENTS AND STRESSES IN THE INTERIOR OF THE HALF-SPACE

We now divide the infinite space into two half-spaces by introducing
the planc z =0 with the z-axis directed downward, and assuming that the
half-space z > 0 contains all the point-sources at (0, 0, k). The problemn then -
reduces to determining the field quantities in the half-space z > 0 with the
stress-free plane boundary z =0 and with no singularities in the half-space
z < (.

According to a theorem in [3], the half-space Papkovitch potentialszcan
be generated from the full-space ones with the application of the following
intergo-differential operator formulae:

g ﬁﬁg dz+25i3{

&

— P+

@41) P, =P +¥+5,5(x—1)

J

b
0z
L

ax;
- (x 4
——Z
i Jaz.

0

an

)7}
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0 J]T}’dzdz+(x—l){?_’8+
ax_f

T IR
o3 (o) [t

where the arbitrary constants of integration must be set equal to zero in
order that the displacements and stresses vanish at infinity, while a bar
placed over a. function denotes an-image quantity with respect to the
plane z =0, ig,, -

and

' _ 1
(4.2) 'I‘O:T8+’I’8+~2—(x2—l)

T’(x y,z) !p(x y’ )

Equat:ons 4.1 and “. 2) along with Eq. (2 6) sat1sfy the stress free
boundary conditions, viz.,

(43) © . 031=03 = ‘{33 =0
when z =0. '

Equation (2.2) can be expressed in terms of the index notation as
(4.4) 2put; = (e + 1) O~ (Po+x; P

For displaceménts inside the medium, Egs. (4.1) and (4.2) are introduced
into Eq. (4.4) for each case in Sect. 3. Similarly, stresses inside the medium
care be obtained from Eq. (2. 6). We give here the explicit expresswns for .
the potentials and the displacement vector components. The expressions for
stresses are listed in Appendix A.

Case 1. Buried horizontal point-force at (0,0, h) along the z-axis

The nonvanlshmg infinite space Papkovxtch potential is given by Eq. (3.2).
Substituting Egs. (3.2) and (3 3} into Eqgs. (4.1} and (4.2), the resulting half-space
potentials and displacement vector components are given by

F [ 1 1
4.5) W, = ,
.5) YT 2n(k+1) l_le+ R2:|
(4.6) ¥,=0, . ,
Fx [ x—1 S oh
47 & Y. = =
— [ 1 1)2 _ )
@48) ¥, = Fx 1(x—1) B {(x—1)h
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F x 1 Y (e2~1)  2zh
4.9 =
49) K 1) {Ri "R, Ry+z+h ' R}
B : 1k 3 062-1) 6zh
» R 2 _ 2 _
T [Rg "R TR ReirhE B[
: - Fxy 1 xR E=1) 6zh
410)  2u = —— -
( ) o 2r (x+1) liRg * R} R, (_R2+Z+h)2 R; [
a o Fx [ 3061y z—h  w(z—h)  6zh(z+h)
411 2uw = — !
(@.11) M= o (x+1) [Rz (Ry+z+h) Ri . RS R3 ’
where e ' : o -
4.12) . R3 = x*+y? +(z+h)%

Case 2. Buried . vertical point-force at (0,0, h) along the z-axis

For 4 vertical point-force, the potentiais and the displacement vector
components are found by substituting Egs. (3.6) and (3.7) into Eqs. (4.1)
and (4.2} and the resulting potentials into- Egs. (4.4). We then find

(4.13) b ?_Tz =0,

(4._:154?-.~._- . v, = 5 (:;__1) :Rll N ;2 L2 i;-h)],
(4-1’5;' | lPo= 2n(—xil) iRhl + ;}2‘—4;(%2—1) 1n(R_2+z+h):|,
(4.1@ =y f; x+ 3 LZ}%’? ¥ "(;;h)' _ Ri E;Z:L 'lz)fh) 6zh1(:g+h)],
(4.1,])‘ o=~ (Zer 5 :21:2’1 x(gh) _ Rz%(l({f—l-_zlj-h) 62h}({zg+h)]’
(418) 2w = (5“) i;} . %(xi;—l) N (Z;fl)z . x(z+;);—2hz'

: N 6hz (;;h)z}

Case 3. Buried double force at (0,.0, h)- with moment M:along the x-axis

The potentials and displacement vector components are constructed in
a similar way to Cases 1 and 2 and are found as

w = — My 1 + 1
YU onx+1) | R CRI|
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‘I’2=0,

g, __ Mxy [2(%——1) (z+h) (x—1)}(z+h) _ﬁ@_}
U+ | R+ RI(xP+yY)

== Mxy| 3®+1) (=+DR, 1

T 2r(x+1) [Rz 2+y) Py R

‘ -2z (z+h) z(z+h)

R+ " R (x2-+y2)]’

__Myl 1 - x—1
@19) 2= oD {“( R3)+Z(z+h)(u—z+r"—R%)—

_bzh | G[3(=1) -1 ( -8Ry 4
RS R} 2\ TR,

. 1 3(2%x—3)  (Ox+11
e B P

X -,;"” - ...Mx.. o _1___ - +Z(z+h) . ) 1
_ = ” L
K= 2 (e+1) | R3 R, r*R3

6zh +y2[3(x—1)+ x22_1 (_.s;,R2 4

R R3 * " "R, +

3
2
11 3(2—3)  Ox+11)\])
*?fif)2@+m( PRy T ARy )|
Mxy

1, 2 1
ﬁn(%+l) {7(% *“.1)(?+h)|:R 2+ 2P + R (x2+y2)]_:

z—h  wh| 30zh(z+h)
_3 T
[RS R%]+ R] }

*

+

2uw =

Case 4. Buried centre of rotation at (0, 0, h) about the z-axis

The potentials and the displacement vector components are found as

— My 11
o= e+ ) [Rg + R3:|’

g Mx [ 1 1
27 2nk+1) | R} TR

¥,=0,

—My | 1 1 :
Quu = —
M=o [Ri*R%],’;

(4.20)




Fig. 1. Variation of- stresses along the.

indicated direction on the z =22 m plane

while the point-source is applied at s = 20 m,

a. Horizontal point-force. b. Vertical point.

“force. ¢. Double force with moment. d. Centre
of rotation. e, Centre of dilatation.

4591
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Fig. 2./ Variation of total stress o= (o2, +
+0%;+03,)"/? on the z=22 m pline while
the ‘point-source applied ‘at h=20 m
a. Horizontal: point-force. b. Vertical point-
force. ¢c. Double force with moment. d. Centre -
of rotation.” & Centre of dilatation.
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21)_er '1+1
W= | B TR |

2uw = 0.

Case 5. Buried centre of dilatation

‘The potentials and-the displaceinent vector compone'hts are given by -

_— Mx |[-1 4 1
YT one+1) | R TRE
My [ 1 1 :
¥a= 2n (x+1) | R +E§J" L
M [ z-h z+h
Y= o | RE @Y R} ]
~M [ 3  hz—-h) hiz+h) (—17+3
421) ¥, = \ - -
(4.21) " 2m(+1) | R, + R} R3 R, ’
: Mx [ %=1 #*-%+6 6z(z+h)(—1)7
zﬂu—2n(x'+1};Ri' + R "'Rg —cth
o MY [%=1 % —ut6  Grthyu—1)]
B ) | & R T R ’
_ =DM [ 2=k w(z4+h)—2z 6-'z(z+h}2
B 2?1: (x+1) | R} R3 R3 '

The dlsplacement vector components given by Eqs. (4.9—4.11) and (4.16)—
{4.18) for the horizontal and the vertical point-forces are in complete agreement
with the results found in [1] when they are expressed’ in cylindrical co-
ordinates. The expressions for displacements and stresses in Cases 3, 4 and 5
are believed to be new. Surface dlsplacements in all 5 cases can be obtameh
by simply letting z=0 in the expressmns where R, and R, become
equal and :

@42 -'RZ=R§=R2;-r2+h2

and r is the radial distance in cylindrical coordinates. By a few simple
algebraic mampulatlons on the surface dlsplacements it _can be shown that
they are in agreement with the results in [1].

When the clastic semi-space is gluedito a rigid base the dlsp]acement
vector components_ satisfy

[4._23) u=v=w=0
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on z == 0. For this case the integro-differential formulae @. 1} and (4.2) take
simpler forms as given in [3] '

The stresses and the 3-D plots of 053 and the total stress o = (05, +
+02,+02,)Y2 for each case are given in Appendix A. ‘
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APPENDIX A

The 'stre':';se':_'s_ for each of the .ﬁ.ve.point souces found from Eq. (2.6) and
by substituting the corresponding potentials are. given as follows:

Case 1. Buried horizontal force at 0, 'O, h) alo_ng the x-axis.

T Zp 1 1\ 6zh(z+h)
Al - r -
@D o =g (x+1){ ey -
PR - pae| Foh xeh  10zhiz+h)
Iy TR r P
2 o 3Fxy [ s—h. wz+h 10zhz+h)7]
A o - -
AD on =y (x+1)[ B R R} ]
. w0 ’ H-.-Fx-j;;- ; 1 ; 1 o (Z-_h)z.
(A3} 0 (x+1){2(" ”(Ra“RS)“[ R
G RE27? z(z+h) ] 30zh (z+h)?
T T 3 - .
A ¥

« Case 2." Buried vertical force at (0 0, h)

L s 1 17 3¢ —hz) 3h(z h)
a4 "?_‘fm{z(" ”[R?"Rs]* R

Iuz {z‘+'h)'“--: 30zh (z+h? )
RS R; >




STRESS DISTRIBUTIONS IN AN ELASTIC SEMP-SPACE PUE TO POINT SOURCES 463

(A5) o3, =

—F 1 1 3(z2*—h*)  3h(z—h
W_%ﬁ{?(x— )[R3 —ﬁs—j]—l- (RS_ ) (RS )-;-
+ 3uz (z+h) 30zh (z+h) }
Do - L Rg R;- ’

.. —F}pz+h  z-h F z+h  wz—m

(A8 o= [ B r ]+ 2n(x'+1)‘-[ R TR

3@+ (z—h?  3(z4h) {(é+h) (xz—h)—6hz] 30hz (z+h)3]
' R} R} "R} :

Case 3. Bouried double f‘orce with moment M along the x-axis
1 ) 10zh(z+ k)

A7) a31=-3—“ﬂ—{ (1) (z— h)(m—

27 (+ 1) R; R R; T
—h  xz+h  14zh(z+h)
5 2 z .
+3x [ R;’ + - Rl RS :I},
. =3Mx }z—h wz+h 10zh(z+h) 2| z—=h
A8)  os= 21:(x+1){ RS T R] __Sy R :
'- [ xzth  14zh (z+h)
R} RS ’
O 3Mxy (1 (1 1 2 (z4h)
. = d (k= 1)~
A9 o1 2n(x+1){2 e )(R; R{)+5[( )t
ot S G i - SR U TR Y T
Rl " "R} R3 ‘

Case 4. Buried centre of rotation

Lo My [ z—h  z+h7]
(A.IO) L ) | .0.31 - 4‘)‘]: [ Rg 1 Rg ]s
AR  3Mx [ z—h  a+hT
(A.12) 0335 =0.

Case 5. Buried centre of dilatation

. ' z—h ?
(A.13) "31’“'_2%(1%)_[ - 1)( )—2_(%—1) Z§+10x Z(Z;h.)

102(;—112) —x—1) z+h]’
2 -
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) o= M [y B 2R’
(A.14) “32_2n(x+1)[ (e—1) - — (e 1) g+mx i
10z (22— h?) z
I " “R_]
=DM 11 3R 3 (z+h)*
(A.19) 733 =4z (3 1) [Ra "R R TR i
3(1-2) M [ 3z(z4h) Sz 315MZ (z+h)
27 (% + 1) R R} 2n (x+ DR
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s S S_TRESZCZEN[E

ROZKLADY NAPREZEN W POLPRZESTRZENI SPREZYSTEJ POD -DZIALANIEM
7ZRODEL PUNKTOWYCH

Wyprowadzono éciste rozwiazanie w postaci zamknigte] dla przemieszczen i naprezen
wywolanych w liniowej izotropowej polprzestrzeni sprezyste) poddanej dzialaniu zrédet punkto-
wych umieszczonych na skoficzonej glebokosci h pod nieobciazona powierzchnia. Rozwazono
#rodia punkiowe w postaci sit pojedynczych, podwojnych, centrum obrotu i dylatacji. Réwnania
elasto-statyki rozwigzano za pomocy potencjatdw PAPKOWICZA i NEuBera [5], ktore przed-
stawi¢ moina w postaci jawnej w przypadku, gdy wymienione sity dziataja w pelnej przestrzeni
sprezystel. Rozwigzania dla polprzestrzeni uzyskuje si¢ z nich za pomocg catkowo-rozniczko-
~wych wzordw Aderogby. Rozwigzania zilustrowano tréjwymiarowymi wykresami,

PE3IOME

PACTIPEEJTEHUS HAIIPSOKEHHI B YIIPYTOM TOJYIIPOCTPAHCTBE TIO[
. NEACTBUEM TOUYEYHBIX UCTOYHUKOB

BLIBGJIEHBI TOYHBIE pemeﬁﬁﬂ B 3aMKHyTOM BUZE AU NEpeMelienyH ¥ HANPKCHEH,
BI3BANMLIX B JIMHGHHOM HW3OTPOMIIOM YHPYIOM nonyﬂpochaHCTBB HOABEPTHYTOM JCHCTBHIO
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TOUCYHRLIX WCTOYHHKOB, NOMEIICHHEIX HA KOBCUHOH riyOWMme i [OA HeHATpYKeHHOH nosep-
FHOCTRIO. PacCMOTPEHB! TOYEHHBIC MCTOMHUKM B BHC CAWHWYHBIX CHJI, ABOMHBIX CHA, VEHTPS
BpalleHu! ¥ [JuIATAIRY. YPABHCHHS 3IJIACTOCTATHEH DEIUEHBl HPH [IOMOINY TOTEHIMAIOR
Tankospua w HeyGepa [5], XKoTophle MONHO npeicTaRHTh B SBHOM BHJIE B CiyYae, KOTHa
YOOMAHYTEIC CHILI ACHCTBYIOT B IOJHOM MpPOCTPaHcTBe. PENICHHMA ANA NOAYIPOCTPAMCTBA
MONYHAIOTCA U3 HMX IpH INOMollu uHTer po-gupdepenimamsunix Gopmyn Azeprobu. Pemenns
HIMICTPEPOBARBI TPEXMEPHBIMY JUATPAMMAMY.
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