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The paper is written in accompaniment of the publication of English translation of
W. Burzyński’s paper [1], which deals with the yield criterion for materials revealing the
sensitivity of yield strength to pressure derived by W. Burzyński during preparation of his
doctor thesis in 1927 [2]. More recently the dependence of yield strength on pressure is related
to the so-called strength differential (SD) effect, i.e. asymmetry of elastic range, cf. e.g. [3, 4].
Therefore, the original Burzyński’s formulation of yield condition remains actual and acquires
increasing significance. The position of Burzyński’s energy-based approach in the literature is
reported and his main achievement in this field concerning the recent studies is discussed.
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1. Introduction

The aim of the paper is to show that the original results of W. Burzyński

presented in his doctoral thesis [2] are of fundamental significance and remain
important also for recent studies related with modelling of yield and failure of
solids characterized by asymmetry of elastic range and possessing, in general,
anisotropic properties. It concerns, in particular, soils and rocks, e.g. applica-
tions in modelling of interaction of a cutting-tool with geological settings [5], as
well as modern materials, e.g.: polymers [6], different kinds of composites and cel-
lular or porous solids [7, 8], high-strength steels or, in general, ultra-fine grained
alloys and nano-metals [9]. It is worthy to mention that the Burzyński criterion
is cited in the aforementioned papers [5–9]. Therefore, we have decided to pub-
lish English translation of the paper of Burzyński [1] that contains not only
the main results of his doctoral thesis [2], which appeared on January 1928 as
a comprehensive monograph, but presents also his matured view on the state of
the art of yield conditions and failure criteria at that time, which ripened during
the nine months long post-doctoral study travel to Germany and Switzerland,
connected with seminars and discussions with leading specialists in the field, cf.
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the biographical note [10]. From December 1928 until March 1929, W. Burzyński
visited the University of Göttingen, and from April until August 1929 he visited
the Confederate Material Testing Laboratory (Eidgenössische Materialprüfung
Anstalt – EMPA) at the Zurich Polytechnic (ETH – Eidgenössische Technis-
che Hochschule) in Zürich, where, among others, on the 1st of June 1929 he
took part in the 26th Conference of the Swiss Association of Material Test-
ing for Technology (26. Diskussionstag des Schweizerischen Verbandes für die
Materialprüfungen der Technik) and delivered the lecture, published in [11]. Un-
fortunately, W. Burzyński was unable to disseminate his knowledge and defend
his views since 1949, when serious illness terminated his scientific carrier. There-
fore, we would like to share his scientific legacy with the research community,
in particular now, when his concepts concerning the yield conditions have been
confirmed and rediscovered many times independently by many researchers.

2. Burzyński yield condition reported in the literature

The concept of Burzyński yield condition was presented in detail and com-
pared with several later independent propositions by M. Życzkowski [12, 13],
J.J. Skrzypek [14] and M. Jirásek and Z.P. Bažant [15], as well as by
G.S. Pisarenko and A.A. Lebedev [16] and V.V. Bozhidarnik, G.T. Su-

lym [17]. It has been also discussed in recent works on strength theory [18]
and plasticity [19]. The first foreign references can be found in the papers of
G.D. Sandel (1930) [20], H. Geiringer and W. Prager (1934) [21], M. Roš

and A. Eichinger (1949) [22], cf. also the comprehensive discussion on the im-
pact of the Burzyński’s results on the development of yield criteria by A. Bec-

chi [23], in his historical essay concerning the hundred years of studies on the
yield criteria. The strong critics of the previous proposition of G.D. Sandel in
[24] by W. Burzyński in [11], as well as in papers in Polish [1, 2], awoke the
vivid polemics and exchange of letters of the both authors with the editor [25, 26]
and [27].

At that time, the yield criterion proposed by M.T. Huber (1904),
R. v. Mises (1913) and H. Hencky (1924) [28–30], for isotropic solids char-
acterized by equal magnitude of yield stress in tension and compression, was
well established and confirmed experimentally, cf. e.g. [1]. The open question re-
mained, however, in the subject of yield criteria for isotropic materials revealing
different magnitudes of the yield stress in tension and compression, the so-called
strength differential (SD) effect leading to the asymmetry of elastic range. Also
the formulation of yield criteria for anisotropic solids was an open question at
that time; as said in [2], p. 127: “it’s still a thing of a distant future”. Neverthe-
less, the first work on anisotropic yield criteria was published by R. v. Mises

in 1928 [31]. Quite independently, an energy-based approach to the description
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of yield criterion of orthotropic and transversally isotropic materials was pre-
sented in depth by W. Burzyński in [2], as a consistent development of the
energy-based Huber’s approach to isotropic solids [28], cf. also the discussion
in [1], p. 291–292, and the concise remark in [11], p. 261. The contribution of
W. Burzyński was discussed in [12], p. 111: “The generalization of Huber-Mises-
Hencky yield condition in the case of anisotropic bodies may also be achieved by
using energy considerations . . . In the most general case of anisotropy, the elas-
tic energy cannot be decomposed into the energy of volume change and energy of
shape change. This problem was first investigated by W. Burzyński [2], who
proved that the existence of such a decomposition results in five relations between
the elastic moduli, and thus only 16 moduli remain independent”. (In [12], p. 69,
the reference to the known since the publication of Origins of Clerk Maxwell’s
Electric Ideas, Cambridge, 1937, the first proposition of elastic energy of distor-
tion as a measure of material effort by J.C. Maxwell in 1856 is also mentioned).
The Burzyński yield criterion for orthotropic solids and its relation with the con-
dition proposed twenty years later by R. Hill [32] for materials with symmetric
elastic range, as well as for orthotropic solids revealing the SD effect studied
by P.S. Theocaris [33–35] will be discussed independently in the forthcoming
paper [36].

According to the comprehensive analysis of existing criteria in [1] and [2],
the first problem was undertaken already in the Coulomb criterion, which can
be expressed by the following equivalent relations, cf. [2]:

(2.1)

σ1 − σ3
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+
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kc + kt
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2
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2

√
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where kc and kt are the magnitudes of the yield stress at compression and ten-
sion, respectively, while ks is the yield strength in shear, given by the relation

ks
ktkc

kt + kc
, and τ , σ are the shear and normal stresses acting in the plane of shear.

Another approach was related to the Duguet–Mohr hypothesis, which reads [2]:

(2.2)

(σ1 − σ3)
2 + (kc − kt)(σ1 + σ3) = kckt,
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kc − kt

2
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2

16
= 0.

These conditions have been, however, completely rejected by the researches at
that time because of the just detected large discrepancies with experimental re-
sults, which were related, inter alia, with the lack of influence of the intermediate
principal stress, [1, 2, 11]. This problem was also studied by G.D. Sandel [24],
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who assumed that the measure of material effort is the shear strain that depends
linearly on volumetric change of strain, which led to the following equivalent re-
lations:

(2.3) (n + 1)σ1 + nσ2 + (n − 1)σ3 ≤ 2ks, kcσ1 +
kckt

2
σ2 − ktσ3 = kckt,

where n =
kc − kt

kc + kt
, ks =

ktkc

kt + kc
.

Then the problem was undertaken, within the framework of energy-based ap-
proach, by F. Schleicher (1900–1957), cf. the short biographical note in [38],
who presented his results during the application lecture delivered on the 8th of
May 1925 at the Technische Hochschule Karlsruhe, in the summary of the pre-
sentation at the autumn 1925 GAMM conference in Danzig (Gdańsk) [39] and
published as a full paper in [40]. Also R. v. Mises mentioned the possibility of ac-
counting for the SD effect assuming that the yield strength depends on pressure,
in the editorial note to the paper of F. Schleicher [40], p. 199: “Eine mit der
hier entwickelten wesentlich gleichlautende Plastizitätsbedingung ist von mir in
einem Vortrage im Ausschuß für Technische Mechanik des Berliner Bezirksvere-
ines deutscher Ingeniueure am 17. Juli 1925 mitgeteilt worden. Ich habe dabei
namentlich gezeigt, wie die neue Hypothese, die eine konsequente Erweiterung
der von mir im Jahre 1913 eingeführten darstellt, durch die neuen Versuche
von Lode notwendig gemacht und durch sie voll bestätigt wird. Die Bezeichnung
“Energiekriterium” lehne ich ab, da der in Frage kommende Ausdruck für den
plastischen Körper kein Mass der Energie bildet. R. v. Mises”.

(One of developed here, essentially similar yield condition has been announced by myself in

a lecture delivered during the meeting of the Commission of Technical Mechanics of the Berlin

Branch of the German Association of Engineers on the 17th of July 1925. I have particularly

shown by that how the new hypothesis, which is a consistent extension of that one introduced

by myself in the year 1913, appeared necessary due to the new experimental investigations by

Lode and also gained full confirmation by these experiments. I am rejecting the notion “energy-

based criterion” because the pertinent relation for the case of plastic bodies gives no measure of

energy).

F. Schleicher proposed in [40] an energy-based hypothesis, in which the
equivalent stress reads:

(2.4) σvf =
√

2EΦ = f(p),

where E is the Young modulus, Φ is the total elastic energy density and p is

the pressure p =
σ1 + σ2 + σ3

3
and f is a certain function which, according

to the assumption of F. Schleicher, can be linear or parabolic with respect to
pressure p. In particular, the following relation can be obtained in the space of
principal stresses:
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(2.5) σ2
1 + σ2

2 + σ2
3 − 2µ(σ1σ2 + σ2σ3 + σ3σ1)

+ (kc − kt)(σ2 + σ2 + σ3) = kckt,

where µ is the Poisson ratio. The Schleicher’s application of the total elas-
tic energy density as a measure of material effort was strongly criticized by
W. Burzyński in his paper published in German [11], as well as in his earlier
doctoral thesis [2] and the later paper written in Polish [1]. The discrepancy
with the experimental data discussed in [40], the unrealistic transition to the
Beltrami criterion for kt = kc and the presence in the yield condition (2.5) of the
Poisson ratio µ, were mostly criticized. In contrast to G.D. Sandel, F. Schleicher
neither answered to the Burzyński’s critics nor referred to any of his papers.
Nevertheless, he changed his view on the measure of material effort and in the
next paper, published on the 13th April 1928 in [41], he replaced in (2.4) the
total elastic energy Φ by the density of elastic energy of distortion Φf :

(2.6) σg =
√

6GΦf = f(p).

Discussing the possible applications of the general form (2.6), F. Schleicher
suggested the application of linear dependence of the equivalent stress on pres-
sure to certain brittle materials. In such a way, he is arriving at the cone in the
coordinates (σg, p), what corresponds also with a certain special linear form of
Burzyński criterion, cf. [1], p. 289, and to the similar condition derived later by
Drucker and Prager [3]. Considering (2.6) in an equivalent form

(2.7)
1

3

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ2 − σ3)2 = F (p),

one obtains the relation proposed in [2], p. 183, as a certain generalization of
Mohr’s criterion. Similar generalization was considered later by some authors,
e.g. A. Nadai [42], p. 225–228.

3. Conclusions

The more careful study of the discussed above problem leads to the conclusion
that as a matter of fact there is not the dependency of the yield strength on
pressure that is essential for the adequate formulation of yield condition, but
it is rather the proper relation between the densities of energy of distortion
Φf and volumetric change Φv for different materials under varying states of
stress. The physically justified interplay of the both parts of elastic energy at
the elastic limit, which defines in a proper way the material effort at a given
state of stress, is a key point of the formulation of an adequate yield function
and yield condition. This problem was underlined and discussed in recent papers
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of R.M. Christensen [43, 44]. One of main achievements of W. Burzyński

was, according to our opinion, that he had solved this crucial question in an
original way proposing the following formulation for the hypothesis of variable-
volumetric-distortional limit energy, cf. [1], p. 288:

(3.1) Φf + η(p)Φv = K,

where a particular form of the pressure dependency of the function η(p) is as-

sumed, η = ω+
δ

p
. The core of Burzyński’s idea is the exchange of three material

parameters: ω, δ, K, appearing in (3.1) with the triplet of material constants, kt,
kc, ks known from experiments of tension, compression and simple shear. The
other form of the function η(p) could be also considered in order to account for
the ductile-brittle transition under the tri-axial states of stress in a considered
material. The Eq. (3.1) leads to one of possible formulations of the W. Burzyński
yield condition

(3.2) σ2
1 + σ2

2 + σ2
3 − 2λ(σ1σ2 + σ2σ3 + σ3σ1)

+ (kc − kt)(σ2 + σ2 + σ3) = kckt,

where λ =
kckt

2k2
s

− 1 and, depending on the sign of λ and the relation between

material constants kc, kt and ks, the Eq. (3.2) can represent in the axes of
principal stresses a paraboloid, ellipsoid or a cone of revolution, cf. the discussion
in [1], p. 289. Similar formulations were repeated independently during the last
eighty years over and over by many researches, often without the clarity of the
in-depth analysis and physical foundations of Burzyński’s work.
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