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DRAG ON A CIRCULAR CYLINDER OSCILLATING
IN'A DUSTY VISCOUS FLUID

A INDRASENA and ALI MOHAMED AWIN (TRIPCQLI)

Rectilinear osciltations of a circular cylinder in an infinite expanse of a viscous, imcompre-
ssible fluid with embended small solid spherical particles are studied. Analytical expressions
for the velocity of the fluid and the drag experienced by the cylinder due to fluid stresses
are given. Explicit expressions for the drag parameters are obtained using the asymptoti;:c
expansion of modified Bessel functions, and -some limiting cases are discussed. |

NOMENCLATURE

u velocity of fluid particles, )
v velocity of dust particles, . ' ~
p pressure, '
o density,
@ body force vector,
t time, -
4 coefficient of viscosity,
v kinetic coefficient of viscosity,
U, spatial: amplitude of oscillation of the cylinder,
o frequency. of osciliation of the cylinder,
m mass of a dust particle,
k Stokes resistance coefficient,
T = mfk particle relaxation time, .
Ny number density of dust particles,
- f=mNy/p mass comcentration of dust particle,
g acceleration due to gravity. '

1. IntrRODUCTION

The study of fluids having a uniform distribution of solid spherical
particles is an important prelude to understanding phenomena such as blood
flow in capillaries, poeumatic conveyance of small grain-like particles, flow
- in rocket tubes where small carbon or metallic fuel particles are present,
environmental pollution, combustion, fluidization, etc. The basic theory of
multiphase flows is given in-a recent book by Soo [1]. MicHaeL and
Mirer [2] and Liv [3, 4] have investigated the flow produced by the
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motion of an infinitc plate in a dusty gas. HEALY and Yanc [5] have
obtained exact solutions of the problem discussed by the authors above
using the Laplace transform technique. MicHAEL and NOREY [6] have
used the perturbation method to study the laminar flow of a dusty gas
" between two rotating circular cylinders. Later Heary and Yanc [7] solved
the problem of oscillating two-phase flows through a circular channel
Recently INDRasENA and Omar Ben-ZARTY [8] have investigated rotary
oscillations of a sphere in a dusty gas and obtained an exact expression
for the couple acting on the sphere due to fluid stresses.
In this paper we have studied the rectilinear oscillations of a long circular
cylinder along a diameter in an infinite mass of viscous, incompressible
. fluid having a uniform distribution of solid dust particles. The problem
is solved by the method of separation of variables and particular attention
is focussed on the drag experienced by the cylinder due to fluid stresses.
Explicit expressions for the drag parameters which are introduced in the
expressions for the drag are obtained using the asymptotic expansion of
modified Bessel functions. Numerical values of these parameters and the drag
arc tabulated to study their variation with the frequency of oscilation of
the cylinder. Some limiting cases are discussed. 5

2. EQUATIONS OF MOTION

We shall consider the rectilinear oscillations of a circular cylinder of
radius a along a diameter with velocity U, cos ot in the infinite expanse
of a viscous, incompressible fluid with a uniform distribution of identical
spherical dust particles. Taking the spatial amplitude of oscillation to be
small in comparison to the radius of the cylinder, ie. Ugfas to be small [9],
we can get following lincarised equations of motion from SarFMan [10]:

Vi=20,
dii 1 ¢
o Vp+~—|—vl72 ﬁ+£(ﬂ—ﬁ),
ot 0 o T
(2.1)
yu=70,
ov L
T E{—-(u—?)y

It is assumed that (i} the interaction between the two _phaseg is m
accordance with the Stokes drag law, (i) there is no radial migrafion
of the patticles [11], (bi) there is negligible pqrticle interactiog, (iv)
sedimentation is negligible, (v) the volume (_)ccupied by the particulate
phase is negligible and (vi) Browian motion is neglected. '

Eliminating 7 between, Egs. (2.1)2 and (2.1);; we can get

g\ ou d 1 91_5) ( _8)_'2_
= ON L ppr— vl t+r | VU
(2.2) (1+f+r az) ¥ (1+r_ at)( 2 PT at .
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3. FORMATION OF THE BOUNDARY.VALUE PROBLEM

Choosing the direction of motion of the cylinder along the axis 0=0
of the cylindrical coordinate system (r, 6, z) and . 8, ¢, as base vectors
-of the system, vector i can be written as -

(3.1) A=u,(r,0) & g,+u, (r,0) e z,.

Eq. 31) and in all subsequent equations only the real parts are to
be taken whenever physical quantities are represented by complex quantities.
Equation (2.2), wsing Eq. (3.1) can be resolved into the following equations:

aN@ .o (. -2\ 1ap\

8 2 fug w\ .,
_ . '72 o Y% M iGt
v(l-i-'r at)( Hr 00 rz)e ’

G-2) 8\ o 2 1 op
‘ _ o\ -
1 N oty _ T ——
( +f+T 6t> ry (ug %) (1+1: at)( 2 r68)+
2 2 Ou up\
+v(1+1:5)(l72u9+r—2 20 -;2—)3 !
where '
? 1 8 1 @
2: —_——— ————
= T o T
and '

7’ = p+ggr sin 8+ constant.

In view of the equation of continuity, u, and u, can be expressed by
a stream function ¥ (¢, 6) as’ :

| o lw W
(3.3) N u,,‘_—— T uG_'é‘r"

: Substituti_ng Egs. (3.3) and (3.2) respéctii?ely sim'plifies ‘.(Or
(e 2)3 3B 12)
O e
() (3o )
- | +v(1+r~£)(a—;'i¢) &t
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Elimination - of p’ from the above equations leads to

2\ o N )
(3.5) | (1 + f+t—ét—) gt— (F2y) e =v (1—!—1: _—;—)(V’* @ et

4. SOLUTION OF THE PROBLEM

Now we have to solve the differential ecjuation (3.5) to find ¢ subject to
the adherence condition ' : ‘

u, (a, 6) = Ug Cos 0,
te{a, 8) = — Uy Sind
and at infinity we have the usual requirement of finiteness for all the. phy-

sical quantities of the ‘problem. The boundary conditions (4.1) and (3.3)
suggest expressing \ as ' :

4.2) h Y (r, 0) = F (r)Sin 0

which, on substitution in Eq. (3.5), leads to the .following differential
equation: - '

(4.3) ~ D*F()-n DF ) =0,

where

4.1

, o 1+f+tis
B e —

v 1+41io
and

'Dl— dz_'_l d 1

_ Tt e odr v 7

The bo"undary'conditions (4.1) can be eipressed in terms of F in the
following form: ' ' ‘

4.4) "Fla)= ~—aU_.;,, Figg= —U,.

Integrating Eq. (3.'4), we get the differential equation

. #F 1 dF [, 1Y; c
4.5 ‘ & o Iwp-|F=C It
@.3) ity dr.(n+r2) 1=

where C; and C, are constants of integration.
The solution of Eq. (4.5) is given by
C C, 1
{4.6) F(r) = Al (nr)+BK; (nr).—'?;- r——nj—? (
where 4 and B are constants, I, and K, are modified Bessel functions
of the first order [12]. '
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In view of the requirement of finiteness at infinity for all physical
quantities of the problem we have to take the solution as

C
4.7 : "F{r)=BK, (nr)-l—T,
where C = —C,/n?.

Using the boundary conditions (4.4), the constants B and C can be
determined as

B —2Uqa
@) K; (na)+ anK (na)’
) C=U,a K, (na)—anK} (_na) .
K, (na)+anK (na)
U (r,0) " = U, [(E—)z%—%; oKy (na)—rK’l (nr)] e Cos 0,
“9) \r r K, (n.a)—l—ank1 (na)

. a\* 2a aK; (na)+r?nk; ey b
s 9 ot __ I]’ lai )
o (. 0) € 0 [( F ) r* K, (na)+ank’ (na) ¢ Sin 0

Using Eq. (42) and (44) in Egs. (34) and integrating the resulting
equations, we can determine the pressure p’ in the following form:

pun’

4.10) pP=-C Cos 8- €'+ 4; ™"+ Const,

where A, is a constant of integration.

5. Drac

The drag D (t) due to the fluid stresses 7;; on the oscillating cylinder
of length L is given by N

2n ‘

(5.1) D(y=aL| (z,, Cos @—1,4Sin N, -,de,
[#]

where

pn’

(T )oa=C Cosh- &=, e™"" gr sin 0+ const

(Trﬂ‘)r=a = _'.u'nz (Uo a+“z{) Sin 8. ",

Substituting these in Eq. (5.1) and performing integration, we find that

s , ) _ 4K1 (na) ot
._.(5.2) . D)= —-MU, "”2[1 K, (na)+ank, (na)] o
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where M’ = na® LP is the mass of the fluid displaced by a length L of the
cylinder. .

It is not possible to separate the Bessel functions K; and K into real
and imaginary parts because they -are of integral order and of complex
arguments, Thercfore it is not possible to write explicit expressions for K
and K'. We can write explicit expressions which are useful for large
“yalues of jnal if we use an asymptotic expansion for K, and Kj. For large
values of |z| we can express K and K’ asymptotically as

R N

_ K, (@)~ (*2-2—) e * (1+ )SZ— +...),
AN 7 \
K&(Z)ﬁ-(—z?) e z(1+—82f+...)

provided |argz| < 3z/2 [12].
Using these expressions in Eq. (5.2) and separating the real part, we can get

(5.3) D (1)~ M’ U, o (K Sin ot K’ Cos at),
where - : :
o4 v
(5.4) K=oc§ sin2cp+-—\/loc8m P,
' aN o.
4 v 2
K’:—‘OCZCOSZ(,D—F—OC\/—V—COS(Q-F vZ,
55 . a \ o oa
G2 ln]* = — o |
\ v
1
(1+f)?+77 6 |2
6 : 2 e
(5.6) ‘ * [ i+1%4?
and
20 = %than_l ;jf—ta.n‘l 6.

For the sake of convenience K and K’ introduced in the expression (5.3)
may be defined as drag parameters.

6. DIsCUSSION

The second term —M' Uy oK Cos ot in the expression for the force D ()
always opposes the movement of the cylinder and thus a damping force
is out of the pbase with the acceleration. This damping force. causes .
decay of the oscillations of the cylinder if left free. The quantity KM’
is called the virtual mass of the cylinder and depends on the frequency ¢

and the parameters fand 7 in a complicated form. It is seen from Tables 1, 2,
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~

Table 1. t=0.50

¢ K K D' ()= D (yM' U,
1 508018 8.13861 406515
2 3.85386 492368 3.01819
3 3.31619 3.71009 —11.54636
4 3.00017 3.04996 17.07841
5 278661 2.62768 —16.33377
o 2.26199 168182 —25.95659
20 1.89293 1.1018¢ —43.79758
30 1.72939 0.86824 ~51.29337
40 163183 0.73577 —40.08223
50 1.56522 0.64826 —7.95996
Table 2. 1= 0.20
¢ K K’ D =DM U,
1 5812436 2.12346 4.02840
2 3.690807 | 4.9299%4 3.11206
3 3.36335 3.73200 —11.69629
4 { 303686 3.07881 17.26471
5 | 281413 2.65829 —16.51755
10 | 226869 1.70386 —26.18056
220 | 1.89344 1.11277 —4391328
30 172919 0.87519 —51.28276
40 1 163153 0.74079 3996637
50 1.56492 0.65217 —7.78015
Table 3. Clean viscous fluid {z = 0.00)
a K K D) =DM U,
i 5.00000 7.99999 399245
2 3.82843 4.82842 3.04951
3 3.30940 3.64272 —11.49507
4 3.00000 2.99999 16.94460
5 278886 2.58885 —16.14935
10 2.26491 1.66490 - 25,82550
20 1.89443 1.09442 —43.75172
30 173030 0.86363 —~51.32372
40 1.63246 0.73245 —40.17337
50 1.56569 0.64568 —8.08495

and 3 that for any given frequency of oscillation the drag experienced
by the cyhnder due to a dusty fluid i higher than ‘the drag due to
a clean viscous fluid. This is so because of the presence of the dust
- particles in the fluid. From Egs. (54) and (5.5) it follows that for large
values of o the effect of dust particles on the fluid motion .is reduced
and «, ¢ K, K’ and D approach their correspondmg values for an ordmary‘
viscous fluid. When the masses of the dust ‘are small, thelr 1nﬂuence
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on the fluid motion is reduced and yltimately as m — 0 the term —Jri(u-—v)

which represents the drag on the fluid due to the dust particles disappears

in

the eguation of motion (2.2) and the drag parameters K and K' .

simplify to

where

gives the drag on the cylinder “due to the clean viscous fluid. Numerical
values of K, K’ are tabulated in Tables 1,2, and 3 to represent their
variation with the frequency for différent values of .

— . ’
EBoommumewr

OPOR DZIALATACY NA WALEC: KOLOWY DRGAJACY W ZAPYLONYM PLYNIE

. Rozwaza sig prostoliniowe drgania walca kolowego W ‘nieskoiiccong?  obigtodci lepkiego
plynu niedcidliwego z zawicsing W postaci malych kulek' szcywnych. Podano wyraZenia ana-,
lityczne dla predkosci. plynu i opora napotykanego przez walec. Jawne wyrazenie dla para- |
metréw oporu. uzyskano za pORCCE rozwinieé asymptotyeznych smodyfikowanych funkeji -
Bessela. Oméwiono rowniez pewne przypadki graniczne. '

K = (1+26),
K'=f@+P),

2y 3
ﬁ;(aaz) ’

it can be seen that the expression (5.3) with the above values of K, K'
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STRESZCZENIE

LEPKIM:
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Ps3rome

COIPOTHUBJIEHHME AEUCTBVIOWEE HA KPYFOBOM LIWJIMIIIP
KOJIEBJIIOMHNCS B 3ATILIIEHHOM BA3KOM XHKOCTY -

Paccyxparorea npaMonuseiinpe xomeGaHAs KPyTroBOTO HHIHHADA B GECKOHETHOM OGbEME
BH3KOH HECHHMaeMOM XWOXOCTH CO B3Becell B BHIE MANBIX KECTKMX uiapuxoB, [Ipusenersl
AHATHTHYCCKHE BBIPAMEHHS NI CKOPOCTH XHIOKOCTH M CONPOTHBICHHSA, BCTPEYAEMOTO LHIIMHI-
poM, SIBHEIC BRIPAKEHHS JUIS NAPAMETPOB CONPOTHBICHHS NOMYYCHM IPH TIOMOIH ACHMIITO-
THYECKHX pas/iokcikil MopudnnuposanEbx Pynkumi Beceens; ofcymuenst Toxe HEKQTOPbHIE

TIpeACIBHbIE CAYHAH. .
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