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PLASTIC BEHAVIOUR OF FIBRE- REINFORCED COMPOSITES
AND FRACTURE EFFECTS

K. HERRMANN (PADERBORN) and I M. MIHOVSKY (SOFIA) (¥

The work deals with the problem of longitudinal extension of a unidirectionally reinforced
brittle ' fibres-ductile matrix composite. A model of the  plastic deformation process is
proposed with regard to a unit cell of the composite. The model accounfs in an essential
way for the matrix ductility and reveals the nature of the possible meéhanisms of failure
of the fibre-matrix interface. The model implies a relatively simple general scheme of analysis
of the entire problem including. in particular. the determination of the current plastic
zone size, the stress-strain curve for the considered composite as well as the important
measure of a limiting elastic response of the matrix phase. The detailed solution of the
problem associated with the proposed model is shown to require simple numerlcai calculations.
However, certain important results are obtamcd in a closed form.

1. INTRODUCTION

» The plastic behaviour of fibre-reinforced composites has been for long -
the subject of numerous investigations. A number of approaches to the problem
have been developed in the works of R. Hir [1,2], A.J. M. SPENCER
[3,4], J.1. MuLyerN et al. [5,6], R.F. TuomasonN [7], G.J. Dvorax
et al. [8,9], I. M. Koriov and A.S. Ovcinskus [10], M. R. Piceorr [11].
An extensive review of progress in this field is given by G. A. Coorer
and M. R. PiGGort in [12]. Although the existing approaches account in
different ways for the effects of fibre-reinforcement on the appearance
and development of the plastic deformation and fracture processes in the
composite materials, they focus generally attention on the strengthening
effect of the fibres. But as known the fibres act at the same time as
stress and strain concentrators as well and thus an attempt to a more
precise account for the concentration effect of the fibres appears to be
. of obvious interest especially from the point of view of the fracture
behaviour of the comp031tes Such an attempt forms the matter of the present
work.

(*) On sabbatical leave at the Institute of Mechanics, University of Paderborn, Federal
Republic of Germany during the period of July 1980 to July 1981.
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2. BASIC ASSUMPTIONS

The material under consideration is a unidirectionally reinforced fibrous

composite with infinitely long continuous fibres and relatively small fibre
volume fraction. The fibre material is linear elastic with Young’s modulus
E; and Poisson’s ratio v, The material of the matrix is elastic (E,,, v,,)-
-perfectly plastic and obeys the von Mises’ yield condition with a tensile
yield stress ¢, As usual, the relations E, <E; vp<Vn and ¢,<E,
are supposed to apply. ,
A unit composite cell in the sense of the known model of coaxial
fibre-matrix cylinders is studied in the following so that when referred
to a cylindrical coordinate system (r, 0, z) the fibre and the matrix occupy
theregions(O = r 27,0502, —0 =Xz = w)and (ry = r=r,, 020210,
— 0 = z = o0), respectively.

Those loading conditions of the composite which result in axisymmetric
stress and displacement fields within the unit cell only will be considered.
Perfect contact is assumed to exist over the fibre-matrix interface r=r,
and, as usually, the genecralized plane strain condition is supposed to
apply. The normal stresses o;,i=r, 0,z within the cell are thus principal
ones and depend on the radial coordinate r only, ie. o;=0;(),i=7, 8,z.

The loading is specified in the present analysis as longitudinal extension
of the unit cell. The corresponding elastic solution of the. problem with zero
tractions over the outer matrix surface r=r,, is known and can be found,
for example, in [5, 10]. :

The condition of axial symmetry implies certain obvious features of the
elastic-plastic state of the considered unit cell. These are that the plastic
zone presents itself as an infinitely long cylinder rrsrsr,0=0=2n,
—rEzS wir. =T, and spreads with increasing loading or, equivalcnﬁy,
with increasing axial strin &, into the matrix material. The equation
of the current elastic-plastic boundary can thus be written in the form

re=r, (82)'

3. FiBRE-REINFORCEMENT EFFECTS

_ The elastic solution just mentioned implies two important consequences
concerning the role of the fibre as stress and strain concentrator. Firstly,
the presence of the fibre results in the known shrinkage effect, ie. in the
appearance of compressive radial stresses over the [ibre-matrix interface.
This effect is due on the whole to the above assumed relation vy < v,
and is influenced at the same time by the fibre volume fraction, that is
by the ratio r;/r,. Secondly, because of the existence of the fibre plastic
deformations appear first over the fibre-matrix interface at a value of the
axial strain s, which is smaller than the ratio o,/E, ‘as in the case of
absence of he fibre when, in addition, the whole matrix plastificates immedi-




PLASTIC BEHAVIOUR OF FIBRE-R'BINFORCED COMPOSITES ' 167

ately. Since a composite with a relatively small fibre volume fraction is
considered and since the effects of the stress- concentrators are known to
be generally local ones, it would be then reasonable to expect that intensive
plastic deformations as well as fracture processes may develop within the
part of the matrix immediately surrounding the fibre while at a certain
distance from the flbre-matnx interface the matrix may still deform elastically.

As known, the ‘strengthening effect of the fibre results in the fact
that the behaviour of the composite “in the fibre direction” and of the
unit cell as well is rather elastic-like than perfectly-plastic. A reasonable.
mterpretatlon of this effect could be that the fibre, being linear elastic
and possessing high stiffness, prevents, due to the assumed perfect fibre-matrix
contact, the davelopment of a relatively large plastic part &2 of the total
axial strain &! within the plasiificated matrix region and contributes thus
to the development of a relatively large elastic part ¢ In accordance with
the standard plasticity theory, the relation g, = e ¢+ef applies at each
instant of .the deformation process within the plastlc zone of the matrix
where the -total axial strain g, is itself a monotonously increasing function
of the applied tensile load. The plasnc deformation process developing
within the matrix . couid be then viewed as a process of simultaneous
increase in both the elastic & and plastic &f parts of the total axial strain
g, increasing itself. This reasoning in the whole interpretation of the process
is obviously limited in the sense that the elastic. response of the matrix
material is limited itself. In other words, such an interpretation with the
continuously increasing elastic part & of the axial strain could actually
apply only up to a certain stage of the process with a corresponding, say
critical value ¢ of the quantity ef If, as it will be assumed, no unloading
takes place in the course of the plastic deformation process, then, upon
reaching this stage, only plastic strain increments de? will further develop
while the elastic part of the axial strain keeps. apprommateiy a constant
value %¢. Thus the account for the limiting characteristic ¢ of the elastic
response of the: ‘matrix material implies in a natural way the necessity of
dlstmgulshmg two stages of the plastic deformation- process the first one
with increasing values of & (up to the instant ¢; = %) ‘and the second
one \:ith the approximately constant elastic part ef of the axial strain
(ez = &)

4. THE PLASTIC DEFORMATION PROCESS

When taking into account the introduced limiting characteristic e,
the following description of the plastic deformation process appears as a reason-
able one. In accordance with the known elastic solution of the considered
problem and the assumed yield condition, plastic deformations occur at a given
definite stage of the loading process within the matrix over the fibre-matrix
interface. Consequently, a plastic zone r; =r<r, appears and spreads
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monotonously into the ‘matrix. The deformation process within this zone
includes simultaneous increase in both the elastic and plastic parts of the
total axial strain increasing itself up to the instant when ¢ = t¢. One
should expect due to the concentration effect of the fibre that the latter
relafion would be first satisfied over the fibre-matrix -interface r=ry.
At this instant, another second plastic zone ry=r =R, R <r, appears
within which the relation & = ¢ holds true so that only plastic deformations
in’ the axial direction develop further within this zone. The second plastic
zone also spreads into the ‘matrix material -having the first zone, which
occupies' now the region R, <r <r,, at its front r =R, where the relation
¢f = & applies as well. :

5. ANALYSIS

Tt should be recognized that an exact analysis of all the stages of the
plastic deformation process within the frames of the: description given
above of (he latter seems to be impossible for many reasons. Nevertheless
the accepted interpretation of the  process leads to ' certain important
qualitative conclusions and quantitative estimations which are of definite
interest from the point of view of the fracture behaviour of the composite.
As already mentioned, the relation . S
(CH VR L g =t e
applies at each instant of the plastic deformation process..Since the condition
of generalized plane strain applies, then the total axial strain &, does not
depend on the radial coordinate r within the entire matrix region rp S 1 =1,
Upon expressing, as usual, the elastic. part &; of the axial strain by means
of Hooke’s law, one comes up with the relation. '

52 = By ot v (0,409,

_Whe_re o;,i=r,0,z are the normal and at the same time the principal
stresses within the plastic zone where Eq. (5.2) actually applies together
with the von Mises’ yield condition : -

63 (=0 + -0 +Ho—0) =20].
Substituting here for ¢, from Eq.(5.2) gives

2 e N2 2 2
Cg—Tp \ g, 10y E, &7 (1 — 2V, _ 9%
GA) ( 2 )’+(_ 2 L—b%) 3 3

Equation (5:4)_.is identiézjllly'éatisﬁééi‘.'by .present'ing_ the _s:‘;re's's'es in the form

D o g Y Eog® g A
69 }: Put % cos(witg),
G e e fasing
where the following hot‘ations'are used:
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= o .. Og—0 1 O
(5.6) : _ sin w = . / —X,
(5.7) : ctg =17 2,

Equations (5.5) reflect the assumption : that within the plastlc zone the
relation o, = 0, is valid and the angle w as defined by Eq.(5.6) is thus
0 = o = n. Substituting for o, and oo from Eqg. (5.5) into the, equﬂlbrlum
equatlon

coda, ei=ay”

58) =0
results into the equation s _ he
(5.9) En diz 0 gy (a)+g0) do 20, smo .

1-—21?", dr ﬁs]n(p \/37 S -

where £ is an obviously unknown function of the radial coordinate r
and therefore the integration of Eq. (5.9) cannot be performed. Nevertheless
an - approximate relation- between the angle @ and the quantity & is
obtainable 4t least” within-the immediate ‘surrounding: of the fibre upon the
assumption that the elastic parts of the ¢, and &, strain components within
this region are negligible with respect to the corresponding plastic parts.
This assumption together with the standard condition of plastic incompressibility
of the matrix material 1mphes that Just around the fibre-matrix interface
the relation : s :

i) SN 7 SR

‘holds . true where ¢,, is the relative volume change i.e. eml-—s +g5t2,.

Expressing &,, with the aid of Egs. (5.2) and (5.5) and Hooke’s law gives

1

ey ol e

Note once more that Eq. (5.11) applies approximateiy ‘within ‘2 thin l.ayer

around the fibre and over the fibre-matrix interface r =r, in particular

where the condition &f = ¥ is. first ‘achieved. The ‘corresponding vatue
= @ (£ of the angle @ follows from Egq.(5.11) to be

5 '12')' T e arrc co’s[ En b
. . ot= —_—
L es T y (T v,)
_ Accordmg to the mode] of the plastlc deformation process proposed above
further . increase in the apphed external load results in the” appearance of

~a_second. plastic zone r, <r = R, over the outer boundary r= R, of which
_Eq (5. 12) is vahd Finally, assummg that for a given matrlx matena} under
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the considered scheme of loading the quantity e, respectively w* (cf.
Eq. (5.12)), is approximately constant and introducing the angle wg, as

(5.13) wg, = @ (R),
one comes up with the relation '
FRRY) o wg, = ot |

Equations (5.2), (5.5), (5.12), (5.13) and (5.14) define now the stress state
"over the outer surfacé r =R, of the second plastic zone entirely through
the still unknown quantity R,. Moreover, these equations together with
Eq. (5.9) define the stress state within the whole second plastic zone again
by means of its unknown outer radius R.. . "

Really, as it was. assumed, in the course of the enlargement of the
second plastic zone the elastic part & of the axial strain keeps constant
value %¢ so that within this zone Eq. (59) is valid again with & = B
now. Upon integration Eq.(5.9) gives L

r%inw:Cexp(— ﬁ (0),.

1—2v,

~ where .the .intégrﬁiioﬁ .const'a._mt C is determined from the condition
=g, = Og, with g, defined by .Egs.(5.14) and. (5.12). This condition

implies finally the relation : T

' . " R*  sine BRVAE N

Now it is easily observed that the latter equation together with Eqé. (5.2),

(5.5), (5.12), (5.13) and (5.14) defines the stresses within the whole region

rp £r =R, where R, is still to be determined. : o

6. THE SHRINKAGE EFFECT

Consider now the radial stress. o, acting over the fibre-matrix interface.
From Egs. (5.5) with & = t one has

b, E, % g,
Glr=e, = :
ST =2y, fBsing
- where w,, = oy 2 : - ,

It would be reasonable to expect that the developing plastic deformation
prosess will further contribute to the shrinkage effect. Really, as already men-
~ tioned above, the latter is due to the difference in the lateral contractions of

the fibre and the matrix materials -and this difference may actually only
_increase with the development of the plastic deformation process because
~ of the plastic incompressibility of the matrix material. One should consequently
eXPegtf_.t_hat.: the stress o,,-,, as given by Eq. (6:1) would decrease with

6y 08 (@, + 9>
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increasing loading, ie. the angle @, would increase remaining obviously
larger than the angle w*® as glven by Eq.(5.12). Thus Eq.(6.1) implies
that a maximum shrinkage effect is achieved at a value of w, =n—9p.-
The radius R* at this instant, that is

(6.2) R¥ =R/

ﬂl,-f:!!—fp’

is defined from Eq.(5.15) as ‘
oo Sine [ /3

6.3) | R rf-sinmg expl:l v, (n o— coR)

Thus the whole scheme of analysis leads to the conclusmn that a further.
decrease in °r|rmr as well as an increase in R, is 1mp0331ble ‘The occurrence

of sﬁ_ch a critic_al state with o, = n—¢ within the considered unit cell of
the composite could be ‘expected to affect much the corresponding velocity
field within the second plastic zone. S

7. VELOCITY FIELD

In order to investigate the velocity field within the second ‘plastic
zone, the assbcnated flow rule will be applied with 'the yield function
in Eq.(54) serving as a. plastic potential. This implies for the plastic
strain rates &, and &, the relation

x

7. — =

71 o ) 5,

where ' ' S _
z (1 2v,,,)2 - (1-2v,)? E, t(1-2v,)
z,,} 2 [ = ]+ 2 [+1+ 3 3

or, equivalently {cf. Egs. (5.5)),
. Z‘r R
(1) o }_

PR

_h-)_‘.

Ty
NG | |
‘Equation (7.1) together w1th the mcompressxblllty condition é,-i—ég—l-é, =0
implies for the axial plastlc strain rate &, the expression

ItE,

(7 ) B - &= éa _
Xy b . :
Now it is easily scen from Egs.. (7 2) and (7 3} . that Vﬁim_mrf—ro when

wf—»(n @) so that in accordance ith Eq. (7.3) the critical tate considered
above is characterized by the relation 8,‘] f~+ +0oo. The latter means

phys;cally that at this state free. plastic flow of the ‘matrix material tends
' to take place w1th1n a thin layer nnmedlately surrounding the fibre.
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‘The tendency for the occurrence of such a singular velocity field is a result
of the stress redistribution which develops within the second plashc zone
“ simultancously with the expans1on of the latter '

8. FRACTURE EFFECTS

It 18 qu:te obvious that at the state ]ust considered - the behavrour
of the composite unit-cell will depend upon the interaction betweeni the
occurrence of a singular velocity field and the strengthening effect of the
fibre. Because of the assumed perfect fibre-matrix contact the latter effect
tends to prevent the development of such a singularity of the velocity -
field. The very nature of these two effects implies: the naturai assumption
that their interaction results in the appearance of shearing stresses over
the fibre-matrix. interface where the interaction process actually develops.
Morcover, these shearing stresses should, for obvious reasons, be equal
to the shear yield stress ©, = ay/\/_?; of the matrix material. - :

Let now t, be the shear sirength of the fibre-matrix interface. If
1, % 1, then the very reaching of the considered critical state of the compos-
ite wﬂl obviously result in “immediate ‘failure of the fibre-matrix interface
in the form of the so-called fibre-matrix debondmg If, on the contrary,
1,> T, then the weII known mechanism of fibre’ pu]l -out (see for example
':[12]) wrll develop, most probably s1mu1taneous]y wrth a process of fibre
breakmg '

Since the strength properties of the fibre-matrlx interface in the real
composites are as a rule high enough, then the puli-out effect is the one
to be expected with these composﬁes “The effect has been observed experimentally
by B. HaRRis et al. [13] in ductile epoxy resins reinforced with continuous
elastic carbon fibres, ie. in a real composite which in much corresponds
to the model employed in the present work. ‘

9. PLASTIC ZONE SIZE AND ASSOCIATED PROBLEMS -

‘Certain questions concerning the problemn considered above have still
to be solved. Of particular ‘interest to this regard is the determination
of the quantlty % as well ‘as the current R.- and r-values. A possible
: quahtahve approach to the problem is descrlbed in thls section.

The quantity % as it has. been introduced obviously ‘depends on the
matrix material as well as on the current stress state or, equivalently,
on the radial coordinate r. The latter dependence has been assumed to
be negligible in the present analysis- and therefore the question arises
. about the determination of the specific value of % which one should
actuaily use within the framework of the analysis described above. ,

A possible approach to this questron could be based upon the srmple
_formal assumptlon that  the a —value is just a part of the’ hmltmg elastic
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strain o,/E,, of the matrix material in simple tension, ie. =fée—ozcr,/E,,,,
0<a=1 Let R¥(x) be the corresponding value of the maximum plastic
zone radius. in accordance with Egs.(5.12). (5.14) and ¢6.3). Then a simple
.comparison between this theoretical R% (x)-value and the experimentally
observed value of R¥ -implies the actual « and thus the desired actual
$value for the considered problem. It follows from - the equations just
mentioned that in the case a=1, for example, the theoretical R}-value
for a.composite unit cell with v, =035 is R* = 2.15 r, provided at the
critical state both plastic zones as.well as an elastically deformed annulus
r.Srsr, are still present. :

A more sophisticated approach to the problem is bascd on the assumptlon
that the first plastic zone R,%r =r, presents itsclf as a thin layer and
thus the relation R, = r, approximately applies. Such an assumption seems
to be a reasonable .one for- the following reasons. Firstly, since a low
fibre concentration composite is considered, one should. expect both R
and r-radn to be much smaller than r, because of the local nature
of the fibre concentration effect. Secondly, the matrix materlal is a typical
ductile one with low resistance to. the occurrence of developed plastic
deformations such as just like the deformanons w1th1n the second plastic
zone. Therefore the transition region between this, zone and the clastically-
-deformed. zone might be really viewed as a thin layer.

The first plastic zone could be now considered to act as an - elastic-
-plastic boundary where the latter has the form of a thin layer. The layer
itself has the shape of a thin-walled circular cylinder with the mean
radius R,. .

As. usual ‘the standard transition condmom of contmuny for the stresses
and displacements should be satisfied over the elastic-plastic boundary which
is classically presented by a certain mathematical surface. Because of the
specific thin layer shape of the elastic-plastic boundary, a softened version
of satisfying the continuity requirements could be applied in the considered
case. This version involves the exact satisfaction of only -two of these
conditions. The first one is the requirement of continuity of the radial
stress. The necessity of this requirement is obvious since the layer is assumed
to be thin and thus one should not expect substantial change of the
stress ‘acting normal to the layer, ie. of the radial stress within the layer
itself. Let of,i=r,8,z be the normal stresses within the clastic region
of the matnx and let a;,i=r, 0,z denote as above the_co_rrespondmg
stresses within the plastic zone. This requirement could then be written
in the form -

0.1y - : o,|r, = /lg,.
The second requirement which has to be exactly satisfied is the fulfillment

of the yield condition (5.3) over the elastic-plastic boundary. With the aid
of the notations introduced this requirement could be written in the form
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9.2) [t — o3P + (05— 09 + (07— 07 Jlr, = 205 -

Using the equations of Sect. 5 and the known general form of the elastic
solution [5, 101, one may rewrite the latter conditions in the form

' E, e o . . E, C ri\ -
9.3) e + \/?:s}i.n(p cos (g, +¢) = )72 (1_ o ),.
3C2 Ui (1 + v,m)z - C (1 _2vm)

RE B L on

%4

2
_(1+vm) szJ ’

I ’

where the constant C, has to be determined together with R..

It is important to mention at this point that with the conditions
9.1} and (9.2) satisfied or, equivalenily, with the set (9.3), (94) solved
for the quantities R, and C, the stresses in both the elastic and plastic
regions of the matrix are entirely determined ' by ‘means of the current
total axial strain ¢, and the quantity'?’:; One could now consider the
remaining elastic-plastic transition conditions of continuity to be satisfied
as well in the sense that the corresponding quantities (stresses and displace-
ments) change continuously within the layer between their values over
its elastic and plastic surfaces. -

Moreover, Egs. {9.1) and (9.2) or, equivalently, Egs. (9.3) and (9.4) imply
the desired dependence of the current plastic zone radius R, on the current
total axial strain -¢,. This dependence is, as easily scen, of the form

(95) R.=R,(g; ‘52., E,',,,_vm., '_0')',, r;,,).

Provided the actual value of ¥ is already known {for example from the
experiment described ‘above in’this section) the problem of determination
of the current R, (g,)-value is solved. Moreover, assuming that the relation
(9.5) is reversible and applying its inverse version with regard to the critical
state of the' composite unit ‘cell, one obtains the critical value ¢} of the
total axial strain at which the fibre-matrix interface- fails. With account
for Eq. (6.3) this value is given by an equation of the form

(9.6) , % = g* (R®, 5 Epy Vins Oy T

Z1
.

Té obtain the dependence. of R, on the current composite axial stress
&, = Pjmk, P being the applied axial force, is-now a matter of simple
computation. Really, it could be casily verified that using again the equ-
ations of Sect. 5 and the gemeral form of the elastic solution [5, 107
as well as the continuity condition for the radial stress at the fibre-matrix-
interface r =r, one may construct the expressions for the axial stress
o, acting in each of the regions 0 =r <r;,, rySr2R, R, =7 <r,. These
expressions are, respectively,

. & . .o .
0.7 el = E}'sz+2vft En & +-— 6’_" cos (e, '+(9)}
e " 1-2v, \/gsmq) ’ R
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1

(9.8) =T (E,,,. %420, cos ),
. 2y, C
9.9 of=E, (£,+ itv, 72 ),

where C = C{g,; ¥. E,,. Vp, Oy, 1) is now known from the solution of the
set (9.3). (9.4) and 6! means the axial stress acting within the fibre.

The condition of equilibrium of forces acting in the axial direction is

. R,
(9.10) r2 @, =r% 06l +2f o, rdr+(i—R%) oi.
l'-r ° ) .
Iniroducing here the stresses from: expressions (9.7), (9.8) and (9.9) one
obtains. upon integration and using the relation (9.5),- the desired dependence

(9.11) R.= R AT, ¥, By Vs Epy Vs Gy Fps P

When applied to the critical state of the unit composite cell, the inverse
version of the latter equation defines in accordance with Eq. (6.3) the failure
composite stress ¥ in the form :

_ . Ke
(9.12) ‘ oF =G (&, B Vo E vy 04,17, 7).

" Equation (9.12) implies immedi_afcly a simple criterion of failure of the
fibre-matrix interface of the form '

o, =6r.
"A similar criterion concerning the total axial strain follows from Egq. (9.6).
Finally, note that upon eliminating R, from Egs. (9.5) and (9.11) one

obtains the equation of the &, versus ¢, curve for the considered composite
in the form

— _ * i
(9.13) ' G, =0, (&:; &, E,, V,,,,,-Ef., Vs Oy rf:rm)-

As it should be expected this curve depends upon the mechanical and
geometrical properties of the composite as well as on the specific quantity
%2, The comparison. between this theoretically predicted curve and the
experimentally-obtained one forms now the basis for another possible
approach to the problem of determining of the ¥-value for the considered

composite material.
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PE310ME

INIACTHYHOCTbh KOMITIO3UTOB APMUPOBAHHLIX BOJIOKHAMMU U SABJIEHUA
PA3IPYIIERH ST

Pa6oTa nocssuend npobaeMe NpoyOJILHOrO pacTsOKERNsT OFHOHANPABIEHHO apMIPOBAHHOTO
KOMIO3MTA C XPYIKHMHM BOJIOXHaMHM M pacTsxwmoii aTpuueif. Ilpemnoxena Moneib mapouecca
IIacTHYecKux fedopManuii 110 OTHOLIEHMIO K eSUHMTHOH sMelike kommosmta. Mogexs BoOC-
OpOM3BOAMT B NMpPUHUUNAE PACTHKUMOCTH MaTPHIbI U BbIABIAET CYIIHOCTH BO3MOXHBIX Mexa-
HU3MOB pa3pyllleH¥s Ha rpaHuil MexAy MaTpulei ¥ BOJIOKHOM. Mojenb NPHUBONUT TOXeE
K CTPABHMTEJILHO MPOCTOH CXeME aHam3a Lea0ii upo6ieMbl, YUMThIBast B YacTHOCTH ONpERe:
JteHue Fpaluil MIACTHYECKOH O6IaCTH, KPUBOH HanpsXenHe-AedOpManus JUIS PaccMaTPHBAEMOTO
KOMIIO3UTA, KaK U YCTAHOBJIEHHS CYIIeCTBEHHOH Mepbl MPEAeNLHOH YAPYrofl peaxitHn MaTpHHEL.
IMokasaHo, YTO HeTaJiLHbIE PeIeHUs; CBA3AHHLIE ¢ NPeAJIaraeMoil MOLeNbio, TPeOYIOT NPOCTRIX
{YMCJIEHHBIX pacyeToB. HeKOTOphiE CYHNIECTBEHHbIE PE3YJbTATHL JOMYCKAIOT OMHAKO AHAJIMTH-
YECKOro NpefCTaBIeHUs.

STRESZCZENIE

PLASTYCZNOSC KOMPOZYTOW ZBROJONYCH WLOKNAMI 1 ZJAWISKA
g PEKANIA

Praca po§wigcona jest problemowi rozciagania podiuznego jednokierunkowo zbrojonego
kompozytu o kruchych widknach i ciagliwej matrycy. Zaproponowano model procesu od-
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ksztalceri plastycznych w odniesieniu do pojedynczej komorki kompozytu. Model oddaje
zasadniczo ciagliwos¢ matrycy i wyjawia istote¢ mozliwych mechanizméw zniszczenia na
granicy miedzy matryca a wioknem. Model prowadzi rowniez do stosunkowo prostego
schematu analizy calego problemu uwzgledniajagc w szczeg6lnoséci okreélenie granic obszaru
plastycznego, krzywej naprezenie—odksztalcenie dla rozwazanego kompozytu jak i usfalenie
istotnej miary granicznej reakcji sprezystej matrycy. Pokazano, Ze szczegolowe rozwiazania
zwigzane z zaproponowanym modelem wymagaja prostych obliczen numerycznych. Pewne
istotne wyniki udalo si¢ nawet uzyska¢ w postaci zamknigtej.
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