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DEFORMATION OF A NONHOMOGENEOQUS VISCO-ELASTIC
HOLLOW SPHERE

A M. EL-KARAMANY (TRIPOLI)

Symmetric deformation of a non-homogeneous visco-elastic hollow sphere subjected to
internal and external pressures is investigated. The problem is solved by the elastic-visco-
elastic analogy. An exact solution is obtained. A numerical example is given. The non-
homogeneity is shown to decrease he maximum stresses.

1. INnTRODUCTION

The influence of nonhomogeneity has great importance in the study
of visco-elastic materials such as structural elements made from composite
materials and fibre glasses. The torsion problem of a circular bar of
nonhomogeneous visco-elastic material is given in [1]. The method  of
solution of the homogeneous visco-elastic problems is discussed in [2].

In this work we extend the method adopted in [2] to solve the problem
of symmetri¢c deformation of a nonhomogenéous viscoelastic hollow sphere
subjected to internal and external pressures. Assuming the creep function
to be a function of time and coordinates, the problem is solved by using
the clastic-visco-elastic analogy. Graphs have been drawn to demonstrate the
variations of stress and strain components.

2. FORMULATION OF THE NONHOMOGENEQUS ViSCO-ELASTIC PROBLEM

Let us considér the smiall deformation of a nonhomogencous visco-elastic
body. It is assumed that the loading is quasistatic and the relaxation effects
of the volumé properties of the matérial are ignored. The stress-strain
relations of relaxation type can be written, according to Boltzman [3], as
follows:

@) Sy=§ Rt~ x, v, 2)dey (c),
Co ()= Ko@),
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The creep-type stress-strain relations are
. L
&y = j 7 {t_Ts x, ¥, é) dSij (T)’
2.2) ’ o
g
g (t) = T N
where

T 9
0= Tk—a 0 = ey, Sij=0y—00y, ey= 3.‘;""_3‘ dijs
6, &; denote the stress and strain tensors, respectively, R (z,x,y,2), ’
II(t,x,y, 2) are the relaxation and creep functions, respectively, K——the bulk
modulus, (x, y, Z) are the coordinates of an arbitrary point M situated
inside the body and ¢ is the time.

Consider first the following boundary-value problem:

(23) : O nj[S., = (xs! Yss Z.s’ t), uiIS., = @ (xsa Vs 259 t)
-and ‘
24) D9y | oF,=0.

) Ox; teri=

i
if the problem is to be solved in terms of displacements, the Cauchy
relations must be used :

. ) 1
(2-5) . 7 Bij= &~ (ui, i),

and if it is to be solved in terms of stresses, the compatibility equatlons
should be applied

{2.6) €

2
aﬁkm —

ijk €tmn W ’
where €;; is the permutation symbol.

We shall use the Laplace-Carson transform with real parameter p. The
image of f(t) is f(p) (p) defined by [4], '

27 fp=p j e~ " fit) dt.
(]

Taking the Laplace-Carson transform of (2.1), (2.3) and (2.5) we obtain
the following boundary-value problem in terms of images

55”- - '

_ | S
By = 3 (@ ;+14;,),
2.9

Gynjls, =&, s, = @;.
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If the problem is to be solved in terms of stresses, we have

,..m_i-L+ QFi ;—.. 0,-
xj
0% g

(2.9) -

éij == ﬁs-ij, g = '”E

6!‘.] ndSg = qi: I;Su - (PH
where
(2.10) iR = RiI = 1.

3. THE METHOD OF SOLUTION

We ghall consider the materials for which the creep function IT can be
written as

(31) ' H(t:x7yaz):‘qHO(t)g(x!ysz)a
where .
| gx,y,2)#0

everywhere inside or at the boundary of the body.
According to Eq. (2.10) the relaxation function can be expressed as

R(t>x=y’z)=““"{gl“(“t)_._s
_ g(x,y,%)

where
Roﬁ():ﬂ()Rom 1
Let the functions R, (t) and Hq (f) be given by

Ro () =2G, [ 1 —f T(t) dt],

(3.2)
m, (t)-._ [1+j L(t)dt],
where
gt L £y TALOY
e Br ja—1 -
T{)= Ae P71, L{t)= n; T L

A, B, a are empirical constants, F (o) is the gamma function, G, is the shear
modulus which is constant for the homogeneous body and R, .(0) = 2G,,
1 ) .

2G,

1, (0) =
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Using Egs. (3.2) in (2.1) and (2.2} we get

¥

. :
{3.3) Sy= W- R, (t—1) de; (1),

(34) €= g(x,y, %) fHO (t—7)dS;; (v).

From equations (2.7), (3.3) and (3.4) we obtain

33 5=

ij RO éija

1
g
(3.6) &, =glil, S;.

In addition to he problem described cither by Egs. (2.8) and (3.5)
or by (29) and (3.6), let us consider the problem of the nonhomogeneous
theory of elasticity with the following nonhomogeneity law:

6= o

X, ¥, Z
37 gy
K = const,

where G is the shear modulus,
In this case we have the following boundary-value problem [5]:

29 1 oF, =0,
dx;

J

1
8y = 5 (i +ug),

(3.8)
2G0 .
Sij=_'~‘—e!'j, U=9K,
g
Gy Mis, =4y W= @,
or
%1 4ok, =0
axj gy =4,
(3.9) oo Llm o g0
ifk “lmn 6xj 6)C" 3 = K s

o s, = q;, Uls, = @;.

From Egs. (2.8), (2.9), .(3.-8) and (3.9) it follows that the present non-
homogeneous visco-clastic problem in terms of the images is identical to
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the corresponding nonhomogeneous elastic problem with condition (3.7) and
the following substitutions:

2‘GO e Ro,

—»ﬁo, SIJ'_>S=J! ag—0,

0
80,
Ff_’Fia q; — q;, (Pi—’ﬁﬂi:_ u— ;.

(3.10) e &, t;—E;, 00,

Therefore the solution of the nonhomogeneous visco-elastic problem can
be determined if the solution of the corresponding nonhomogeneous elastic
problem is known.

RE
4. DEFORMATION OF NONHOMOGENEOUS YISCO-ELASTIC HOLLOW SPHE!

Tet us study the symmetric deformation of a nonhomogencous visco-elastic

hollow sphere of radii @ and b(a < b} subjected to internal and external
p

pressures P, (z) and P, (1.

4.1. Solution of the elastic problerﬁ

First we shall solve the corresponding nonhomogeneous elastic problem
assuming that K is a constant and G is a differentiable function of r, the
radial coordinate of a spherical coordmate system (r, 0, ¢).

For a,,0, = 69,8, &, = &y WE have the following boundary-value problem

do, 2
Tt (0,—0,) = 0

@.1)

dr
de, 1
(4.2} Gt (e,~2) =0
1 1
8o = (20' +a,)+—— G {o,~0.),
4.3) . )
C g = K (26""+a')+f (6,—0,),
4.4) 6d,.,= ~Pa, al_, =—Pb. .
Assuming
: i
S=et= (0,0,
@.5) o5 =96 ?,; ©,~0)
q4 = 0,—0, = 2G{r)(c,—&),
we obtain

(4.6) | q=2G(r)S.
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Using ‘Egs. (4.3) in (4.2) we obtain

i do, dgq\:1dS §
@7 ﬁ(3 ar ‘E;)"“““*ar*“;i”“
Taking o, = 0,—q, the equilibrium equation (4.1) can be written as
L do, dq 2q o
(“8) dr  dr 1 =0.

Substituting (4.5) into Bgs. (4.7) and (4.8), we get the equation )

dg 3 JX d5 g KS
& T ety 7Y

which can be expressed in the form -
d{ , 3 »
— —KSr¥)=0.
e (qr +3 Sr) 0
: : , . 3 C. ..
The solution of the above differential equation is q-i—? KS=—(C1s a
¥

constant) which, by means of Eq. (4.6), yields
C ' C

» q=—‘ﬁw
3N\, K

Integrating Eq. (4.1) and using Egs. (4.5), (4.9) and (44), we obtain

(4.9) S =

1(r)
- - —Pa+(Pa—Pb) I(b}’
{4.10)
= —p+(p—py IO,
where ' -

r

1 dx
{4.11), ) F{n= 573 (1+3K/4G) s I(r)=J x* [14+3K/4G (x)]

From Hooke’s law (4.3) the strain components are determined,
1 N{@ _M@E®H _NO '
ok MO+t 5600 T 9K 66

H

4.12) £y =

where

M) = —3Pa+ Po— Py [31 (r)+2F(r)j,

I(b)
and
F(r)

N =2(P,~P)—+ 6
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Assuming
(4.13) G=Golg(r), K=K,;Gy,
equation (4.11) yields '

dx F@)= 1
“T1+4 3K, g (00/41 YN
x* [1+3Kq g {x)/4] 23 (1+TK09 (r))

where g (r} # 0 is independent of G, and K, is a dimensionless constant.
It follows from the above equations that I (), F(r) M (r) and N (r)
are mdependen; of G,. ’
In view of Eqs. (4.13) and (4.14), the strain components given by (4.12)
can be expressed as

2 1\, 1 P~P, {2 |
o= 73K, P“(260)+ 2G, 31y {Ko A [g 0+
@.15) + 3;,0 ]}
2 {1\ 1 PP |2 4
&= 73K, (2G0-)+ 2G, 31 (h) {K Te)+F 0 [T?

]

The stress components given by Eq. (4.10) are independent of G,.

@.14) 1()= f

¥

4.2. Solution of the nonhomogeneous visco-elastic problem

Using the analogy (3.10) we obtain the solution of the nonhomogeneous
visco-glastic problem in terms of images as follows.

_ — P Pb _ == Pa—pb - . -
. == I s = _Pa . 3
2 o
@.16) E,= Ilg P+ 11 (P, — P Wy (1),
3K, .
f= —— Ty B +1o (Ba—P) ¥, (),
K,

where

K )
of

12

42
Y,= 30 {—1(1‘)+F(?‘)|:

are independent of G,




374 . A M. EL-KARAMANY

Applying the Inverse Laplace-Carson transform, the exact solution is
obtained from Eq. (4.16) as

P, (t) =Py (1)

Grﬁ-_Ea (t)+ I(b) I(f),
70 R0+ 20D p e F O
B =~ 312( J I, (t—7) dP, (1)+ ¥4 ) U g (-1} dP, (1) -

¢ 0 . ¢}

(@.17) _ » HJ' Iy (t=1) dPy (1) J

& = — 3; Jlno (t'"T) dPa (T)+T2 [J HG (t—t) dPa (t)_

4]

¢ -0 ’

t

- J M, (t—1) dP, (‘L’)J‘

0

5. NUMERICAL EXAMPLE

As an example of nonhomogeneity let us take

6D | g ()=, (=1,
Using relation (3.1) and I (t,r)=Ho (6} g ", G= gG(:) .in Eq. (4.14) we
obtain
62) 1M =1I :j L F'(r)ipn(,.)=ﬁ_'_§_w__,
(1+—n£) 2r? (1 LC~)
@ rll
where
3
C = -’Z K.j b"

. 3 . .
Setting n = 1,?,2, we obtain from Eq. (5.2)

11 1y 11 1\ 1 (r+C
[ P I DU (. 1)
e "= (F_ a) 2¢ (,,2 a2)+ i ln(a‘(rwi))’
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1
0= gerey 7

2 1 1 : 2 1+ C3 2/&3"2 :
Iy {7) 3Con ( pp rm) 3C2, n( 15 Cypfr )’

1 3

F3/2 (I") = 2302 (r3"2 +C3 2) s :63;‘2 = T KG b3/2,
v(—————)— —w——arc tan( r—4 ) -
a[2: ?
, C2 \/Cz (H‘”)
2
: 1 3
Fy() =~ =2 Ko b?.
2 (?') I (T2+C2) L] Cz 4 Ko b

It may be observed that the homogeneous problems may be considered
obtained as special cases when n = 0.
~ Substituting P, (6) = Poh(t) Pb ()= PP (¢} h () into Eq. (4.17) we find

0= PR QHE—P) 1 h O,
=P hl(t)+(P2—P§_)_-g@I—Jg)£)lh(t),
b= iy To O PR O+ H4- (P2 F) To 1)
2 0
T Ho()P h(f)+q'2 (P° PY) O, (1) h (0),

 where PJ, Pj are constantes and

: 0, =
h('t)'i{l t>0

is the Heaviside unit step function sl

*
%o " o/pe

0.8 1

n:

A P? e 5..]'.2-:;.?. '-|:4- l‘G l'ﬂ '“.-‘2'“?5."/.0
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5 . Kee
P pe
a

G, 3.

The stress distribution ¢% = o,/P, at a certain fixed instant t =1,
(to > 0) is shown in Fig. 1. The variation of &f = ¢ K/P? (i=r, ¢) with
time t (in minutes) for a fixed radius ¢ = r/a = 14 are shown in Figs. 2
and 3. The calculations are carried out for the case of free external
surface (PY = 0) and K, = 8/3, b/a = 2. The creep function I, (f) is taken
in the form given in Eq. (3.2) when «=04, 4=01572 and B =005
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CONCLUSION

It is seen that nonhomogeneity decreases the maximum values of the
stress components as compared o those in homogeneous bodies, and renders
the distribution of the stresses more uniform.
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)

PE3mME

NECOPMALIMU TTIOJIOIO HIAPA M3rOTORJEHHOI'C M3 HEOJHOPOAHOIO
BAIKOVIPYTOIO MATEPHAIA

Wccregopanbl cHMETpHUEble Ae(OPMAIHM HEOMHODOAHOTO BAIKOYHPYrOre nOJNOTO IApa,
MOABEPIHYTOr0 BHYTPCHHAM Y BHEHIHMM NRABICHUAM. HpoGrema peniena, NOCAYXUBAACH YIPY-
rofi-pmakoynpyroil ananorueil. IMonyueHo TOYHOE PelleHHS W HPHBENCH ypCcnoBOi TPHMEP.
; Tloxasado, ¥TO HEOAHOPOAHOCTh NPHABONMT K CHEDKEHHIO MAKCHMEAJIBLHBIX HATIPAKEHMI,

STRESZCZENIE

ODKSZTALCENIE WYDRAZONEJ KULI WYKONANE} Z NIEJEDNORODNEGO
MATERIALU LEPKOSPREZYSTEGO -

Zbadano symetryczne odksztalcenie nigjednorodnej lepkospreyste] kuli wydrazonej poddanei
cisnieniu wewnetrznemu i zewnetrznemu. Zagadnienie rozwigzano poslugujac si¢ analogia
sprezysto-lepkosprezysta. Otrzymano rozwiazanie sciste i podano przykiad liczbowy. Wykazano,
¢ niejednorodnoéé prowadzi do obnizenia napreZer maksymalnych.
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