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MIXED BOUNDARY VALUE PROBLEMS OF A TRANSVERSELY
ISOTROPIC LAYER UNDER TORSION -AND VARIOUS BOUNDARY
CONDITIONS

B. ROGOWSKI (EOD2)

This paper deals with the axially symmetric torsion of a transversely lsotioplc layer elasticalfy
supported at the lower plane or bonded with dissimilar half-space. Two types of the three-part
mixed boundary value problems are considercd: flat annular crack problem and annular torsionat
indentation problem, Numerical results ave discussed and displayed graphically,

1. INTRODUCTION

The classical Reissner-Sagoci problem [1- 3] and penny- shaped crack problem
[4] have been extended by several investigators to accomodate a. variety of effects,
especially on the indentation of a solid by a rigid annulus [5-10], the annular crack
problems [11-14] involving infinite or semi-infinite bodies of particular anisotropic
clastic materials [15-19]. Therefore the closed-form solutions have beer obtained
.in the classical problems [2, 4].

) The crack and contact problems involving annular region are reduced to a sol-

ution of the Fredholm integral equation of the first kind. An aftempt is made to
solve the equation by an iterative procedure {6, 9, 20] or by an approxnnate method
[13, 211. The three-part mixed boundary value problem, on the other hand, is reduced
to the solution of an infinite system of simultaneous equations {10-12}. For iso-
tropic bodies of finite extent, these problems have been attacked for a thick plate
[22-24] and for a layer bonded to a half-space [25].

Conventional stress amalysis for anisotropic materials is considerably more
complex than in the corresponding isotropic theory, but some annular contact
and crack problems involving infinite or semi-infinite bodies of particular anisotropic
materials have been successively examined [15-19], .

In the present paper the author solves title problems in the framework of the
theory of anisotropic elasticity by means of Hankel’s transforms and triple integral
equations. In Sect. 2 the stress and displacement states are obtained for the cases
as the lower surface of the layer is stress free or rigid clamped or elastically clamped
or perfectly bonded to a dissimilar transversely isotropic haif-space and the upper
surface of the layer is loaded under torsion or when the tangential, circumferential
displacement is fixed. The torsion of an internal annular crack located i in the middle
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plane of the layer or bi-material composite is considered i Sect. 3. The solution
preserves the essential feature of singular stress field mear the crack tips and the
stress intensity factors are easily evaluated. The torsional indentation of a layer
elastically or rigid clamped at a lower plane and of a bi-material composite by
an embedded rigid annulus is considered in Sect. 4.

Triple integral equations of the problems are solved by expansion of the displace-
ment (in the ¢rack problem) and of the contact. streses (in the contact problem)
into a Fourier series (with singularities of the interaction at the edges of the contact
region), which leads to a system of an infinite number of simultancous algebraic
equations, i.c. extending the method of SwiBUYA ef al. [10, 11]. These equations are
solved by truncation and several numerical results for some practicals materials such
as magnesium and cadmium single crystals and fiber-reinforced composites are given
and compared with those of the isotropic material to show the effect of anisotropy,
boundary conditions and the geometric configuration of the problems.

" 2. BASIC FQUATIONS, AND THEIR SOLUTION

A cylindrical coordinate system (7, 6, z) is used with the z-axis coinciding with
the axis of geometric and material symmetry of the transversely isotropic body.
Since the problem considered here is one of axially symmetric torsion, the only
" nonvanishing component of ‘displacement is v, and the stresses are oo, and o,
These stresses and displacement can be expressed in the elastostatic problem in
terms: of the dlsplacement potential from the relations [26]

op é* g L0 . 6(0

= ——— — — = {7 -+ W—ﬁm“
_(21) v ._ar_’__f_r"z % ooz 6"’__62 o TR

in Wthh G and G, denote the shear modulus in the r—#8 plane (isotropic) and in the
z-axis dircction, respectwely, o (7 z) is the chsplacement potentlal and is a solution
of the partlai d1ﬁ'erent1a1 equatlon

(62&..1 RN O

T G
— = =0, 2= .
- r o - Sz a2 ) p(r,z}=0, s G,

(2.’2) .
Su1tablc solutlons of Eq (2. 2) drﬁ takeu in the form

ey e z) f [A(é)chse (z h)+B(¢)shsE(z h)]Jo(fr)dé, =

(24) o (r z)~ f C(E)exp[ S’é(z h)]Jo(é’r)dE . (G) ,

o . Z.

for ithe Iayer 0<z<h and for the haif -space z>h respectlvely, where J;' (é‘ r)is
thé' Bessel functlon of the ﬁrst klnd of order n and A4 (%), B(f), C (rf) are arbltrary
functions of & SRS
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The displacement and shear stresses cotresponding to the potentials (2.3) or
(2.4) are given by

GG [ & 1A Q) st Ry B () ch s (B, (&) &,

(25)  aw=—G [ &2 [A() chsE (z—h)+B (&) shs& (z—R)] J, (&F) dE,

o= [ &1 Q) ch s (z—R)+B (&) sh st (z— )] J, (&)
b3
for the layer with the material parameters G, G, and

Clym Gl [ & CE exp [~ ), (&)

@6 =G [ ECQew -5 - Rl @z,

o= ECQOexp[~5¢ - RJ, (@) a2,

for the half-space with the material parameters G, G., in which G,,, and G,,, denote
the average shear modulus

Q.7 o . Gue=V G G, .

We assume that the surface z=h of the layer O0<z<h is elastically supported

or the other case, when the layer is bonded with a surrounding material (trans-

- versely isotropic half-space) when the interface at z=# is idealized such that the

stress and displacement are continucus. Then we consider the following two bound-
ary conditions: ' '

(2.8) S Oz (1, W)=k, (v, B).
2.9 G0 (1 Iy=a, (1, 1), 2, (1, F) =, (r, h).

The unknowns in Egs. (2.5) and (2.6) are not independent in view of Eqs. (2.8)
or (2.9) which, when enforced, yield

(2.10) _ B()=—x ({1 4(0),
where

@2.11) - rey==kh G2,

or

2.12) BE=—r0C(®, A@©=CQ),
where _

(2.13) T k=Gl -1,

arg arg
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Substituting Eqs. (2.10) or (2.12) into Egs. (2.5), we get

6.0==Gare f & A (&) [shsE (z—h)—x (&h)~t ch s& (z—h)) Ty (&r) 4L,
@14) cg=—G [ & A [oh & (z—h)—res ()™ shist G—M) > 1) a4,

wn—f EAE chs (z-h)—x, (@fg)~ishscf#(z—h)_].]fl (&r) dé, i%{), 1,

where i=1 corresponds to the condition (2.8) and i=0 to the condition (2.9). In
the second case of boundary conditions the displacement and stress siates in the
half-space are given by the formulas (2.6) for C{&y=4 ().

1t should be noted that the boundary condition (2.8) presents general boundary
conditions of the system. When k=0, the layer is free at the lower edge, when k=00,
the layer is clamped at one and when the spring of stiffness k1is nonzero and bounded,
the layer is elastically clamped at z=h.

Now we define the functions v (¢) or #(£) such that

(2.15) v (©)=A (©) [ch sthtr, (ER~ shsgh], i=0,1
or ‘
(2.16) £ (€)= —EA (&) [sh sEh+1c, (ER)~* chsCh],  i=0,1,

Then the stress and displacement components from Eqs._ (2.14) are
Gu= — g | €29(2) {1~ M, @A) ch stz —sh 58} T, (&) &,
0 ' -
Q1) 00=—G [ &v (&) {chstz—[1—M, EhIsh &z} T (Er) dE,
¢+]

vo= [ &0 () {oh stz—[1-M, W] shsé} Ty (Grya,  0<z<h,
0 ‘- .

or

O g == Garg f ft (5) {Ch SéZ,"‘ []. —Hi (éh)] sh SéZ} Jl (ir) dé!
2.18) 0,5=G [ (&) {[1—H, (&W)] chslz—sh s} Jo (Er) e,

vg=— [ 1() {[1~H, (&h)] ch s&z—sh sEz} T, (€) &, O<az<h,
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where the functions M, (x) and H; (x) (x=¢H) are defined by the following equa-
tions;

_R G- [ (b x—ie, ], i

(219) Mi (x)_{z (1 —IC;) [ezu- (1 +Ko)+1_‘“ﬂfo]ﬁ1, l=0,
2 (eere) [ (b))~ (x—x)]"Y, =1,
e B TS e e i I

tespectively, to the clastically clamped edge z=# (=1} and for the case when the
surface z=/# of the layer is bonded with the half-space 7=k (i=0).

The functions M, (x) and H, (x) are dependent on the parameters Ky OF Ko
{given by Egs. (2.11) and (2. 13)) and the material parameter s € R.. These functions,
for arbitrary values of the elastic constants, have the properties

{2(1 2o 5 ) 2(1 2Kk, N )}
14-#, s 1+“_

lim e** {M, (x), H; (x)}- (rc; bounded),

x—=0
1 i=0,

I N

Mo (O)=l — Ko (FCOI bouﬂded), o lim Mo (x)"'—-“' —'S—l (]Cg“?OO),

E il

o Ky
“lim xM x)y=— R
@21 xso 1() 1481, °

My (x, ko=1)=H, (%, ©cg=1)=0; "

H,(O)=1-«x"1  (xs#0),

A M;(x) and H; (x) are the continnous.functions.
Kis XER.

For the properties (2.21) of the functions M, (x) and H; (x) the solution of
the problems are bounded for any parameter Ko, K, § (in the boundary conditions
on the upper plane of the layer theére may be cases that ry must. be nonzero,
¢.g. the torsional indentation problem) and the infinite integrals (2.17) and (2.18)
are convergent; we can easily evaluate these integrals by a numerical method, The
functions M, (x} and" H, (x) are identically zero when % tends to infinity. The func-
tions. M, (x) and H, (x) are also 1dent10ally zero when the parameter Ko=1, i.e. as

(2.22) . GG=G'G

and the stress and dlsplacement distributions in the layer and in the half-space,
in this case, are the same as for a semi-infinite medium with the corresponding
elastic constants G, G, and G, G.. The physical quantities on the surface z=0 (526, Vo),
in this case, have the same values as in the case of a homogeneous solid. '
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- 'The displacement and siréss components-at'z=0 are - -

020 (1, 0)= ,me | f ‘;éf‘_? (_:,)’[,1_- Mi__(«:h_)ll.r__i_ &) ac,

(2.23) r@(r 0)—5—6 f éz‘v(rf)Jz (fr)df, e

90 (0= f & (f) J (ér)df

or

0 (1 0)=Gurg [a@n @), o

o X R A A FACL S

v (1, O)=— [ 1(O 1 —H: CWI Ty () &
0 -,

'The solutions of two types of mixed boundary value problems will be presented
in the next sections on the basis of the results of this section. In| ‘the first problem
the displacement and stress distributions in the vicinity of the annular crack and the
fracture parameters are analysed while in the second the torsional indentation
problem of a transversely isotropic layer or bi-material composite system by an
embedded rigid annulus is considered. The mathematical technique follows ‘the
one developed in [I0, HJ.

3. LAYER CONTAINING AN ANNULAR CRACK UNDER TORSION . -

We consider the elastic trarisversely isotropic’ layer Q={(r, 0, z): 0<r<oo,
0<0<2n, z|<h} containing a flat annular crack S={(r, 8, 0): a<r<b, 0<6<2n},
located in the middle plane of the layer. The crack surface is subjected to an axi-
symmetric distribution of tangential traction 7, 7, where 74 is constant. At the edges
of the Iayer lzj=h we will consider two types of boundary conditions: elastically
clamped edges or as its edges are perfectly bonded to half-spaces Q* (z22/) and
Q= (z< —h). In the second problem the materials of the layer and the half-spaces
are different but homogeneous, transversely isotropic and elastic. For the sake of
convenience only, we shall assume that the unit of length is such that the outer
radius of the crack is 1 and the inner radius is A=a/b. Using the dimensionless
variables and‘parameters defined by p=r/b; {=z/b, y=h[b, &= x#, the fundamental
équations ‘and boundary conditions are expressed below in these dimensionless
coordinates: Since the problem is symmetrical with respect to the plane z=0, it is
sufficient to consider only the solution for the layer 0<z<h with the boundary




MIXED BOUNDARY VALUE PROBLEM: OF A TRANSVERSELY ISOTROPIC LAYER 299

conditions (2.8) or (2.9}, considered above, in the plane z=h and with conchtlons
specified on z=0 inside and outside the segment A<p<1- EPREE S R

(3.1) 00 (p, O=—bpro, A<p<l,. .

Using Egs. (2.23), it can be shown that the functxon 7 (x) is the only unknown
from Eqs (3.1) and (3.2) which can be fouud from the triple mtegral equatlons

b
(33) f 20 (3) (L= M (ol Ty Cop) de=p G A<e<l,
(3'{.'4) , f xﬂ(x)Jl (xp)dx o O<p<d, 1<p.

0

The functmns M (xfy) are glven by Eqs (2.19); for elastlcally clamped edges it is
M (x)=M; (x) and for the bi-material composite it is M (x)=M, (x). Being able
to determine the unknown function v (x) in the triple integral equations (3.3) and
(3.4), we will get ‘a solution satisfying all the boundary conditions. However, in
general, it is very difficilt to obtain a closed-form solution for the above ‘equations.
We use the analytical method; these equations afe solved by expansion of the dis-
placement v, of the crack surface into a Fourjer series, which leads to a system of
an infinite number of simultancous algebraic equations.

The interval A<p<1 corresponds to 0 a7, as

! o pz-—ﬂ.z .
(3.5 ST ge=ate COS’(1j2 ”i“:}._z_)’
when p=1 corresponds to «=0 and p=1 to a=gx.
Denoting . o o
I B A N T B S
(3.6) Lol Sl Zn(x)=Jn x \2” Jn x.. 2 - ) B
and using the integral formula [27] _
o i {0 : -, Ogp<id, 1<p,
(3.7) f xJy (xp) Z, (x) dx= 4 COS ne
0 — , o A<p<l,
o w{l—4%) sina
we get o _ :
0, Ogp<d, l<p,
(X)
(3.8) f le (xp) dx= —p f xJo (xp) Z, (x) dx= —4p COS ne
7 (l—24%)  sina
SA<p=<l,
O 3 0-<~P-<~./1: Igp:

69 [ 40 2 x| s 1)
R ol g
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Then the unknown function » (x) and the dlsplacement vy (p) on the crack surface
“can be cxpresscd by series:

7o b (1—A%)
B10)  xw(x)= —Tm—’ml ay Z, (X)),
. 7g (p, OV~ ———— X a,
875 Ga:' —_— “_‘Sin noc), 11<p<1.
I ; —sin .

Thus the boundary condition on #, (p) is satisfied for any value of 4, and the dis-
placement on the crack surface is expressed by the Fourier sine series (3.11). There-
fore, to determine the coefficients a,, we use the boundary condition (3.3).

Substituting Eq. (3.10) into Eq. (3.3) and using the formula corresponchng to
the Neumann’s addition theorem [28]

. 8 i ( .1+A)j:( 1_,1) i
3. )y Q= - AZ) “in m;: md, x| Jn X5 sln (ma),
d<p<l,
it is found that
(3.13) Z a, f Zy () [L— M (xn)] [2 ‘mZ,, (x) sin (mac)] dx=sin o,
n=1 V] m=1
O<ea<n,

Since Eq. (3.13) must hold for an arbitrary value of «, we find that the equation is
reduced to the following infinite system of simultancous algebraic equations for.
the determination of the unknown coefficients a,

(314) Z ty Amu=51ms m:l, 2: 3: “eey

n=1

in which &y, denotes the Kronecker delia, the matrix A 18 symmetric with respect
to m and » and is defined as follows:

(3.15) A= [ 11 —M ()] 2, (¥) Z, ) dx, ', 1=1,2,3, ...

[
. After solving the infinite system of Egs. (3.14), the displacement and stress states
in the body and the fracture parameters can be. derived,

The components of the stress and displacement at {=0 are presented by Egs.
(2.23) and (3.10) with the aid of the dimensionless variables which are cited above.
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The d1splacement at é_,’ =0 is given by Eq (3.11) and the radial gradient of one in
A<p<lis?

du, (p) g b (1—1%) 4 2, cos (no)
¥ [ 122 2, *

(3.16) bdp = 871G g sin o

1 Z”, d, sin (na)

s - ], A<p<l,

=1

and tends to infinity as p—»A+0 or p—»1-0,
The stress components at {=0 are

37 0';9 (p)‘":- T bsi:a~%2? { 2 S, a, cos (na) P 1 i’i, ar-,l sin {rec) ],

1—A% ~ sin o ~pt e i
(3']-8) Gzp (p)= —To bps
in the crack surface }L<p<1_ and
(3.19) 0w (=0,
b (1-2%) X [or .
(3200 00 (P)=——5— 2 aw| 5, t M)

outside the crack area O0gp<l, l<p.
The integrals Ij, and M’ are defined as follows:

® 144 1-2\
(3.21) I (p;}l)=f Jo ) Ju\x —— )l x ——ax,. n=1,2,3, .,
0

_ _ %0 142 1—-A
(322) M (psJomy= [ %M () Iy (p) | x =5 | Sy | x = ax,
0
' n=1,2,3, ...

The infinite integrals M’ are convergent because the functions M (xy) have pr-
operties (2.21) and we can easily evaluate these integrals by a numerical method.
The integrals (3.21) can be expressed by analytical expressions in terms of Gaussian
hypergeometric series and a Gamma one [27, 11]. Their full expressions are given
in the Appendix.

The stress o, (p) is nonzero only for. A<p<1, tending to infinity as p—>A-+0
and p—1—0. The stress 020 (p) is always positive for 0<p<i or p>1 and tends to
infinity as p—>1—0 or p—>1-+0. The singular part of g, (p) is mcluded in the first
term of Eq. (3.20) because 817 /dp has singular parts such as A—p- 112 and (p—1)"1/2,
whereas the second term is continuous in all of p (see Appendix).

The displacement and stress distributions in the interior of the layer can be
obtained by the numerical integrations of equations derived by making the sub-
stitutions of Fq. (3.10) into Egs. (2.17).
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In-terms of the quantity a, actually calculated, the fracture mechanics para-
meters, the crack energy and the stress intensity factors of the inner and outer tips
of the crack, can be studied.

The strain energy of the crack is deﬁned by

(3.23) o W—znj«rowﬂ(r 0) r2 ar,

or, usmg Eq (3 11), is gwen as

304 , —_ ntl b° (1-2%)? -
( ’ ) n 32Garg T

To determine the stress intensity factors (SIFs), we consider the stress behaviour
near the crack edges and their singularity. at the crack tips into material regions
omitting the hypergeometric function (see Appendix).

The stresses o, (p) are rewritten as follows: _

o (122 & Pl o
G2 cu@)=——p— 3 a[MI- [ x () Z, ) ax].
. 5

n=1

Using the asymptotic expansion of J, (xp) with a large value of x [28]

(3.26) Iy (xp) = ]/ Gy cos (xp _ ¥l ‘ 7:),
nXp 4 )7
we obtain ‘ R oo .
(3.27) w Xy (x) =% ___‘_2__ [cos Ax+(—1)"sin-x]..
W ]/1 —A?

Then we decompose the stress g, (p) into parts as follows:

o0 2
(3.28) On(p)="—" 100 (1 ,12) Z {M'l' -—f [xZn (x)—m (COS Ax-

Iy ]J P 2. 1[_" AH (A—p) +
+(—1)*sinx) | J; (xp) dx _mn]/m .p H——_—VW

R = =l

with the aid of the properties of the integrals [27-28]

T e

f sin le (xp) dx“W%,

(3.29)

here H (x) isa step funcnon
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The singular part of the stress o, (p) is included in the last term of Eq. (3.28).
Consequently, the stress intensity factors corresponding to torsion at the inner
and the outer edges of the crack are defined by the limits

(330) : Kg'-‘: lim V 28 (A—P) {Gza (p)}p<).s K§'= lim ]/2b (P—I) {Uzo (p)}p>1 3

p-rA— ) p=it .

or in terms of the quantity actually calculated:

1 -2 =
T 3/2
K=y b ]/ — D a,

(3.31) . "t
Kg'{:% 1o 632 Y142 2{’ (1) a,.
‘On the other hand, it is easy to see from the behaviour of Z (x, —1——2]-1, —1—-2_—3‘—)
that if Z—>I-—-2£ (é— a small value), then the SIFs become equal and tend to
(3.32) . KI K=, 532 6112 )51 -2¢,

which is the solution for antiplane shear and tend to zero as ¢ is Zero,
Using the result given later by Bq. (3.35) for a penniy-shaped crack in an infinite

homogeneous body, we have

s > 16
(3.33) ; a,=0 and ;‘ (="t g=—.
Consequently, in an infinite, homogeneous body, as a/b—0, X approaches the value
(3.34) ' K‘,{ﬁi 7o B3/
‘ . 3z
and KT=0,

It is seen that K is always greater than K7, so it is to be expected that if growth
of the crack occurs it will be at the outer edge.
The special case _ :

In the special case of the infinite body {M (=0, y—co) and A0 (but b is
bounded) from the above results, we obtain closed form solutions:

512 n? ,

3w @n—1) (@ _9)°

4 1,b [1 d (sinx) 1 sinx]
—— + N

Gorg x dx x 3 x

(3.35) ay= —

xv (x)=—

(3.36) 4 1, b?
%(P)=—5;;" c(; pV1—p2 H(l-p), -

farg
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4 ( 2)'1-+3 : ..(1)+
aze(ﬂ)““a;"rob p—— pe 5 \parccos {— )+

(3.37) —l/pp;l)] H(p-1),

4
C’ro (p)= To by —=—= Vl p

16 2 b°

(3.38) = KT=0, Ki= e bVb
> 45 G’ e R P :

The results (3.37) and (3.38) agree with those in the case of the penny-shaped
crack [4]. For the classical case (but of the material with two shear moduli), the
displacement v, and the strain energy depend on the average shear modulus while
the stress o,, depends on the material parameter S"—]/G/G In this case the stress
0,5 and the stress intensity factor are independent of anisotropy of the material.

4. A TRANSVERSELY ISOTROPIC LAYER UNDER TORSION BY A ELAT ANNULAR RIGID PUNCH

We consider a transversely isotropic layer occupying the region 0<r-<co,
0<z<h, 0<0<2n and a rigid, flat, annular punch atiached to the portion z=0
and a<r<b for all 8, where a and b are the inner and ounter radii of the annulus,
We denote the torque applied to the annulus and the angle of rigid rotation by T’
and @y, respectwely The load is applied in the z-direction, the rest of the plane
surface z==0 is stress free. The lower edge of the layer is elastically or rigid clamped
or bonded to a half-space 7 A. Tt should be noted that the boundary condition for
the case k->oo (rigid clamped edge) is equivalent to the torsional indentation of
a layer by a pair of the same annulus centrally embedded onto both surfaces of one.
Then the boundary conditions in dimensionless coordinates are as follows: '

CRY) o (P, =0, 0O<p<d, I1<p,
(4.2) vy (p, Oy=wo bp, Asp<l, A==afb.

The angle of rotation @, is obtained from the equilibrium equationﬂ of the pu__néh
@3 = L2 f"&,’,; (». 0) " .
’ A
Using Eqgs. (2. 24) we see that ¢ (x) is the only unknown which from Eqs (4 1) and
(4.2) can be found from the triple integral equations
(4.4) ' .fmxt(x).fl (kp)dxm(), } Ogp<d, I<p,
0

.5) [t [—H G} I, (wp) dx=o b p, . A<p<l,

0
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where the function H (x#) is given by the formulas (2.20). Following the similar
method as in the previous section for solving Eqgs. (4.4} and (4.5), it can be shown
that using the formulas (3.8) and the conditions (4.4), we get
o 1+22 2 8Z,(x)
— 2 A
(4.6) t(xy=wq b* - Z b, P

n=0

where to determine the unknown coeflicients b, we have the conditions (4.5). Sub-
stituting Eq. (4.6) into the boundary condition (4.5), using the relation 4/, (xp)f0x=
=—pJ, (xp), the formula (3.5) and the Neumann’s formula [28]

@D Lp=Zo 42 Y Z,(Deos(nr), O<asr,

m=1

and equating the coefficients of cos () at both sides, we obtain the infinite system
of simultaneous algebraic equations with respect to the nknown coefficients b,

4 ad i ( 242 } _

( 8) Ié’ anmu‘—aﬂm _2_ 1 1_]_7 Otms m=0,1,2, .,

where

49 B~ f [1—H Gop)] 7= [Zn (x)] Tz @ax,  mon=01,2..

and the fonction Z, (x) is defined by Eq. (3.6).
Assuming the coefficients b, as

’ R 1 ( 2/12 ) .y
(4.10) B s o L

‘Egs. (4.8) are divided into two =nﬁmte systems of linear algebraic equattons

(4.11) Zb ,,,,,—-50,,,, ijjB,,,,,:&lm, m=0, L, 2, ..,

where dgy,, 6y, ate the Kronecker delts and B, are given by the convergent infinite
integrals (4.9). The present mixed boundary value problem is reduced to the sol-
ution of an infinite system of linear algebraic equations (4.8) or Eqs. (4.11).

The quantities of physical interest are obtained from: Egs. (2.24) on the surface
of the layer and from Egs. (2.18) in the interior of the solid by using the represen-
tation (4.6). In the half-space z>4% the displacement and stress components are
calculated by Eqs. (2.6), (4.6) and (2.16) for 4 (&)=C (&) and i=0.

The displacement at {=0 is given by

[0 Bp, | A<pst,
[ 1 & 1 o
G12) oo (p)={5 w0 b (1427 Dbyt p (U5 —I)+H (p3 D 1),
' n=90

i
| ' O<p<d, I<p.
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“"The tangential contact stresses on the punch are -
0 (1447 Goy
2V (p* 17 (=)
where the angle « is given by the formula (3.5). The contact stresses on the punch
are continuous at all points and tend to infinity as p—~+A+0 or p—>1-0. The second

(4.13)  0p)=— Zb,,cosnoc, A<p<l;, O<a<m,

component of the tensor stress is zero inside the contact area and
_ e :

1 & e
419 0 (py=— Goo (1423 Y bu| I3 p 5= Hi (i 4 m) |,
n=0 . N

0<p<i, l<p
outside the contact area. The stress o, (p) tends fo infinity as p->A—0 or p—>1-+0.
This component of the stress is positive in 0<p <A and negative in p>1 and tends
to zero as p-»oo, and is zero as p=0.
The integrals 77 and I% are given by the formulas '

(4.15) = 5 Gp) Zo(dx, 1=0,2
0 .

and are presented analytically in the Appendix.
The integrals A% (p; A, ) and Hj (p; 2, n) are deﬁned as follows:

(4.16) Ry, H = j{Jl (xp), Tz (xp)} H ()~ —— "U

and these values are obtained by numerical intégration, These integrals have very
good convergence because the functions H (xn) have the properties (2.21). Irom
Eqgs. (4.13) and (4.3) we have the value of the torque 7' required to maintain the
angle of rotation w,

1 . . 1 222 '
{4.17) T—?nGﬂ,gwob (1+4%) boh? I—W bl-.

The special case
In the special case of the haif-space (H (xm)=0, rp—mo) and 1-0 {(but b is
bounded), we have the closed-form solutions:

4.18 5—8 L ~1,2,3
(' ) [ . b= - .4Y12H"1 ’ N=05 20 3y ey
cos x sinx
z(x)—-—w wo b2 [ ===,

X X

(4.19)

3T
165° Gipg

Wy =
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ar | 2
ﬂo(p)ﬂ‘—lmpll [— arcsm( )+—]/p ] H(p——l)},
ar P
(4.20) ()= — 47:63 ]/1 —H(1- o (p)=

3T G p?
T b G, ']/p—z—] H(p—1),

where H (p) is a Heavyside’s step function. _

The results (4.20) agree with the ones for the isotropic case of circular rigid punch,
given by SNEDDON [2]. For the classical case, but of a material with two shear mo-
duli, the angle of rotation and the displacement v, are dependent on the average
shear modulus. In this case the contact stress is independent of the anisotropy of

the material, whereas the stress o, () dependes on the material parameter s=]/ G/G,.

5. NUMERICAL CALCULATIONS

After solving two infinite systems of algebraic equations (3.14) for the crack
problem and Egs. (4.8) or (4.11) for the contact problem, we obtain the quantities
of physical interest in both problems. At first we must evaluate the infinite inte-
grals in these equations. The elements 4,, and B,, of m-th row and n-th column
can be rewritten, with the aid of the asymptotic formulas (3.26) and (3.27), as

B

4 ) 4
(5.1) A~ f Z (X) Z, (%) dx— f MAxy) Z,, (x) Z, (x) dx-i-m"
cos? 18 sin?
x{—ﬁ—ﬂsi (228) +(—1ym+n [ ~si (2ﬂ)]+ [(=D"+(~D"*
sin coé A1 1
x[——wﬂ —5 1+ ci[ﬁ(1+l)]—?(1 —A)c[p(l —11)]]}:
78
G2 Bur [ 512 (x)] 5 (20 ()] ax— f H (1) 5= 1Z. (x)}
4 A% sin? 28 cos® f
U2 s+ { g QAP (— [ 7

: tIsmdffcosf 1
+si (2[5’)]—/1 [(—D"+(—1)" [““Tm*——— (A+A)ci[p (1+A)

1
t5U-Hel (B —/1)]]} )

where f is a very large value, y is a large value and si (x), ¢i (x) denote the integral
sine and cosine functions, respectively. We can get numerically good results, taking
f==500 and y=10/sn. The integrals in Egs, (5.1) and (5.2) are evaluated by means

Rozprawy Iniynierskie — 2
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of Simpson’s numerical integral formula. The simultaneous algebraic equations
are solved by truncation and we can get numerically good results taking only first #
roots, where n==15 in the case of 1<0,2 and #=10 in 4>0,2 for #>1 and s>1,
and n=20 or n=15 in the case 1<0,2 or i>0,2 as <1 and s<1, respectively.

6. NUMERICAL RESULTS

For example, in an transversely-isotropic laminate composite (G, G,) containing
a layer (G, G,) with a crack (1=0.5) and equal to the average shear modulus, and
arbitrary s and s’, we obtain for the stress g, (p) in the neighbourhood of the crack
tips the following results:

Table 1. The variation of oz, (p)/r.b with # and p.

n n=10 n=15 n=20
0.48 1.139399 - 1.139445 1.139442
0.49 1.797122 1.797170 1,797178
1.005 3.053311 - -3.053526 3.053384
1.03 0.843882 0.843956 0.843955

We conﬁrm in Table 1 that the stress g, (p) is in good agreement for each case
of n=10, 15 and 20.

Table 2. The values of the material parameters.

.5‘2 = G.{ Gz Garg., Glsotr .
I. Cadmium 2.25 2.33
1I. - Magnesium 1.03 1.65
1. E galass-epoxy 0.98 0.46
1V. Graphite-epoxy 0,68 0.34

V. Isotropy 1.0 10

Greote =101 dynesfem®=G, .

Table 2 Jists the material parameters of the four anisotropic: materials and one
isotropic material used in the computation, which are taken from references (29, 30].

In Figs. 1-5, dotted, solid, chain and double dotted chain lines are used to indicate
the results for I, IL, TII, TV materials, respectively, and the results indicated by the
mark x show those for the isotropic case. Figure 1 shows the variation of o, (p) with
A for =2 and stress-free edges. The value of v, gradually approaches the one for
a penny-shaped crack when A-»0. Figure 2 shows the effect of anisotropy on .
‘With an increasing 5 and Gi./Gigon v decreases. In Fig. 3 we show the variation
of Dgpex fOr 15,220 with a layer thickness. (y==h/b). When 572, Dpmax approaches to
-the one for the infinite solid.
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Figure 4 shows the effect of boundary conditions on %y, for #=1. The displace-
ment vy, decreases with an increasing x;. When r; >2 and x¢>>2, we have these
same values of vy,,,. The variations of the stress intensity factors are shown in Fig. 3.
The value of K] at the outer edge is always greater than K7 at the inner edge, so

~ it is to be expected that if growth of the crack occurs, it will be at the outer edge.
These values increase as x, decrease. The broken lines “ or + denote the results

b ]

~
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a
]
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VARl
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magnesium  layer magnesium layer E glass-epoxy layer
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.. F1G, 6. The distribution of oy (pb, 0) for various values of 7 (1=0.5) (a) and of p {7=1) (b).
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for layered composites: the cracked layer'is with glass-époxy and. the surrounding
material is cadmium or graphite-epoxy, respectively.

Figure 6a shows the distributions of contact stress o,, (p) for various thicknesses
of the plate under 4=0.5 and x,=1. The contact stress decreases as the thickness
of the layer becomes large. Figure 6b shows the radial distributions of o9 (p) for
~ various values of 1 under Afb==1, 0. The contact stress becomes large with an in-
creasing 2. These values correspond to the bi-material composite with Gorg=G, g OT
to the isotropic case (G,,=G,).

a
b
obd— Garg: 045 10

- X M7233:048

> , Glarg =2 B3 or 0.34 Schdcicicirien]

3 5 fito i 5 ' =

o

g . T —~~——1-magnesiurn - layer
2 Mor0.3% : 046 ' | Poron Ry melrix

¥re. 7. The relation between the torque T'and the ration # for 1=0.5 (@) or the ratio 2 for y=1.0(b).

Figure 7a shows the relations between the total torque 7" and the ratio n=hfb.
Under the same magnitude of A and x,3> 1, the torque 7, taking a vety large value
in a thin layer, decreases as the thickness becomes large and tends to the results
for the case G ,=G,,. Figure 7b shows the rclations between the torque T and
the ratio 1. The torque T decreases with a decreasing of x,, increases with an in-
creasing o and tends to the results for the case when Ga,g—Garg.

7. CONCLUSIONS

The results obtained can be summarized as follows:

1. In general, the stress and displacement fields and the fracture mechanics
parameters are a function of the crack or annulus dimensions, the layer thickness,
the material properties of the composite and boundary conditions.

2. The maximum value of the tangential displacement of crack surface increases
as the layer thickness decreases or the parameter i«; of the elastic clamped decreases.
When.the average shear modulus of the cracked layer is greater than that of the
surrounding material (i.e. when x,<1), the displacement of the crack surface tends
to increase as compared with the case k=1 and increases as Ko decreases. The
opposite is observed when the crack is in a softer material as compared with the
outside material. When the material parameters G, and s=(G/G,)'/? of the cracked
layer, characterizing the effect of anisotropy, decrease under the same surrounding
matérial or elastically clamped, the displacement of crack surface increases. When
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=shf/b=2, then the maximum of the displacement is approximately constant, i.c.
it is independent of the boundary conditions, but depends on the material.

3. When the average shear modulus of the cracked layer is greater than that
of the surrounding material (xo<1), the stress intensity factors tend to increase -
as compared with the case equal to the average shear modulus and increase as xp
decreases. The opposite is observed when the crack is in a softer material as compared

with the outside material. When the average shear modulus of the cracked layer

decrcases and the parameter s of one increases, then the SIFs decrease for the layer
on a weak foundation and when G, and s increase the S1Fs increase for the layer
on a strong foundation, tending to the resulis for a composite with such a layer
that Gug=GCy-

4. The contact stress increases with an increasing A, 7, and i, and decreases as the
thickness of the layer becomes large, tending to the results of the half-space as spz2.

5. Under A=const, the torque 7, required to maintain the angle of rotation w,
takes a very large value in a thin plate and strong foundation and a smali value
in a thin plate and weak foundation. These values tend to the result for.a bi-ma-
terial comiposite With Gop=Ge- :

6. The convergence of the infinite integrals and the set of simultaneous equations
in the numerical calculation become slower with a decreasing degree of anisotropy
of the material.

APPENDIX

_' The integrals that appear in Egs. (3.21) and (4.15) are defined as
a) 0<p<i

2 L] 1 [1=4y (1 I
[n+(1/2)] (14—1) (?,n+"2—;n+1;fs(1=P))“

n=-

Vr Tt 144
(1 o i ) :
F __2—3 n ) 91,f4(3p) .

ory _ 2p T'n+(3/2)] 1 (l—wﬂ.)"(l-i-p_l_,l_p)x
i Yn  L@+D QD \L+A] Vddp o 1-p

J e e G (2o Lo ot
[(1'+p)(a;p)] o Pl B AGAE T

1 1 1 3
o Lifalh P))+fz (4, p) F(T‘;-nJr—i—; nt1; fa (s p))F(wi‘, nt.

3
%40, p))]

o2 TheeRl A (Y (2
BT TV TTeD WA i+l N\

5n+
-3 3 3 .
Ftntli s ) Fiss nt5-33; /(4 p)
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where
i ) [
rd p)=% {1 _ﬁz—[cu/ m):F((} -,1)2—4,)2)]}.
b) p>1 '

- (=" | rir+/2)] 2 1 1-42\n | 1
== [ L+l ] 2"-“( 4 )F(”+T’”+

1 S
+7;n+1;f7(,1,p)) (n+3—,n+ > ,n+1 Js (4, p))

oy _ (~1yt {r[n+(3/2>1‘J2 -2y z(m)( p2—i? )”2
Bp 2 L T@+r) | rpa p-1]

{4(n+1) , p*—1 f’(+1 1 L ) (+1 N
n+1/2 P pz_az i 2 3 2 ,?1+ af’f( ,P) it P s 1

1 3 3
+3—; n+1;ﬁ;(,'{,p))+f5 (ﬂ,p)F(n*i"—-v, nt— 3 s n+2; 5, p)) (

2

1 ) 1
+73 n_|.._2_.; n+I;fB (R"p))+f6 (A:P) F(n-l‘?: n’+

1 3 3
+7;n+1;f7(11,p)) (n+—~, nt— 5 2 fs(l p})]

(1t a2 [rxw(l/z)] ] ( -2 ) (20t )
= n n—1/2 I'(n+1) 4 g "

1 3 i 3 ‘
% —_— g —. . - - .
F(n 7Rt ,n+1,f7(}!.,p)) (n 2 , it 3 ,n+1,f8.(/?.,p)),

where

2.1 \? _
fs,ﬁu,p)=(1¢ag/§—_—p) . Frs (b=

I 1 '
=2 T (prm)(pZ—P) +4).

In the above expressions, the symbols F(p, ¢; r; 5) and I"(2) denote the Gaussian
“hypergeometric series and Gamma function, defined as follows;
O Tp+m)y I'(g+n) T (r) s _

FOgin =t 2 oy T Team

e ( H n "
’ %1+2 i%;)(f)—-s—; (p)n=p(pf1){1?+2_) -»7(P+n—1),

=1 n!

4]
S I@= et tat, (z>0).
7]
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STRESZCZENIR

MIESZANE ZAGADNIEN{A BRZEGOWE POPRYECZNIE IZOTROPOWE] WARSTWY
SKRECANET PRZY ROZNYCH WARUNKACH BRZEGOWYCH

Praca zwigzana jest z zagadnieniem osiowo symeirycznego skrecania poprzecziie izotopowej
warstwy podpartej sprezyécie na dolnej plaszezyZnie lub polaczonej z vézng od niej polprzesirzenia.
Rozpatrzono dwa typy potrdinych mieszanych zagadnien brzegowych: zagadnienie plaskiej, piers-
cieniowej szczeliny skrgcanej 1 skvgoanie warstwy za pomocy sztywaego pierscienia. Przedstawiono
graficznie wyniki numerycznych obliczed i sformulowano wnioski,

Pezome

CMEINAHHEIE KPAEBLIE 3AJIAYM TPAHCBEPCAITEHO- :
H30TPOITHOIO CIIOA CKPYUMBAEMOI'G IIPM PASHEIX TPAHIAYIIEIY
YCIIOBHAX

Pabora crAsama ¢ 3a7a4ell OCECHAMMOTPRYHOTO CKPYIHBARAS TPaHCBEPCANTbHOIO-A30TPOIIHOTO
G0 Yipyro NOANCPTOrO Ha HEDKHEH INIOCKOCTE HIM COSHMHCHHOTO C OTIHYROIIETGCH OT HEro
HOMYIPOCTPAHCTBOM. PacCMOTpPeHbE ABA THNA TPOHELIX CMETTAHEEIX KpPaeBRIX 3aMay: 3anada
IIOCKOH, CKPYIMBACMOM KOMBOEBOH TPOUENEE H CKPYIHBRIHWE CIOX HpH TOMOILH KECTKOTO
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