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THE TERMS AND SHAPES OF TNE FUNCTIONS NECESSARY FOR
CALCULATION OF THE DISSIPATED POWER IN THE PROBLEM OF
INDENTATION OF A PUNCH INTO A TWO-PLY MATERIAL

J. KACZOROWSKI (KRAKOW)

The paper presents a method of calculation of the majorant of the limit load for the example
of a punch into a semispace consisting of an isotropic laminar material, Proving the validity of the
suggested theorems and lemma for a selected class of strain types, the calculation of the minimum
dissipated power has been significantly simplified. The problem of finding the minimum of the func-
tional has been reduced to the search for the minimum of a function of a single variable,

" 1. INTRODUCTION

The general formula for caleulation of the dissipated power at the point M (Fig. 1)
is in the form [6, 8, 9, 13, 19]

. P kM(Bva+6vﬂ+va+vﬂ)d .
(1.1) P (M)=k (M) a5, s, RS (ds, dsg) ,

where v, and v; — coordinates of the velocity of the point M on M, and M;. The
total dissipated power is equal to

(1.2) P= f dP (M).

In the case when a line of velocity discontinuity occurs, the expressions (1.1) and
(1.2) are true in the meaning of the Stieltjes integral.

3] ~Q ¥y Yo O +d - D

Fra. 1.

In order to use the kinematic method for the determination of the lmit load,
it is necessary to find the admissible strain field corresponding to the minimum of
the total dissipated power. Since it is ruled out to search the for minimum of the
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dissipated power in the set of all admissible strain fields, so is it necessary to confine
oneself to locking for this minimum within a certain class (of the strain fields).

The admissible strain fields which will be considered contain a slip line net of
the Prandtl solution for the case of 2 homogenous medium (Fig. 1).

The slip velocity under the punch is denoted by v (y) y, and y, ar denoted as
in. Fig. 1.

According to Egs. (1.1) and (1.2), the total dlss1pated power is equal to

(1.3) P=
I, I, 111

Py Y 0 G dey
0s, R ‘E’(S“ s+
+ [ K@Dy (@)-Ulds+ [ KOO Ur (~a)] ds -

D’ CBA A"'BCD
+ [ m (M) KL ()i dy,

where m (M) and K (M) — the coefficient of roughness and the yield point in pure
shearing, respectively (both values determined at the point M).

The integrals in the expression (1.3) are Stieltjes integrals. Substituting v{(—a™)=
=-—U and v(a*)=U into Egs. (1.3) yields.

P ) L S LA VPR d
() P=[ KOD( 57 g+ g Gnda+ [mO) KO POy
if o _
s P=P'+ [mO)KOHPOI D,
where | B o

N |
(1.6) _fK(m(asp —(,}Tv:’—+;2~|-v—;~)(dsadsﬁ).

CKv(y)isa 11m1ted and not ‘deécreasing variable in the interval (—a~, aa™), then the
component under the | | sign in the expression for P%:(1.6) is always positive and

P’ is linear in the interval (v (), U). The present considerations are confined to
looking for the minimum of the dissipated power only within the class of strain
types defined by Fig. 1

2. (GENERAL RESULTS

The considered strain types can be connected with the classical incomplete
solution of Prandtl for the case of a smooth punch, acting on a homogeneous half~
-space [20].

- The theorem of symmetry

If k(M) and m (M) are symmetrical (even) functions with respect to the axis
OX {k (X, )=k(X~y), m(y)=m (~y)}, then the minimum of the dlsmpated power
is obtained for the symmetrical type of strain.
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Proof -

If an arbitrary type of deformation is considered, there is always a symmetrical
kind of deformation which corresponds to a dissipated power being not higher.
Let us assume that a kind of deformation is given, which corresponds to the function
v(») and to the total dissipated power

@1 PRON=P O+ [ mO)E©,3) v () dy

as well as a kind of deformation being symmetrical to the above, Which-corresponds
to the function @ (y)=—v(~y). _

The dissipated power which corresponds to this kind of deformation is—by the
- symmetry of the quantitics m and k — equal to the previous one:

@) PO oI+ [ m6)E©, ) o0l dmr P,

Thus, if a symmetrical kind of deformation is taken into account, to which the
function v (3)=4 v N+ ()] corresponding, then, considering the linearity of the
function P/, we can write : ' :

P’ I+P | 1 1 ¢
I LU AT TT M
Hence _ ’ ' _
24 PROISP B ON [ m0) k)b 0) dy=P b O)].

If the values k (M) and m (M) are symmetrical and if only the symmetrical kinds
of deformation-are considered, then the function P [v(»)] is a linear one, in the
interval (— U, U). Conscquently, the function 2’ {v ()] is linear and the function
- v(¥) is necessarily positive on (0, @), and from this it follows that the expression

(2.5) JEQ@.DmOI ) dy=2 [ kO3 m () v ()] dy
- ]

is lnear.

2.1. The general theorem

The hypothesis of symmetry is assumed and the symmetrical kinds of deformation
are considered. Let E, denote the set of functions v (), satisfying the hypotheses A:

determinate on —a~, +a* Ay
with bounded variations (variability) 4,
not decreasing Ayt A,
symmetric : A,

v(—a)=-U, v(@)=U AS’
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E, denotes a subset of the set E,, formed by functions, satisfying the hypotheses A
and contdining two symmetrical jumps of amplitude u:

y()=—U+UH (p+2)+ UH (y—2), ye(—aa’), ze (0, a).

The function P [v ()], expressing the total dissipated power, is a functional in
the set E,.

It has been assumed that G [v ()] is a lincar functional v (), for v (y) satisfying
the hypotheses 4, through A4,. An arbitrary positive constant is denoted by « and
a set E, is determined of the functions v () satisfying the hypothese B:

B, through B, are identical with 4, through Ay
- B.
v(—~a)=—a v(a)=ua B;

Finally E,, a subset of E,, has been determined, formed from functions satisfying
the hypotheses B and containing two symmetrical jumps with the amplitude o:

v ()= —atall (+2) bl (y=2),  ye(=aa%),

where z — the abscissa of the jump on the right hand side {a function parameter),
z€(0, @), H — Heaviside’s function. ’

Lamma 1 ,

If for a given value «, the functional G [v ()] reaches minimum in the set E,
for v, (), then the functional G [v (¥)] reaches minimum in the set E, for each
positive value « and this minimum corresponds to the same value zo from z, thus
it does not depend on the value «. This means that many values z can occur here,
corresponding to the minimum of the functional G [v (] in the set E, and the
result is still valid. _ o

The proof is evident because the functional G [v ()] is linear and the functions
E;l and E;, are homothetic in connection with the positive value of o, fe;.

LeMMaA 2
If the minimum of the functional G [v ()] in the set E, is attainable for the
functions v,, (¥) and v,, (¥), 71 #2,, then the whole function v (¥) from the set E,
in the form: .
v()=Av,, N+ =D, (), 0<i<l,

is such that

Gy (MlI=min Gv{(y». .

This result springs from th linearity of the functional G [v(»] and it can be
generalized for more than two functions. '

Note. The verbal nomenclature of the introduced notions is omitted in further
considerations, in order to obtain a more perspicuous notation. Only the correspond-
ing symbols are used.
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THEOREM

W attainable for only one function v, (), then this func-
tion realizes also the vigorous minimm G in E,.

b) If G has d minimum in E,, attainable for two functions v, () and v, (), then
the minimum in E, is equal to the former one and it is attainable only for the functions

V(,V)z;h"z1 (y)+(]_)“) Ve, 0, 0-<.,/"L-~<..1.
©) If G is constant in E,, then it is constant in E,.
Proof

a) Let us have v (p) ¢E,. The differential of v on the abscissa z is denoted by
dv (z) for z€(0, g), ie.

a) If G has a minimum in E,

dy Yody '
dv(z)= ;y“ (z) dy, where ;5)— (z) is taken in the meaning of a distribution;
thus @v (z) can be a finite quantity (in the case when v (z) has a jump on the abscissa z,
dv (z) is positive).
Considering the function £ dv (2),
{2.6) av, )= —dv @) +dv (2) H(y+2)+av (2) H(y—2)

it can be easily proved that

z=ga+

vO)= [ @), Vre(-aa),
z=0
therefore .
@7 cvon=a| [ m, o)
and from the lincarity of G.
(2.8) GhOl= [ G5, ).

Let z, be thé abscissa, corresponding to the minimum of & in E,, {(Vo>0), then

@&V, (z) L,
(2.8) G [dv, (y)z—ﬁ— {min Gin E}
what is satisfied only fér Z2=2Zq.
From Egs. (2.8) and (2.9) it follows that
Gy (»}>min Gin E,,

except for the case when i}(y)ﬂ — U+ U+ H(y+20)+UH (y—2,), i.e. the function
which realizes the minimum of G in £,

The proof for b) and c) is analogous.
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Note. If the problem from Sect. 2 is investigated by discretizing it, i.e. by con-
fining it to the staircase function v (¥), from the jumps v; to the stationary abscissae
¥, satisfying the hypotheses A, then we arrive to the problem of linear programming.
The basic theorem of linear programming indicates that the mlmmum of G Iv(y]
is attained for the function v () which has two symmetrical jumps.

The general théorem proved here can be extended onto the case where all functions
satisfying the hypothesis A are considered.

In order to find the minimum of the dissipated power in a determined class of
deformation kinds Paragraph 1, assuming the hypothesis of symmetry, it is possible
according to Paragraph 2, to confine oneself to the symmetrical kinds of deformation.

Applying the proved theorem, it is possible to confine oneself to such kinds of
deformations for which v ( y) consists of two symmetrical jumps with the amplitude U.

Thus the search for minimum of the dissipated power is reduced to looking for
the minimum of G [v ()] on E,. On E,, G [v, ()] is a function of z: U G (z), z.& (0, a).
Investigation of this functlon (calculation of the minimum) is thus much simpler
than the original problem.

3. APPLICATION OF THE OBTAINED RESULTS TO THE CASE OF A TWO-PLY MATHERIAL

For the case of a two-ply material the problem is reduced to searching for the
best majorant of the limit load, obtained in the class of kinematic solutions, the
deformation kinds of which can be linked two the incomplete solution of Prandtl.
All the hypotheses from Sect. 2 are satisfied in this case. The final results gained
in this Sect. 2 can be applied in this case. The final results gained in this Sect 2 can
* be applied. The yield point in pure shearing for the lower layer is denoted by K and
for the upper layer—by k.

3.1. Caleulation of the dissipated power

The expression for the dissipated power is changing with the value Afa. The
following cases are considered:

1. The case hza )2

P—[;@=k(n+z) du,
PEON_POOL, L fy o,
2. The case ashé,'ﬂ)__a
P at V3 : d
[;(y)] =k (n+2y aU+(K—k){ f 2r arc cos—h~ —vdr+

n+]/_
+f Vzarccos—[U#v(y)]dr}
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Va

where r=(a--y) N

Ph@ithl “

> > +mkfv(y)dy,
3. The case 0<h<a
P i hody
| [;(J’)]_.k(n+2)aU+(K fc){f 2rarccos—~—d-df+
. h]/Z - ’ a+]/_ g
+f ]/2 arccos—[U v(y)]dr-i-f [ —+
_ Yz
a+]/—
+2(r— hvlg)]%di+ f 4 ]/2 {U-— a(y)]dr}
where r=(a+ y)iz_
PIy(»] P’[V()] . _
5 2y +mkbfv(y)dy.

3.2. The functionals G and F~

The functional F [v ()] on E,, constructed like G in Sect. 2.1 has been dete:mmed
beginning from:

(3.1
It has the form:
for i>ay/3, Flv(»)]=0,
for ash<a )2

TP vk (m+2)alU
K-k )

a+l/2 i dv ‘ﬁ;}/i, k. h . .
(3.2 F[v(y)]:{f 2r arccos}- & ;‘f ]/2 arc=qlczs~’.—.[v(q+)Hv(y)] ;.},

"

for 0<h<a

Wz hodv ey .
(3.3 Fiv(ni= {f 2r arc COS—““—‘di-Ff ]/2 arccos~[v(a+) —v ()] dr+
at 7 7 . i a+ 'z l
+ [ [~;+2(¢ k]/z)]_ﬂdf+f ,/zé[v(a") ~v(»ld -
kyz .

The functional G [v(»)], corresponding 0 By (y)] is. in the form

Gly (y)] @

(3.4) —k(n+2)av(a+)+mk_ f v(p) dy+(K—k)F{v (1.

Rozprawy Iniynierskie — 3
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3.3. The functions F(z) and G (2)

If the functions v, (¥) from E, will be taken fdr v{(y), then G and F will become
functions of z: UF (z) and UG (z). According to the ‘relationship (3.4), the follow-
ing relationship holds between F(z) and G (2):

(3.5 Gi) k(n+2)a!+mk(a z)+(K k)F(z)

These functions have different analytlcal expressmns dependmg on the parameier
#ja and on the variable z. The various expressmns for ¥'(z) and for its run are given
below. L :
A hzayl,
F(=0, VYze(,a).

B.  a<h<ay3 (Fig. 2),

B.l. 0<z<hy2-a,
F(2)=0.

B2, hy2-a<z<a,

h]/w

1/2 (a+2)+ Y(e+z)?=2h%

— k a
v2lo ok
and it is an increasing function of z.

' a|/2

F(z)=2 (a+2) arc cos

C. <h<a (Fig. 3).

Cl. 0<z<h l/fﬁa.

R
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C2  hy3—a<z<2h-a,

]/_—k]/ log ]/2 (cz~|~z)+]/(:-;_z)2 — 242

and it is an increasing function of z.
C3.. 2h—a<z<a,

F(z)=2 {a+2z) arc cos

F(z)= ( +1)(a+z) 2h—h 2 log (1+y2)
and it is an increasing function of z.
D. (2—y2)a<h<a (Fig 4.
-lhVZ2-a) ..

: ) 2h-a
- hWZa F(Z}u%

9 Z
NI AN S

D.l. 0<zg—(hy2-a),

hy7 'hﬁ]
F(Z)=2[(ﬂ'-z) arc cos ———+(a-+z) arc cos e b

O L3 s | e U e

2n*

and it is a decreasing function of z.
D2 —{(n ]/E—a)<z<2h —-a,
]/2 (a+2)+y/(a+z2)>—2h2

_h'/_ P

F(z)=2 (a+z) arc cos
as in C.2.
D3 2h-a<z<a,

F(z)“—'—‘(; + 1) (@+2)-2h—hy2log (1 +y2).

a
E. -i—\h ( ]/E)a (Fig. 5).
El. 0<£z<g2h—a asin D.1.

-~

ryz h]/zl
=2|(a—z + -
F(z)=2 (é Z) arc cos P (a-+2) arc cos atz.

[a+2+ y (@22 =207 [a—z+y/ (a- @ 27-2#]

~h /2 log T
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Z2h-a .
—(hﬁ—c)

F{z}

j]

h{Z-a

1E
\M/\/

Fic. 5.

B2 2h—a<z<—(hyZ—a)

'ﬁ f(g—'ﬂ)(ﬁz)—zh—

il ] ez T

and it is a decreasing function of . o
E3. (a—hy2)sz<a,

F(z)'=( +1)(a+z) —2h—hy/2 Iog(1+1/af)

h
F(2)=2{a—z)arc cos 2

[2]
F. 0gh<  (Fig. 6).

F1. 0<gz<a-240,

F{z) is const

F(D)=(n+2) a—4h— 2h}/210g(1+]/2)

F2. (a-2W<z<(a—hyZ) asin B2 -

vz (ﬂ ) R
wz‘f —2—+1 (a+Z)—?h

' ]/2) [d=z-+)/ (a2 —2F%]
——h]/2 Iog(1+ 5 P

h
F(z)=2 (a—z) arc cos p

and it is a decreasing function of z.
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F3. (e-hy2)<z<a,

F(n)= (~~+1)(a+z) 2h— h]/zlog(].{_l/z)

4. RESULTS OBTAINED FOR A SMOOTH PUNCH AND k<K<oo

In the case of a smooth punch, G(z2) fs reduced to the form
G () L :
4.1) . —**?:(ﬂ+2) ak+(K——k)F(z).

Since k<K the minimization of G (z) is reduced to the nmrinimjzation of F{z)
according to Eg. (4.1). .

Using the expressions f‘or F (z) and the results of investigations of their behaviour,
the rinimum of F(z) is attained VA, for z=|h /2 —al and it assumes the value

ay?
2
F(lh ]/§—a|)=0'

if ax=

if ..(2 ]/2)a<h< '/2 i

F(lk]/z a) 2(2a hl/i)arccos k]/2 |
]/z 2a— h]/2+2]/a —ahl/z

—h ]/2 log—
if 0<h<(2—y2)a

F(hy/Z —a)= ( +I)(2a hy/2)= 2k~ h;/zlog(1+]/2)

The minimum value of the dissipated power in the considered case is thus équal to

(4.2) P20 {(n+2) ak+(K—k) F(Ihy/2 —al)},

which leads to the expression for the majorant of the limit load:
vy —

(4.3) P@)—(mz) k+{K-— k)w;

. hl/ 2 czf) ho
The shape of the function. ———— = depedmng on — is showu in Flg 7.

h 2
It should be noted that f'or — >L/2— the relatlonshrp (4.3) yields the value

h
PP=(n12) K, which is the exact value of' the limit load, and for . =0 PD=
=(n+2) K which is also the value of the limit load, Fig, 7.
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Flih{2-a|)

T+2

DB /2 \/7/2 h/_CI

Fic. 7.

4.1. Results for a rough punch and k<K<oo

In the case in question, the expression (3.5} for G (z) cannot be reduced. The

minimization of G (z) depends clearly on m and %/K and the numerical calculations
must be carried out for each considered case. They yield the minimum of the dissi-
pated power for the velocity fields E,, allowmg to determine the majorant of the
limit load P®,

10.
11,
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STRESZCEZENIE

WYRAZENIA I PRZEBIEGI FPUNKCJI KONIECZNYCH DO OBLICZANIA MOCY
ROZPROSZONEJ W PROBLEMIE WCISKANIA STEMPLA W DWUWARSTWE

W pracy podano metodg obliczania majoranty abeigzenia granicznego dla przypadku weiskania
© stempla w pdlplaszezyzng 7 materialu izofropowego warstwowego, Wykazujac prawdziwodé Zapro-
ponowanych twierdzed i lematéw dla wybranej klasy sposobow deformacii, znacznie uproszezono
obliczaniec minimum mocy rozproszonej, sprowadzajac problem poszukiwania minimpom funk-
cjonalu do poszukiwania minimum funkcii jednej zmiennej.
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Peawome

BRIFAXKEHUA M X0 OVHKIUMA HEOBXOJUMBIX JJIS BBIYHACIEHIL
MOINHOCTI B 3AJAYE BIABJIMBAHHA INTAMIIA B IBOMHOM PACCESHHON
CIION ‘ _

B paBore OpHBeSCH METOZ BEMHCITCHEA Ma;zcof:aﬁ*rbr HPCHCARHOW HADYSKH ITH CUIyeas
BIABTHBANAR NITAMIA B NONYINOCKOCTH U3 CAOECTORO M30TPOTHOTO MATCPHAAA. Tloxasstmas crpa-
BEIUIABOCTE NPEITOMEHEHIX TEOPEM I JIOMM [ H3GPARAOre Kiacca coocoBor NedopMaryH, 3Ka-
YHTESALHOTO YHPOIALTCH BEMACICHIG MUHMMYMA PAcCesHHOR MOILHOCTH, CBOJR npoﬁﬁemy TOACKA
MEHEMYMa (bymcnﬁonana K IOHCKY Mzmmyma dyHRIAR 0;3;}10;{ TPeMEHHOH.
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