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In this paper the influence of the two-parameter elastic soil on the dynamic behaviour of
a beam with variable cross-section is examined, in the presence of conservative axial loads. The
beams are assumed to follow the well-known Timoshenko hypotheses, in order to take into ac-
count both the rotary inertia and shear deformation effect. The Rayleigh–Ritz approach is used
and Boundary Characteristic Orthogonal Polynomials are chosen as trial functions; (BCOPs
method [2]). The theory is concisely presented in a matrix form, so that the contribution of
the rotary inertia and of the soil can be easily recognized. Various examples and comparisons
are illustrated, in order to emphasize the influence of the soil properties and of the beam taper
ratio. Finally, the results are also compared with the results given by other authors, using exact
and approximate approaches.

Notations

H depth of soil,
A, Ao cross-sectional area of beam; cross-sectional area of beam in x1 = 0,

KU , Kw, KG matrices in Eqs. (3.7), (3.8), (3.9),
E, G Young’s modulus; shear modulus of beam,
I, Io area moment of inertia; area moment of inertia in x1 = 0,

k shear factor,
kw, kG Winkler, first coefficient of the elastic soil; second coefficient,
K, M stiffness matrix; mass matrix,

L length of the beam,
N , P axial force; non-dimensional parameter,

Pc critical buckling load parameter,
q1, q2 vector coefficients of trial function in Eqs. (3.1), (3.2),

r radius of inertia of the beam, Eq. (4.4),
v, R vectors Eq. (2.8),

U , UP strain energy; energy of axial force,
u1, u2, u3 displacements of beam,

Ωi i-th non-dimensional eigenfrequency of beam; Eq. (4.4),
Φ, Ψ shape functions,

α thickness ratio; Eq. (4.1),
ϕ rotation of the cross-section,

γS shear deformation,
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γ parameter of foundation; Eq. (2.13),
σ, ε stress and strain vectors,

υS Poisson’s coefficient,
ρ mass density,

λw, λG non-dimensional parameters of soil; Eq. (4.3),
ωi natural frequency.

1. Introduction

Various engineering problems can be traced back to the dynamic analysis of
beams on elastic soil, and quite frequently the soil behaviour is approximated by
the well-known Winkler model, according to which the soil is viewed as a distribu-
tion of mutually independent axial springs, thus neglecting the shear-contributed
load causing constant displacements, and consequently – no bending of the beam.
This drawback can be eliminated by adopting more refined two-parameter elas-
tic models, which take into account the shear properties of the soil. Both the
classical Filonenko and Pasternak models define an additional soil parameter in
order to simulate an interaction between the springs, whereas Vlasov [8] aims
to consider the influence of the elastic medium depth. According to this the-
ory, Vallabhan and Das [9] proposed a variational procedure, which leads to
a simplified form of the second elastic soil parameter.

Most contributions to the dynamic analysis of beams on a two-parameter
elastic soil refer to slender beams, so that the classical Euler–Bernoulli hypothe-
ses are usually accepted. Quite recently, a finite element procedure for the free
vibration frequencies of slender beams on the Vlasov soil has been proposed by
Franciosi and Masi [6].

If the beam cannot considered to be slender, it is convenient to adopt the
Timoshenko theory, which takes into account both the shear deformations and
the rotary inertia of the beam, and what nevertheless leads to a manageable dif-
ferential problem. An exact solution for stiffness matrix for a Timoshenko beam
on Winkler soil has been given by Chen and Panteldes [3], taking into account
the effects of the axial forces, whereas De Rosa [5] has given the free vibration
frequencies of Timoshenko beams with constant cross-section, resting on a two-
parameter elastic soil, using two different models of the second soil parameter.

Semi-analytical and numerical approaches are obviously not limited to beams
with constant cross-section. In the finite element context, a four-node element
has been proposed by Yokoyama [10], for Rayleigh and Timoshenko beams,
and the same author, in a later paper [11], considered the effects of axial forces
and different boundary conditions. Finally, a refined cubic-quintic element has
been implemented by Bruno et al. [4].

A different approach has been used by Filipich and Rosales [7], according
to which the Rayleigh quotient is optimized and the fundamental frequency can
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be detected with great precision. On the other hand, the higher frequencies
cannot be found whit sufficient accuracy.

In this paper we aim at a general method for estimation of the free vibration
frequencies of Timoshenko beams with varying cross-section and non-classical
boundary conditions, resting on varying two-parameter elastic soil. The analysis
uses a variational Rayleigh-Ritz approach and sets of modified orthogonal poly-
nomials, which can cope with different approximation degrees of displacements
and rotations [2].

2. Formulation of the problem

Let us consider an isotropic beam with varying cross-section, resting on two-
parameter elastic soil and subjected to a conservative axial load at the end.
A Cartesian reference frame is x1, x2, x3, such that x1 becomes the beam axis,
whereas x2, x3, are assumed to be the principal axes of the cross-section. If
the Timoshenko model is assumed to be valid, then the displacements can be
written as:

(2.1) u1 = −x2ϕ(x1, t), u2 = u2(x1, t), u3 = 0,

where ϕ(x1, t) is the rotation of the cross-section, which turns out to be different
from the rotation θ of the neutral axis, so that the difference

(2.2) γS =
∂u2

∂x1
− ϕ

gives the additional rotation due to the shear deformation.
According to (2.1), the strain components are given by:

(2.3) ε =







−x2
dϕ

dx1
du2

dx1
− ϕ






.

If the derivative with respect to x1 is written as an apex, the Hooke’s law for
isotropic material gives the corresponding stress components:

(2.4) σ = Dε =

[

EI 0
0 GA

] [

−x2ϕ
′

u′2 − ϕ

]

=

[

−EI x2ϕ
′

kGA (u′2 − ϕ)

]

,

where A is the cross-sectional area, I is the moment of inertia, E is the Young’s
modulus, G is the shear modulus, and k is the shear factor.

The strain energy can be written as:

(2.5) U =
1

2

∫

V

σT εdx1 =
1

2

∫

V

εTDεdx1,
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and using (2.3) and (2.4):

(2.6) U =
1

2

L
∫

0

[

−EIϕ′

kGA(u′2 − ϕ)

]T [

−x2ϕ
′

u′2 − ϕ

]

dx1

=
1

2

L
∫

0

[

EI(ϕ′)2 + kGA(u′2 − ϕ)
]

dx1,

after integration with respect to the cross-sectional area A.
The potential energy of the axial force N at the end is a quadratic function

of the displacements, which can be written as:

(2.7) UP =
N

2

L
∫

0

u′2dx1.

Finally, the kinetic energy of the system is equal to:

(2.8) T =
1

2

L
∫

0

.
v

T
R

.
v dx1,

where v and R are given by:

v =

[

u2

ϕ

]

,(2.9)

R =

[

ρA 0
0 ρI

]

,(2.10)

respectively, where ρ is the mass density of the beam.
From (2.8) it is possible to separate the variables, and the kinetic energy

becomes

(2.11) T =
ω2

2

L
∫

0

ρ(u2
2A+ ϕ2 I) dx1.

According to Winkler, the pressure at the generic point is linearly propor-
tional to the corresponding displacement, but quite often this Winkler hypothesis
cannot be considered to be valid and more refined pressure-displacement rela-
tionships must be accepted, as for example:

(2.12) p(x1) = kw u2 − kG
d2u2

dx2
1

,
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where the physical interpretation of the second parameter kG varies according to
the different model proposed. For example, the Filonenko–Borodich soil parame-
ter kG is the tensile force of an ideal membrane connecting the Winkler spring,
whereas Pasternak assumes that the second parameter is equal to the shear force
between the foundation and the soil.

A more refined model is considered by Vlasov, assuming that the foundation
rests on an elastic half-plane, and some simplifying hypothesis allow us to express
the second soil parameter as:

(2.13) kG = γ
ES

(1 + υS)
,

where ES is the elastic modulus of the soil, υS is the Poisson coefficient, and
γ is a coefficient which depends on the foundation geometry. If ES and υS are
assumed to vary linearly with the depth H, a variational procedure, as sug-
gested by Vallabhan and Das [9], gives a simple expression for the elastic soil
parameters.

In any case, the strain energy of the soil can be calculated by using (2.12),
and regardless of the particular model, it can be written as:

(2.14) US =

L
∫

0

[

kw u
2
2 + kG

(

d2u2

dx2
1

)2
]

dx1.

3. Approximate analytical solution

An approximate solution for the problem at hand can be obtained by assum-
ing that the displacements u2 and the rotations φ can be expressed as

û2(x1) =

n
∑

i=1

aiΦi = Φ
Tq1,(3.1)

ϕ̂(x1) =
n

∑

i=1

biΨi = Ψ
Tq2,(3.2)

where q1 and q2 play the role of generalized coordinates, whereas Φi and Ψi are
the shape functions which must obey the only geometric boundary conditions.
If this expression are inserted into the strain energy formulae, then a discrete
structural system is obtained, with a finite number of degrees of freedom. The
strain energy (2.6) becomes:
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(3.3) U =
1

2

L
∫

0

EI(qT
2 Ψ

′
Ψ

′Tq2)dx1

=
1

2

L
∫

0

kGA
[

Φ
′Tq1 − Ψ

Tq2

]T [

Φ
′Tq1 − Ψ

Tq2

]

dx1,

where the strain energy (2.14) due to the elastic soil is given by

(3.4) US =
1

2

L
∫

0

kw

(

Φ
Tq1

)T (

Φ
Tq1

)

dx1 =
1

2

L
∫

0

kG

(

Φ
′Tq1

)T (

Φ
′T q1

)

dx1

and the potential energy of the axial load (2.7) transform as follows:

(3.5) UP =
N

2

L
∫

0

q1Φ
′
Φ

′Tq1dx1.

If the elastic soil parameters kw and kG are assumed to be constant along the
beam axis, then the total potential energy of the system can be written as

(3.6) Ut =
1

2
qT [KU + kwKw + (kG −N)KG]q =

1

2
qTKq,

where the coordinates have been substituted into the column vector
q = [q1 q2]

T and:

(3.7) KU = kG

L
∫

0

A

[

Φ
′
Φ

′T −ΨΦ
′T

−ΨΨ
′T

ΨΨ
T

]

dx1 + E

L
∫

0

I

[

0 0

0 Ψ
′
Ψ

′T

]

dx1,

Kw =

L
∫

0

[

ΦΦ
T 0

0 0

]

dx1,(3.8)

KG =

L
∫

0

[

Φ
′
Φ

′T 0
0 0

]

dx1.(3.9)

The KU matrix is the sum of the bending and shear stiffness matrices, whereas
Kw is the Winkler soil stiffness matrix. The stiffening effect of the second soil
parameter is clearly indicated in (3.6), because kG and the axial force N both
multiply the same geometric stiffness matrix KG.
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Finally, if the mass density is assumed to be constant along the beam, then
the assumptions (3.1) and (3.2) lead to the following matrix form of the kinetic
energy (2.11):

(3.10) T =
ω2

2

L
∫

0

ρ
[

A
(

q1ΦΦ
Tq1

)

+ I
(

q2ΨΨ
Tq2

)]

dx1 =
ω2

2
qTMq,

where

(3.11) M =

L
∫

0

ρ

[

AΦΦ
T 0

0 IΨΨ
T

]

dx1.

The mass matrix M can be divided into the mass matrix due to the transverse
displacements and the mass matrix due to the rotary inertia. A trivial application
of the well-known Hamilton principle leads to the following eigenvalue problem:

(3.12) (K − ω2M)q = 0,

which in turn leads to the frequency equation

(3.13) det(K − ω2M) = 0.

It has been already mentioned that the shape functions must obey only the
geometric boundary conditions, so that it will be possible to write:

Φ1(x1) =

nu
∑

j=0

ajx
j
1,(3.14)

Ψ1(x1) =

nϕ
∑

j=0

bjx
j
1,(3.15)

where nu and nϕ are the geometric conditions which must be imposed on the
vertical displacements and rotations, respectively. The coefficients ai and bi can
be determined imposing the boundary conditions, whereas the higher-order func-
tions can be sought by means of the Gram–Schmidt [12] iterative method.

The geometric boundary conditions at the ends of the beam can be written
as follows:

Pinned–Pinned:

(3.16) x1 = 0, x1 = L⇒ u1 = 0 ;
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Pinned–Clamped:

(3.17) x1 = 0 ⇒ u1 = 0, x1 = L⇒
[

u1 = 0
u1,1 = 0

;

Clamped–Free:

(3.18) x1 = 0 ⇒
[

u1 = 0
u1,1 = 0

, x1 = L⇒
[

u1 6= 0
u1,1 6= 0

.

4. Numerical examples

In order to test the method suggested above, some numerical examples have
been performed, for a beam with arbitrarily varying cross-section, with the area
and moment of inertia given by the general relationships:

A(x1) = A0

[

1 + α
x1

L

]

,(4.1)

I(x1) = I0

[

1 + α
x1

L

]3
,(4.2)

where A0 and I0 are the cross-sectional area and moment of at the abscissa
x1 = 0. It is also usual to introduce the following non-dimensional parameters:

(4.3) P =
NL2

π2EI0
, λw =

kwL
2

EI0
, λG =

kGL
4

π2EI0
,

whereas the free vibration frequencies are usually written as:

(4.4) Ω2
i = ω2

i L
4ρA0

EI0
, r2 =

I0
A0

.

As the first comparison, let us consider the beams with constant cross-section,
subjected to axial forces as studies by Yokoyama [11] by means of a finite
element approach. The Poisson coefficient is equal to 0.25, E/G = 2.5, the
cross-section is assumed to be rectangular, and consequently, the shear factor is
given by k = 2/3. In the following we have used 5 polynomial trial function in
order to approximate both the displacements and rotations, so that the resulting
problem has 10 degrees of freedom. The first three frequency coefficients Ωi have
been calculated for pinned-pinned (P-P) beam and for an pinned-clamped (P-C)
beam. The results are given in Table 1 together with the free frequencies as given
in [11] for a finite element mesh with 16 elements. The full agreement with the
exact frequencies is quite evident, small discrepancies can be noticed only for
the higher frequencies, but the error turns out to be smaller than 0.2%.
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Table 1. First three non-dimensional frequencies for beams
(constant cross-section).

P λW λG

P-P P-C

Exact Present [11] Exact Present [11]

0 0 0 8.210 8.214 8.220 10.630 10.626 10.630

24.230 24.228 24.310 25.620 25.616 25.710

41.540 41.545 41.960 42.030 42.035 42.460

0.6 3.470 3.466 3.470 7.320 7.323 7.330

19.220 19.280 19.310 20.930 20.931 21.030

35.080 35.352 35.480 35.700 35.750 36.160

0.6 π4 8.210 8.214 8.220 10.460 10.481 10.490

20.590 20.645 20.670 22.200 22.207 22.300

35.860 36.126 36.250 36.500 36.508 36.900

1 12.638 12.640 14.419 14.420

28.075 28.100 29.248 29.340

46.191 46.340 46.281 46.710

In order to study the influence of the soil parameters, let us consider, as a
first example, the pinned-pinned beam and the clamped-free (C-F) beam with
constant cross-section in the absence of axial forces. The first two frequency
parameters are given in Figs. 1, 2 and in Figs. 3, 4 for the (P-P) beam and for
the cantilever beam, respectively, where the solid lines refer to Ω1 and the dashed

Fig. 1.
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lines refer to Ω2. Two different λG values have been considered, i.e. λG = 0 (△)
and λG = 1 (2). It is worth noting that, regardless of the r value, the influence
of λG is reduced as λw increases, and the stiffening effect for large λw values
causes the coalescence of the first two vibration frequencies.

Fig. 2.

Fig. 3.
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Fig. 4.

The influence of axial load and of the taper ratio (α) on the fundamental fre-
quencies is illustrated by the graphs in Figs. 5–7. For all the boundary conditions
the frequency parameter Ω goes to zero as P/Pc → −1. Finally, the influence
of the taper ratio α seems to be relevant for the cantilever beam, whereas it is
less important for simply-supported beam and pinned-clamped beam. In Table 2
the non-dimensional critical loads are given, which have been used to obtain the
previous pictures.

Fig. 5.
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Fig. 6.

Fig. 7.

Table 2. Critical parameter (Pc) for different boundary conditions.

r = 0.1 λG = 1 λW = 0.6 π4 k = 2/3

α −1 −0.9 −0.75 −0.5 0 0.25 0.5 0.75 1 1.25

C-F 1.0255 1.0643 1.178 1.373 1.7415 1.904 2.056 2.19 2.323 2.434

P-F 1.0254 1.0665 1.1779 1.362 1.7269 1.894 2.045 2.177 2.289 2.382

P-P 1.0612 1.1463 1.3946 1.785 2.3298 2.546 2.749 2.935 3.104 3.253

P-C 1.1467 1.3443 1.5951 2.036 2.5908 2.827 3.031 3.204 3.359 3.464
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The use of BCOPs method to calculate free vibration frequencies and crit-
ical load is always influenced by trial functions, and a careful choice leads to
well approximated results. In turn, the trial functions depend on the boundary
conditions, so that it seems to be convenient to use polynomials.

5. Conclusion

In this paper, a powerful version of the Rayleigh–Ritz variational method has
been applied to the vibration analysis of Timoshenko beams on a two-parameter
elastic soil. The influence of various structural parameters on the behaviour of
the free vibration frequencies has been illustrated in various numerical examples.

The proposed approach belongs to the so-called semi-analytical methods
(SAN methods), and as such it can be considered as a useful tool in purely
numerical approaches (finite element methods, differential quadrature methods
etc.), in which all the parameters must be defined from the very beginning.

The numerical examples show the reliability of the method, and the particular
efficiency of the chosen trial functions.
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