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APPLICATION OF TORSIONAL AND LONGITUDINAL ELASTIC WAVES
TN MECHANICAL SYSTEMS

- A. PIELORZ (WARSZAWA). .

" One-dimensional elastic waves are used for the investigation of mechanical systems. consisting
of ai arbitrary number of elastic clements and rigid bodies. These systems may be loaded by non-
periodic forces and their elements may collide with each other. Elastic elements have finit lengths
and arve assumed: to deform longifudinally: or torsionally. Analytical solutions of the systems aré
given in the form of, recurrence formulae. These enable to, determine velocitics, strains and-displa-
cements in an arbitrary cross-section of elastic elemesits at an arbitrary time instant, taking irto
account equivalent damping, As an example, the model of a crankshaft of a_one-cylinder engine
is considered: ' B0 s : ' e '

1. INTRODUCTION

 The 'paper concerns the chosen group of mechanical systems, namely such ones
‘which can be modelled by means. of an arbitrary. number. of “homogeneous: elastic
elements, deformed torsionally or longitudinaily, and: rigid bodies. The systems
can be loaded by nonperiodic forces, and collisions between elements can oceur.
Such systems comprise colliding ‘machine . elements, drive systems, crankshafts
of engines and others, in which flexural strains are very small. =

~ In the paper the motion of every elastic element is described by means of the
classical wave equation within the restrictions imposed by dimensions of the el-
ements as given in [1], for example. Real damping apﬁcaring in the system is repleibed
by equivalent damping of the viscous type which can be taken into account in bound-
ary conditions or in arbitfary cross-sections of elements.

The solution of the classical wave equation with different initial and boundary
conditions can be sought by means of the method of separate variables [3], trans-
formations 5], the method of finite differences along characteristics [2), the Donnell’s
method [4, 6], and the d’Alembert’s method [3, 7]. From the cited Hterature it
follows that these methods. were widely exploited for one rod only..

The paper presented concerns a system with an arbitrary humber of homo-
geneous rods deformed torsionally or longitudinally, connected in an appropriate
manner. In order to obtain the solution of such systems, the d’Alembert’s method
was extended. In the extended method every rod has its own functions describing
waves travelling only in this tod. Hence it could be possible to snotice some regu-
larities in solutions, and to give the solutions in- the form of recurrence formulae
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It must be emphasized that no regularities for unknown functions were noticed
when only one rod was investigated [2-7]. Moreover, the solutions given in the
form of recurrence formulae enable the use of one-dimensional torsional and longi-.
tudinal waves for many complex mechanical systéms in order to determine veloci-
ties, strains and displacements in an arbitrary cross-section of elastic elements
at an arbitrary time instant, taking into account equivalent damping.

2. FORMULATION OF THE PROBLEM

We shall consider a mechanical system consisting of M homogeneous clastic
elements of different lengths and a certain number of rigid bodies. For convenience,
we divide M elastic elements into N2 M elements of equal length /. These elements
can deform torsionally or Iongitudinally. For ¢<0 the i-th clement has the constant
velocity Vio. At-instant =0 collisions or nonperiodic forces can occur. At this time
instant displacements of all points of the system are the same and are equal to U,.
Forces, acting in the cross-sections x=(i — 1) /, are described by means of the functions

@y F (:)——~2mf H (1) [+ b (=t sin (i (=t -e)]

k=1

i=1,2,.,N+1

that allow to approximate arbitrary forces appearing in real systems where ay,
Bux» Cis» diz» €, ATE appropriate constants, and r,;, are fixed time instants. In particular
cases, the formula:(2.1) can descnbe a force which 1s elther p1ece—w1sely constant;
or piece-wisely linear or sinusoidal. : ;

The real damping is taken into account by introducing an equivalent dampmg
of the viscous type in chosen cross-sections of elastic elements.

Under these assumptions, the ‘determination of displacements, velocities and
strains of cross-sections of elastic elements of the conSIdered system for ¢20 is
reduced to solving N equations:

PUED P Ul

g =0 =LY N

2.2)

with the initial conditions,

U (1) B

(2'3) ‘ Ut (x: t)= Uo, of — Fio
and the boundary conditions

aztfl(x,t) o aU (%, 0) "(aUl(x,t)
a? by Ty ot

Fi(t)ta - Vw)”=0

@4

for x=0,

Uper (5, 0)=U, (x, 1) . for x=(-11 i=2,3,.,N,
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P Uy (x, 1) +b U,y (xst)+ U (x, 1) .

@h EOYa—%s AN T o
U (% 1)
+d¢ “‘—é}——‘— Vi-—-l,o =0 for XE(I—I) l, I=2, 3, 1eey N,
8 Uy(x, 8) Uy (x, t) Uy (x, 1)
Fy () +ayy "“’_"“”“3;2__ N+1 Mﬁx_-k N+1 _‘a—t'“"—'"

- VNO)=0 for x=Nl,

where U, (x, ) is the displacement of the i-th elastic element of the system, c is the
wave velocity. The boundary conditions (2.4) are the conditions for forces and
displacements in the limit cross-sections of elastic elements. The constants a;, b;, ¢,
are determined by parameters of the system, while the constants d; are related with
the equivalent viscous damping in selected cross-sections: of the system elements.

The boundary conditions (2.4) cover a number of particular cases of mechanical
. systems that follow from the fact that the corresponding constants a, b,, c;, d; and
forces F; (r) can be equal to zero. For example, if only b, are different from zero
or only ¢; are different from zero, then the right-hand end of the i-1-th element
or the left-hand end. of the 7-th element is free, Next, if F, (t)=0 and @,=0, then
in the cross-section x=(i—1) / neither a rigid body is fixed nor an external force
acts, etc. In particular, the conditions (2.4) include the boundary condmons of
systems conmdered in the works [3, 4, 6, 71

3. SoLuTioN

We introduce the nondimensional coordinates ¥=x/l, t=cf// and suitable
nondimensional displacements U, (%, ©) and forces F, (7). Then the relations (2.1)-
—(2.4) take the form

o

31 F (T) 2 H (1) [Age+ By, (v 1)+ Cyp 8in (Df.k (z— Ttk)+Errc)]

k=1
f=1,2, ..., N+1,
>0 Ey 20,F%70

(3.2) P 2 =0 =12, N,
_ — aﬁi (55, T)
Ui (fa T)= UO: az, = 103 fOI‘ 7=0’ i=1; 2: e Ns
3.3 _ U, (% U (%, 1 b, (%, _
B b ra, L0 00 )+D1( 132 —Vm)=0

o1 A 0% .

for ¥=0,
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U,_; % n=0,(%n7 for Fe=i—l, =23, .., '
2T, . (%, 8U,_4 (%,7) o, (%, ©
Vi ! 7) +B 1 (%, ) tC e +

() A, _ .
E; F; (T) AL a2 ¢ ox _ ' a%
G4 il EwD
R ot T Vi—1,0]=0 for Z=i-—1, i=2,3,.., N,
aar 32 UN (ﬁa T) | afj}'{ (fs T)
Eyiy s @V dysr = Thxe1 T Dyir-
a0y (%, < _
( ”ai ) .. N0)=0 for X=N.

Equations (3.2) and the boundary conditions (3:4) are linear. Thus we postulate
solutlons of the pxoblem (3.2)-(3. 4) in the following fo1m '

(3. 5) U (% )= UO,, (%, r)],,ko#k vat U, (% 1)|F1¢0—E— U;_, (%, r)IF#O-I-
o + Uy, (5 ’E)IFN+1¢0+ Vier+Uo, =12, N,

where the first term is the solutlon followmg from coﬂlslon of the elements atinstant -
=0 (that is, with different initial velocities of onme, at least, pair of nelghbourmg
clements of the system); the term U (%, '.':) 1§ the nondimonsmnal d1sp1acemont
of the ~~th eIement related with the s-th force (that is, F, ('c);é() drsrogardmg the
remaining foices) where s=1,2,. SN+

We substitufe Eq. (3.5) into the boundary CO]ld.l'[lO]lS (3 4H and obtam boundary
conditions successively for Uy, (%, 7) 5= =0, 1, ..., N+ 1. For example, for Uy (%, 7)
they are the following:

&* Usy dUgy at-fcu
+ = Y=
Ao oz TP T 70 -_..f"-r =0, |
U() im1+17i_1 {)T=U0[+T7507 for ﬁ=i——1, i=2, 3, ...',N,' ‘
8 U iy Uy 11 oy Vo oy o
16) ATl g O ——— D = 5
GO A TR T Chrrall A
for X=i—1, i=2,3,..,N,
82 UON 3U0N aUON

AN+1 _E—;“+BN+1 —_ai—v'%‘DN.’_i '__a':r—“:—"'o for .‘f:N,

but for Uy (& ) with s=2, 3, ..., N, they take the form

82 Usi + aUﬂ aDTsl =0 f } ’ - 0
1 312 1 % 1 o7 = or x=U,
(3.7) 32‘ UA‘ i—1 BUS -1 aUs: - aUs i-1
2o+ ¢k Dy — =
A ek Gz TP T 0

for F=i—1, i=2,3,.,5-1841,.,N,
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(3.7 EF(D+4 7 U5 g DYooty o s ) Uy
[cont.] s s(f) 8 > s ox - ot

Upi-i=Uqg for F=i—1, i=2,3,.,N,

9 Upy Wy OV )
AN+1?{“+BN+1 —=—+Dy,y ——=0 -for F=N,

ox ot
The boundary conditions for Uy, (%, 1) with s=1 and s=N-+1 are of a similar form.
The components of the solution (3.5} are sought in the form of a sum of the
foliowing functions with the correspondingly selected arguments:

(38) Us; (JC T)"‘f;i (T T _x+x l)+g81 (T T +x x )5
=12, N,,__ s=0,1,.., N+1,

where 7y, is an instant, and &7, is a limit cross-section of the i-th element in which
a disturbance has been caused either by the collision or the s-th force. We assume
that for negative arguments the functions f;, g,; are equal to zero. .

Since in all the relations (3.6); 5,4 and (3.7)y,,, 3, s derivatives of approprlate
functions appear rather than the functions themselves, we differentiate Eags. (3.6),, and
(3.7), with respect to time for convenience. Next we substitute the solutions (3.8)
into the corresponding boundary conditions and thus obtain ordinary differential
equations of the first and the second orders for the functions f“ and g,. For every
case of a mechanical system we have different constants 7o %o and different ordi-
nary. differential equations, . : :

We shall restrict our investigation to obtammg -a solution for the displacement
U, (%, 7) under action of the s-th force F, (v) with 2<s<N. Then, for i<s the first
perturbation atrives at the. i-th element to the cross-section X0,=i at instant 7%=
=ys—i—1, while for izs we have £),=i—1 and ¢%=i--5. Then the functions (3.8)
take the form :

Uy (%, 9=f, (z- x+2z—s+l)+gs; z+x—-s+1) for i=1,2, .., s—1,
(3.9) Ui (%, O=fu (t—F+s—1D+gy T+ X+s—21+1) for i=s, s+1,.., N,
s=2,3, .., N.

It follows from the conditions (3.7) that the number of equations of the second
order is dependent on the number .of constants A, different from zero. We shall
consider the case in which all the constants 4, are different from zero. Then we
substitute the relations (3.9) into the boundary conditions (3.7) and obtain the
follong set of 2NV ordinary differential equations for the functlons fst (z), g,, (z)

31 (Z)']“rif.n (Z)'— _‘gu (Z -2 +hy gﬂ (z 2), . - :
GO S @Sy G248y G-D =y (=2, 122,351,
g.:'! (Z)m. ;,i+1 (Z-—z)‘*“g;.i+1 (ZI_Z)"f;t (z—2), .. I_S S""l N 1
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{3.10) 8';;; (2)+ 71\_’-4-1 3.;:« (_z)"—" '"f;;v (2—2)+k1v+1f;1\r (z—2),

fcont.]
A O LY A @by Bt g (D
Fr@=fr ot @851 () —8s @
8o (D 1y 3;; (2)= —f.:;_(z)”_f‘hwlf;; (@) et g;,i+1 @,
=8—2,8—3, .., 1,
fu@+rfy@= —»g;; () +h g, (z)+ eiji;‘.b_1 (), i=s+1, 542, s N,
where ' ' o
ro=i=B[As,  fss=(Bysi+Dyi)lAyss,
r=(B—C,+D)f4, for i=2,3,.,N
o s Hip=—(By+Dy)Ay, hN.+1=(BN+1 ~Dys )/ An 1,
G.11) h—(Bi+Ci—D)jd, for =23 .ms

= —(B; +C£+D,)/AI ' z—s+1 s+2 o N,
_ei——-—ZC;/A- for . 1—-2 3,.
ei—ZBi/Al _ fo'r z-—s+1 s+2 N

The arguments of the nght-hand side functmns of the ﬁrst N equations of the
set (3.10) are shifted by 2. This fact indicates that Egs. (3.10) should be solved.in
the successive intervals of argument z that begin from even numbers. The functions
S 8 are assumed to be equal to zero for negative arguments; then the right-hand
sides of these equations are always known as Eqs (3. 10} and are solved in the given
succession., :

The set of equatlons (3.10) for the derivatives of the fanctions fi;, g5 consists of
N—1 algebraic equations and N+1 ordinary first-order equations with constant
coefficients, The latter have the form of the following equation:

G.12) ' '+ Ay=P (%)

the solution of which for x> x, is as follows:

(3.13) B ¥ (x)'-_"'e"**(""‘n) [ f P2 ém-xo} dz+y (xo)].
Xxg

Then Eqs. (3.10) can be solved in f > £ in a simple way: namely, we solve them
" in the given succession in the successive intervals of varidbility of the argument z
beginning from even numbers, making use of the relation (3.13) in equations of the
type (3.12). In this way in [7] a fixed rod impacted by a rigid body was solved but
the solution was given only for z<8. It follows from comparison of Egs. (3. 10) -
and Eq. (3.13) that the solution of Eqgs. (3.10) will depend exponentially on the




AFPLICATION OF TORSIONAL AND LONGITUDINAL ELASTIC WAVES IN e 437

constants ry. If all the constants #, are different from each other, the solution for
the derivatives of functions f;, g,, for the force F| (z) described by the formu.la
(3.1} is the followmg with s=2, 3, .

2ngz<? (n+1) n=0,1, ...,

4' Mg H—f4p—1
(3.14) gst,, @=8ly 01 @O+ 3 H (zm)[z exp (=1 Zyr) 2 B Tt
k=1 J=0 - ‘
N+1
+ Z eXP( "‘ Zxku) Z g“ku :kn'*‘ Z CXP( r zskn)x
p=i+1 p=s+1

nts-p

2 gstkn skn+g3ikn +gsikri zsk"__l_gsikn SII] (D ek Zston +Esk)+ .

+gﬂku cos (Dsk zskﬂ'l'Esk)} i=1 2 - 1’
: westp—1 -‘
(3.15) g, (@)= gsi, aey @F ‘Z H (Z) [2 cxp( *p Zm) Z gnku J oy
141 . Ng1
+ 2 CXP( —Fp Zsku) 2 g;um Z;,m-i- Z exP( f‘ » Zskn)x
p=i+2
Hti-p
e Z g z:;m 'f‘gm"'f'gm" :m"l‘gs‘k" 8in (D Zypy + Fg) -+
j=o
fﬁk" Cos (D.rk Zskn+Esk)] Ii=s 5+ 1, sery N,
i—1 n— i+p 1
G160 £, @)= =~fous O 2 Hza) [ ) oxp (=1, 2us) 2 S 2t
. . r=1
TN
+ Z XD (~ 5 Zg} 2 Fof" Zhat D) P (=1 7)
p=s+1
Hts—p~1

2 S 2t 5 5059 21557 S0 (Do Zygt E) +

1550 o8 (D zs,‘,,+Es,‘)] i=1,2, ., s—1,

n—s+p
(1) S @= =1 @ 2 H (zn) | 2 XD (— 7, Zu) 2 o Tt
- p=1 :
. N4+
+ 2 eXp ( tp Z sku) Z giku Z:;m‘i- 2 eXP (“’ zsfm) x
p=i+1
n+! -r .
% Z .sIrm sku fxﬂm_l_fﬂkﬂ Zeen _I_f:iim Sil‘l (Dsk.zsk"—{-Esk)—l-
i=0 ) B

15 cos (D, 7 sk,,+Esk)] =g, s, N,

where Fai wms (z) =g, 11 @)=0 for n=0 and Zyn==Z— 20— 1Ty,
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- The. denvatlves of the functions fi; (2), g5 (z) are denoted in Eqs. (3.14)-(3. 17
by f * in (2,.-8. (2), Tespectively, depending on maximum.  even number which is
smaller than the current argument z. As it follows from the formulae (3,14)~(3.17),
the functions 1%, (), g,, (z) depend exponentially on the constants r,, that is on the :
constants 4,, B;, C;, D,. The varying coeflicients standing at the exponential func-
tions are powewseries in zy,. The highest powers in these series are connected with
a riumber of reflected waves. All the constants involved in Eqgs. (3.14)-(3.17) have
four upper indices. The firsi one provides information on the dependence on the
s-th external force, the second — on belonging to the i-th function, the third — on
the dependence on the k-th component of the s-th force and the fourth — on the
interval to which the current argument z belongs. The constants involved in the

. power series have two lower indices. The first one is related with the constant r,
and the second one with the j-th power of term Zy,. The constants in Egs. (3.14)-
-(3.17) without lower indices are free terms, those with index I stand at the linear
term, and those with index s or ¢ stand at the functions sinus or cosinus, respectwely

It follows from the formulae (3. 14) (3.17) that the functions £ (2), g., (z) have
different forms for i<s and for i=s. Moreover, to determine the derivative of the
corresponding function for argument z from a fixed interval, it is necessary to know
the derivative of this function in all preceding intervals of argument z. This infor-
mation follows from the first term of these formulae.

The constants involved in-the formulae (3.14)-(3.17) are obtained while solving
Eqs (3.10) successively for n=0,1, ... In the algebraic relations they are algebraic
sums of constants of the same type of the corresponding functions. These constants
Whlch are obtained using Eq. (3.13) for the functions Fo1n @, 8 s_y.n (@), and

(@), i=s+1, 542, ..., N, are given in the Appendix.

S The constants mvolved in the solutions for the functions g, where ;—N
§—2; 53, ..., 1, are similar to those given in the Appendix. The remaining constants
of the formulae (3.15) and (3.16) are found from the algebraic relations of the set
of equations (3.10). The above constants are given for s=2, 3, ..., N. The correspond-
ing constants for s=1 or s=N +1 are defermined in a similar way.

The formulae (3. 14)—(3 17) and (3.8) can be utilized to determine the velocities
and deformations of -arbitrary cross-sections of elastic elements of the considered
mechanical system at an arbitrary time instant. These velocities and deformations
are caused by the s-th external force F, (z) described by. Eq. (3.1) fors=2,3,.., N.
To determing the velocities and deformations of clements of the system caused
by a collision, it is'necessary to find the number of the constants 4, being different
from zero, to use the boundary conditions (3.6} and to obtain the corresponding
solutions for the derivatives of the functions fo; (2), g, (2). Since the relation (3.13)
is employed, it is necessary to take into account the discontinuity of the functions.

: .In turn, after using the solutions (3.5) it is possible to obtain the velocities and

R deformatwns of elements of the mechanical system loaded by an arbitrary number

of __external forces, taking collisions into account. To obtain the displacements,
: 'solutlons for the derivatives of the functions fy (z) Lsi (z) should be integrated.




APPLICATION OF TORSIONAL AND LONGITUDINAL ELASTIC WAVES IN .. 439

The formulae (3.14)3.17) do not regard particular. cases of the mechanical
system under consideration. They have been obtained with all 4, involved in the
conditions (3.7} different from zero and with the constants r, different from each
other, i=1, 2, ..., N-+1. Each particular case of the constants 4;, r; requires a sep-
arate solution of the problem (3.2)-(3.4). The procedure and the character of the
obtained results are the same. The difference in the solutions will consist only in
numbers of the exponential functions and the upper limits of summation of the
geries. Moreover, no Heaviside function will appear in the case of collisions.

4. EXAMPLE
As an example, we consider a model of a crankshaft of a one-cylinder four-stroke
e ngine, Fig. 1, [8, 9]. The model consists of two elastically deformable main journals
tand of three rigid bodies having the mass moments of inertia I, I,, I, with respect
0 the axis of rotations. The main journals (1) and (2) are subject only to torsional
trams in accordance to the Hook law. Their flexural strains are disregarded because
hey are small (3 %) as compared to torsional ones, [8, 9]. Each of the main journals

Pe
B e e Myz .
M| Mg Jr—="7 M|
M : Jl_m_L_ RN
- | 2
, al ", 3

Fi6, 1, The model of a crankshaft of a one-cylinder engine,

has length /, mass density p, shear modulus & and polar moment of inertia I,:
The rigid body (2) is loaded by the external moment M, (z) which depends on force
P,, Fig. 1, [8, 9]. In the example this moment is aproximated by the picce-wisely
linear function

a2

@¢n T Mz(f)=2 azk'H'(?—fzk),.

where ag; are constants-and fy are fixed time instants. Damping in the system
is described by damping moments M, loading rigid bodies. It is also assumed that
in 7=0 displacements and velocities of the cross-sections of the main journals are
equal to zero,

Since the model is loaded only by moment M, (¢), displacement U, in p. 3 is
equal to Uy, and henceforth is written as 8, (x, ). Then the investigation of torsional
displacements and strains in the main journals is reduced to solving two cquations:
/R &% 6,

— (-'2 .
ar T axE

(4.2) =0, i=I[,2
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with the boundary conditions

p a0, o S0, 9 o 0
1 g (R ey . or x=0,
4.3)
y , 2% 9, o1 (ael 302) P ael o & ,
2O~ L °Vax  ox 2o or  X=h
6,=0, for x=1,'__‘
I il b2 g, % +d o g 21
2 PO g T T T
and initial conditions _
(4.4) ' 0= Y =0 for -t=0, :—1 2

where c’—'G/p, d, are coefficients of eqmvalent damping, and the da.mpmg moments

My in (4.3) were assumed:

08,
My (1)=—dy T for x=0,
4.5 ‘
(- ) aei‘“’ ' . . .
My @)= —d Earva for x=(-D{ =23

Upon the introduction of nondimensional quantities

J'Eﬂxﬂ, T=_Ct/], 9;=9,/90, M2=M2 90 Izlfl 02, .Di—"_-dilllfl c,

- K=ILplff, - E=L]T,
the relations (4.2)—(4.4) take the form

46 329; azgg 0 R 12
#0, B b B e z= 0,
g Ky TDeg 0 dor 2=
@7 28, @, . o, i,
EzMz("C) —’_“"""Ki .Ez g +Kz 9% —DZEZ dﬂé‘;—:O for
o §,=8, for x=I, __
28, L @, L . .
W+K2-}3—-5§*+D3—I’; pe =0 for ~x=2
S Caen
@8 - 6,= a; =0 for =0, i=1,2.

Accordmg to the relatlons 3.9, the solutxons 8, are sought in the form
(4'9) 9; (x, 7-') ——fg,; (’lf x-!- 1)+g’2i (T+x 1) l—]., 2
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and equations for the unknown functions f3, (z), g, () are

I @+ L1 @=—g4; G~ +h, g}, (z—),

822 D413 85 @=—11; =D +hs f 22 (2=2),
821 @+rz 8’:’;_1_ (D)=E, My @) ~f1; D) +hy [}, @—er g2, (2),

S22 @)= (D+83, D) -2}, (),
where - -
1 ;Kl +Dy,  hy= K, _D19 ra=K, +(K1+Dz) Ez: hzm(Kz ~Dy) Ez "‘.Kzs
€=2K;, ry=(K;/Es+D3)Ey,  hy=(K,/E,~D;) Es,

The set of equations (4.10) can be obtained from Eqs. (3.10) for N=2 and s=
We start solving Eqs. (4.10) with the interval 0<z<?2 using Bq. (3.13) and for
ry 5‘51'2 #ri. Then

fzm (z)=g;2° (z)=0

2210 (&)=E Z H(z —Taz) [gzlko +835"° exp (—r (z—72)),

k=l

(4.10)

f 220 (z)—Ez 2 H(z—13) [f 2240 +/35° exp (‘“"_' 2 (z "Tzk))],

k=1
where
gZIkO-—-a-zk/rz ggékﬂ gzmo f22k0.=g21k0’ 22k0 gléko.
For the next interval 2<z<4, we get

f211 (Z)—EZ 2 H(Z—Z sz) [f.zuc1 'f‘fz”u Cxp ("“r1 (z—2~ Tzk))-l-

k=1

+f:2u1)k1 exp(—ry (z—2— (7)1
gzn (2)=E, 2 H(z-—2 Tzk) [g2%1 4822 exp ("‘2 (Z—Z—Tzk))+
+gaakt exp (=rs (2—2 72,,})]

8211 (z)—gzm (Z)+Ez Z H(z 2 Tzk) [32”‘1 +gio"t exp (—"1 (z —Tzk))+

k=1

+exp(—-r2 (z—2- Tzk))Zgi““ (z—2~ Tzk)j'!"gnki eXP("fa (2—2"720)],.

J=0
where [k g0y, fHHs(rth) G0Ny 1), fN=
=‘_,,f21k1_f§(1)k1’

g22k.1.=.._k3f22k0/r3’ ggg!cl — _(]‘2 +h3)f22m/(fz __rs), gﬁf,“ g22k1 T_8.2(2;:_.1’
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g =iy 2 e g2y, - GRS ),

G =t ha) [ e B3, i mes g7 1)

201 __ __ 21kl __ o 21K1__ 21kl
20 =8 g10 830 5 - - S

while function: f,,; (z) is the algebraic sum of fhi (D) ghss (@) -and g5, (@)

After analogous transformations for z>4 one notes that the analytical solutions
for the functions g4, (2) and f3,, (z) may be finally represented by the formulae
(3.14)~(3.17) for N=2, s=2 and with g2 =g2¥=gl "= f Pkt = f 1= 2100, All
remaining constants in the solutions can te deduced from the relations given above
and from the formulae presented in the Appendix.
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Fic. 2. The displacements of the cross-sections =0, 1,2 of the model of a crankshaft of a one-
: -cylinder engine. :

After integration of the appropriate formulae (3.14)~(3.17) and using the rela-
tions (4.9), numerical calculations were performed for K,=0.005, K,=0.00035,
Eys KoKy, E3=0.137/Ky; D=0.5, D,=1.0, D;=0.3 and for the external moment
M, ()=0.00065 [0.27H (1)—0.48H (z —104)]. The plots of the displacements for
the. cross-sections =0, 1 and 2 of the main craﬁ_kshaft journals for 0< 1200
are drawn in Fig. 2. It follows from Fig. 2 that the maximum displacements occur
in the cross-section X=1.

5. CONCLUSIONS
~ +The paper presents a method to investigate a chosen group of mechanical sys-
teins, the elastic elements of which deform longitudinally or torsiomally. It uses
one-dimensional waves and .is based on’a proper selection of the arguments fo
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gunctions (3.8) and speclal construction . of the recurrence formulae developed by
the author,

. The €quations .of motion and boundary conditions are given for a system con-
mstmg of an arbitrary number of elastic elements interconnected by rigid bodies.
A solution is obtained for such a mechamcal system for which Egs. (3.10) con31st
of N—1 algebraic equations and" N+ 1 differential equations-of the type (3. 12) with
different constants r;. Similar solutions are obtainable for othei ‘numercus mechan-
ical systems dcscnbcd by the relations G. 2)-(3.4). Differences concern. only the
number of exponentlal functions and upper limits of the series, -

Analytical solutions for mechanical systems described by the relations (3.2)-(3.4)
are obtained in the form.of recurrence formulae. Another method  of obtaining
solutions also in the form of recurrence formulae has been proposed by Donnell
[6]. However, this method is not very efficient because it can be employed only
for very simple fhechanical systems [4] withix a very short time. interval. On the
other hand, the method proposed here is applicable for many complex mechanical
systems over an arbitrary interval of time. The obtained recurrence formulae alfow
to determine velocities, strains. and displacements at arbitrary cross-sections of
elastic elements and at an arbltrary tlme mstant taking mto account equivalent
damping. ' = o " :

As an example .of the application of the method, the model of a crankshaft
of a one-cylinder engine is considered.

MPE&DIX'
) The constants appearing in the solutions (3, 14) (3.16) and (3.17) f‘or the functlons
fm (z) gm_l,n (z) and fsm (2), i==s+1, .S'+2 N are:
f“’"'—hi H (1) g3% 1, | .
FoIEnm otk _ ik _gsinsy gy Gy _ {yp
Wim=(hy g3 D, g Y) H (n—1),
Wiy g1~ Dy g5 1) H (1),
S wi" Dy wiN(r 3+ D2),
St = ey w =Dy wiD(r} +D2),
U= —H (n—2—j) gion- YRt h) 30T, =n—1,m-2, 01,
= (o D) H (n—2—7) (g5 - 5D+ 0 Thy) gy 1I/(rlﬂf'p) '
p=2,3,..,5 je=an—1,1n-2,..,0,
st | (i1 1) H (1+5—p— =2 L D e+ ) g5 G = ),

p=S+1: S+2s vy N+I! J=”+-5"“P‘*1a n+'s'_p;_:-2! ";" 0»
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. N4t
f'ﬁa" fslkn_H(n.... 1 Z A 2 H(n +S~'—p'—'1) :Um

p=2 pmgt+l
. fslku Sl!l E k“—fu“ cos Eaz

-gi,,-x.kn = —F, By/d,r, for n=0,
g b (B, Ag/A +gi M, for  n=s0,
gor My B, Col A, (r?+D ,‘) for - n=0,
g'" M =E, Dy Culdy (2 4+D3)  for =0,
guIm Lk fra=tibng o g”"")/r.'._l ‘ for a1,
ga,s--1:kn=(h--fs.s—1.h+e gm..__fs..-—i.tn_, :':s—mk")/r,' for  nz=l1,
WS~ L, fRsmLML D fa,s—l Ky g g9 .f(_’r. n=l1, o
a—1|n=k fs,s-—i m_p fs,s--l mie g mn for n>l,
g U=y 0T D o+ DY) for >,
:..s«-l kn=(r $e1, 00 Dskﬂﬁ_l'")/(ff'l‘ka - for azl;
g ""-—[(j+1)H(r'z—'s+p¥-1—)')( Uy e Sl UYL
“fyf e, H (n—s+p—~ 1= W1 p=1 2 51,
- j=n—s+p, n—s+p=1, .., 0
&M = H (n—1—j) fr= 50 [+ ) FR 3T M ey g2 1),

#d-1

J=n:""_1, eeey 1-

=~ ) (H ks —p—2-D S35+ H (b s—p=1=D g )+
+(rp+hs)H{n+S'__p 1'_.]) s”_l k"+eag”h]l(}a'".r.1.v)s

pe=s+1,54+2, .., N+1, J—n+s-—p,n+s-—p—1,'...,0,

At o © ON41

g:.s—-l sk s.s—l-ku_z H(n—S‘i‘p)g;B‘--l'h'i'— Z H(n-l-s_—p)x .
=1 pP=s+1

xghE Lkl _ghs=Likn gin B —g»*=1" cos Eg,

Si=[h, H(n—1) g" M be fot~ MY,  i=s+l, 542, ., N,
f"*"-—[h H(n—1) gy e, fs.i - Ll f (n—1) g3 — £ r,,

: i=s+1,5+2, .., N,
w"’-—-H(n 1) (b g2 4Dy ") e, f5 71 W j=yd 1,842, 00 N,
whe=H (n—1) (y 82" — Dy, g5 +- ¢, A t-Lkf s+l 542, .0, N,
S wm_,_Dsk w(r2+D2),  d==s+1,5+2, ., N,
S e(p, Wil — Dy, wiN(r? +D3), i=s+l,5+2, ., N
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"""—[(J+1)(H(n S+p- 1-«J)f§f,+1+H(n —s+p— 2——])g;":;'+1 _
_ | ) H (st —1=) g5 = e, f3 ),
i=s+1,54+2, ., N, p=1,2, .., J=n—s+p,n—.s'+p—-l', v 0,
o =[G+ D) (H (p— 1= S, + H (n—2— J)g“ﬁ’}’i,l)—(f" +hy)x
<H (n—1-]) gy —e f5/ "2 ¥ r,— 1),
i=s—i—1 5+2, 0, N, p=stls+2, .., 0-1, f=n,n-1,..,0,
= H = =) g4 ) g5 e, £33
. . I=S+15 S+2> eeay M .j=n n_l, aeny 1
siRu,_[ (]+I)H(n+1—p 1 ])( ;flfr”+1+gsfjf;{|-1)+(r +h)g;fm_!“ . -
+eIH(n+1—p L= 155 1""]/(r-—r Te=s+1,5+2, .., N,
—z+1 i42,. N+1 j=n+i—-p,n+i-p—1,..,0,

N+1
.nim fslkri 2 H (?1—S+p) sikn 2 fs;kn Z H(n+i _p)fsikn
p=3+1 p=iti

=¥ sin By — 5% cos By, i=s+1,5+2, ., N
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STRESZCZENIE

WYKORZYSTANIE SKRETNYCH I PODEUZNYCH FAL SPREZYSTYCH W UREADACH

MECHANICZNYCH'

W pracy wykorzystano jednowymiarowe fale spregyste do badania ukladow mechanicznych

zlozonych z dowolnej liczby elementéw sprezystych i bry! sztywnych. Uklady te sg obcigzone sifami
nieokresowymi oraz moga w nich wystgpowad zderzepia. Elementy sprezyste tych uldadéw maja
skonczone dlugodei oraz odksztalcajg sxq wzdiuznie Iub sl\rqtmc Rozwigzania analityczne otrzymano

Rozprawy Inzynierskie — 2
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w postaci wzordéw rekurencyjnych, ktore pozwalaja wyziaczaé predkofei, odksztaloenia i przemiesz-
czenia dowolnych przekrojéw poprzecznych elementéw sprezystych w dowolnej chwili czasu przy
uwzglednieniu thumienia zastepezego. Jako przyklad rozpatrzopo model watu korbowego silnika
jednocylindrowego.

Pesio e

HCITOJIL30BAHIE TOPCHOHHBIX ¥ TIPOJANBHEIX VIIPYIHMX BOJH B MEXAHH-
HYECKHMX CHCTEMAX

B CTATHE HCIOMB3YIOTCH ONMOMEpPHETS YUPYTHE BOJHBI JFTH MCCUENOBAHAS MEXSHHICCKUX CHC-
TEM, COCTOMIMX H3 IPOAIBONLHOTO YHCTEA APYTAX SHEMEHTOB H XKECTKHX Tell. TH CHCTEMB! Harpy-
JWeHH HeMOPWONRMCCKEMA CHITAMHE, KpONO TOTO B HEX MOTYT BEHICTYNATH COYHaperusi Yipyume
BIESMEHTH 3THK CRCTEM FMEIOT KOHCURYIO IUIEKY, a IpoJaibase AedopMailus KDyYeHHA. AHalu-
THYECKHe DEMCRAA TONYIEHET B BUAE PEKYDDETHLIX (OPMYT, KOTOPBE MOIBAIBIOT ONPEASITH
CROpOCTH, AClOPMALHY W TIEPEMEIIeRAA IPOMIBOILHEI HONCPETHRIX ceuci YIPYIUX 2JIEMEHTOR
B OPOM3BONBHLLH MOMEHT BPEMEHH ¢ FIETOM 3AMEHFOTG TeMIpOPHPOBAREL B KauecTne npuseps
PACCMATPHBASTCA MOEENE KOJICHYATOr0 Bafa ONHONMIHEATONC NBHTATENL.
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