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DETERMINATION OF THE CRITICAL ADIABATICAL TWISTING
MOMENT IN THE CASE OF THICK AND THIN-WALLED METAL
TUBES

Z. SLODERBACH and T. SAWICKT1 (WARSZAWA)

In this paper the value of the critical adiabatical twisting moment for the case of thick- and
thin-walled metal tubes is derived. The critical state means herein the maximum point of the adia-
batical worxhardening curve in the test of pure shéaring or simple tension. The numerical resutts
are demonstrated in a diagram form.

1. INTRODUCTION

The paper deals with the pure-local adiabatical twisting problen-in the case of
thick- and thin-walled metal tubes. The values of the critical adiabatical twisting
moment are determined. Its growth can lead to the bifurcation of the equilibrium
state on the outside surface of the tube (state of localization of the adiabatical
shearing — see, for example, the comments in [2—4] and [19]). The critical state for
which the twisting moment is determined means the state of maximum of the adia-
batical workhardening curve in the test of simple tension or pure shearing (see for
example [1]). In this ‘paper some results from Chapter 3 of the work [1] are used,
where the critical values of stress, sttain and temperature for the pure adiabatical
shearing process are determined.

The coupling problem for pure shear and twisting of thin-walled metal tubes
was previously investigated, see for example [2—7). In these papers the coupling
between strain and temperature fields is taken into account. The authors use data
from Manjoine’s experiment {8] which was carried out for mild carbon steel. In this
paper stainless steel data obtained in [12] are used. The problem of strain localiza-
tion for the case of the twisting cone and for coupled strain and temperature fields
is studied in the paper [9]. The influence of strain rate and heat conducting on the
focalization and propagation of the slip lines has been investigated in 2 recent work
[10]. The analysis is carried out for the case of a metal ring with local wallsoftening
(imperfection) as in papers [6—7]. )

. In our work some “‘geometrical effect” is taken into account and its influence
on the twisting moment value is studied. It is also shown how the linearization of
the adiabatical workhardening law simplifies the problem and how such a result
differs from the exact one. These effects are illustrated for various material constants
on the diagrams, obtained by means of numerical methods.
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2. ADIABATICAL PURE SHEARING TEST (SIMPLE TENSION)— CRITICAL STRESSES FOR
SOME STAINLESS STEEL

Now some important results obtained in the paper [1] are presented. The class
_ of metals considered in [1] can be described by the following equation for the case
of s::mple tension. [3, 5—7, 11]:

e . o=Y(,0)=(C-10) (b: +&7),

where o is the real stress, &2 — the logarithmical plastic strain and © — the tempera-
ture, Material constants for some stainless steels, according to experimental data —
[12, 13], assume the following values:

C=45--500 kG/mm?, 5=0.02-0.5 kG/(mm?>C),
b,=0.016, n=02-0.5,
po C,=0.3-0.4 kG/(mm?*°C), E=2000+2200 kG/mm?,
0o=20-60 kG/mm?,
where E denotes Young’s moduli and o,=cb} — the initial yield stress for &"=0

and @=0°C.
The constitutive equation (2.1) in dimensionless form is:

@22 - . - r=(4-0%) (b1‘+a*’)", :
w]:iem ' o ' :
| h_a('l_-w) g 2D ca+y
@3 = = ]/"3”E , oF= “JE 0, A= —5E .lf.—1+v

The dlmensmnless work of the plastlc stram is the followmg

(24) L k= c--;/3 f 7 (0%, s")de” h
where

IC—-f a(@ s")ds" &

is the dimensional work of plastic strain. ' o e =
By subnmutmg Eq. (2.2) into Eq. (2. 4) and after mtegra.tmg one obtams c

(2 5) :. . .. S IC:"' (A @*) [(b1+3p)11+1 bn+1]
Now let us assume that the stored energy of plastic deformatiori takes the form
[11—po G¥=1n - x’ where n=0.1. Then the equatlon of the temperature ﬁeid (see
Eq (3 1) m the work [1]) yields

2.6 Y ' %= - *  §=0.5196
) o " T po G
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The parameter & represents the sensitivity of the yield stress point on the tempera-
ture. From Eqs. (2.2), (2.5) and (2.6) we derive the following adiabates: -
.7 - =7 (Kc¥), &= (k*), O%=§-rx*,

" Taking the derivative of the first equation of the set (2.7) equal to zero we obtain
the critical value r} and, corresponding to this value,

_ o
n (b+n—y/Fobitt) |#10
2= T Y

n-1/30b7+!

1+n—y/386"+1

n-w]f—éb"“ (n (I+n_l/§‘b:+i)m .
1+n—y/3 0011 ) V36 ) s

The second equation of the set (2.8) can be substituted with very high accuracy
by Eq. (2.9} for 6=0.028—0.730 (from Eq. (2 6).), b=0.02—0.5 and p, C,=0.35:

(2.8) @ =4

.= A (1

(2.9) o x4 1 —

Now the equation (2.8); takes simpler form

4 [n (1+n—1/30671) ]W
V34 '

(2.10) TR ]

3. TWISTING

3.1. Adiabatical twisting of the thick-walled tube

We assume that: _

during the twisting process there are only stiff rotations of the Cross-sections;

pure shear state is in the middle of the tube. '

Using the results from Sect. 2 of this paper, we derive the critical value of the
adiabatical twisting moment, the growth of which can lead to a bifurcation state
on the outside surface of the tube (state of localization of the adiabatical shearing).
For the thick-walled tube the problem is one-dimensional due to the axis symmetry
(Fig. 1).

Let us introduce the followmg measure of plastic deformation (see [5—71):

g P

Vi

'Where ¥ is the angle of plastic shearing. Decomposmg the deformation into- elastic
‘and plastic parts we get

3.2

(3. 1y - gPe=

y=y"+7"
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where y¢ is the angle of elastic shearing. From geometrical analysis (Fig. 1, [L4]),
one can obtain '

(3.3)

where o, is the angle of twisting corresponding to the unit of the length and » — the
current radius of the tube (Fig. 1). From Eq. (3.2) and trigonometrical relations
‘we obtain the following: o
e . tgy=tgy
34 gy =T o
( ) - Y S gy ) 1+tg yig -yl’ : /
For pure twisting of the thick-walled tube, on the ground of [14], we can obtain
the following expression on the correlation between the shear stress and the elastic

shearing angle y°: (

1
(3.5 S TE Y

Then, from Egs. (3.1), (3.3)'and (3.5) we get

1 (ocsrwl/ge")'

(.6 r-=? 14/ 3, re?

Let us introduce the following dimensionless parameters:
r _

@e6n ﬁsf% 4 PE T T

where  is the outside radius of the tube (Fig. 1). Substitution of the formuiae (3.7)
into Bq. (3.6) leads to : B I EC
. P\ Taysbor P
where ]/§ﬂs p&f represents the “geometrical effect” mentioned earlier (see also.
denominators of Egs. (3.4) and. (3.6)). As it is known the first- bifurcation states
can arise on the outside surface of the tube, e.g. for p=1. Then the plasiic strain,
temperature and shear stress will have their critical values on this surface (see Eq.:
(2.8), or Bgs. (2.8);, (2.9), (2.10)). Knowing this and substituting the critical values
e?, t° and p=1 into. Eq. (3.8),we obtain, after some transformations, :

39 . 27, +)/3€k,
©2) O

B8y I




DETERMINATION OF THE CRITICAL ADIABATICAL TWISTING MOMENT 451

where f¢° is the dimensionless critical twisting angle (see Eq, (3.7),) for which some
bifurcation states can arise on the outside surface. It is worth remarking that by
setting 2)/312, &2, =0, the above mentioned “geometrical effect”” is neglected. The
values of fi"=p7 (5, A, n), where 4 and » are some parameters, are shown in Fig. 2.

I I T |

or
Bs

101

with , géometrical effect’
- O | e without , geometrical effect”

1
a+a’ for A=G.0016+0.016 .
b+b for A=0.0016+0.016
o+e' for, A=0.0016+0.015
d+d’ For A=U0.0016+0.016
I L g }
013 R ET 0.53 AT

Fia. 2,

It turns out that for the critical state on the outside surface the values of 5, are

very low — less then 1072, Therefore we can write (see Eq. (3.7),,5) that p,> pf,.

This means that the whole cross-section is in the plastic state when the critical state

is attained. This remark will be useful for determining the critical adiabatical twisting

moment. From Fig. 1 and Eq. (3.7); we can observe that the angle i measured on
the frontal surface of the tube, see for example [14], is equal to

(3.10) v=ayl=f—,

where / is the half length of the tube,
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The dimensionless twisting moment M can be determmed by solvmg the follow-
ing integral [14——18] :
M.(+v)  t
Mo = 2

M, i ,_anf v (p) p* dp.

From the general equations (2.2), (2.5), (2.6) and (3.8) we cannot get an analytical
solution of the expression (3.11). So in this case we have obtained a numerical
solution, knowing that M, % =M, *"158 . However by linearization-of the function
7 (¢f) — Egs. (2.2), (27),, we may obtam the a.nalytxcal ‘value of M, which is

(3.1

.
A\
: ‘Tl
. . o
. . 11
. T Ry
a .
Tor— - : " -
- o v
arc tg m?
g
o
0 L :

FrG. 3.

a lower estimation of the exact solution. This idea is shown. in Fig. 3 where
m*=(1%,—1,): ¢ is a linear adiabatical workhardening modulus. Hence

(3.12) T =79+ m" &¥

is a lower estimation of 2 The curve 7' (séé_Fig. )] show_s the values of Eq. (2.2}
for @=0°C (upper estimation of 7%). Substituting 7* by 7{ in Eq. (3.8) we get

f g2 )
}+|/ 3P B, p
Now from Eq. (3. 13) one can determme g2 (p),

, _—2m ]/3 To ]/2_(;5
80)) 4y/3m" B, p 2mf'+4V§m“ﬁ,p

(3.13) 'co+m £P —~--(

(3.14).
where _
B A(p)=a, p*+b, p+e,
(3.15) | ay=4f (3 +2)/Tm),
By==dro B, (3-2y/3m%,
c=2m /3.
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Substitution of Eq. (3.14) into Eq. (3.12) yields:

_ T 2m'+y3 VA
(3.16) S 12_7—4]/5-&“0 +4]/§ﬁsp'

Finally, after placing Eq. (3.16) into Eq. (3.11), and after integrating, the lower
adiabatical twisting moment takes the following form:

@17 Mir=2n f 1(0) p? dp=21 [4, (9)+ B: (p)— C, (p) - D, (W]}, ,

My

where B
_ 7o 2m+y/3
_ 4 (1S
B @)= 12y/3a,8,°
(3.18)

_ Qa:b,p+bY) VA ()
Cs (P)"“ 32 "/_0'2 ﬂs »
o, _ (da,b, ¢~ 5?) 1n(2a,p+b +2Va, 4(p))
The critical adiabatical thStmg momment (see point S, Fig. 3), i$ determined from
Eq. (3.17):
(3‘19) . M:‘scr"’M* Iﬁa =f

The Figs. (4a-4d) show the critical values of the adiabatical twisting moment M9
(continuous line) and its estimation (dash line) given by Eq. (3.19). Each of them
is the function of J for given values of the parameters 4 and n. The dimensionless
internal radius (3.7); was assumed as p,,=0.5,

EXAM:PLE 1

L& the stainless-steel of a thick-walled tube have the following material constants:
o c=112 kG/mmz 5=0.336 kG/(mm*°C), b,=0.016,
n=03, po C,=0.35 kG/(mm?°C), m=0.1, |
E=21-10 kGfmm?, o¢,=32.4 kG/mm?, v=0.3.
The following values are determined from Egs. (2.3),, (2.6), and (2.8):
B A=0.004, 5=0.4988, O =0.000923,
e2=0.52, % =0.00252,
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For p,,=0.5 we obtain from the Fig. 4b:
M* =0.0047, Me =00042.

Now it is derived from Egs. (2.3); 2 and (3.11) for @=20 mm that:
¢4 =70.5 kG/mnm?, =768 °C,
M2, =6074 kGm, MY, ,=5428 kGm,

I I 1 I - i

203

- A=00015
é_ gggi . : exact solution

I oy 1] B3 simplified solution -
5o Cann . =~ exget solution but w.zﬂ_mut E
TR \ . geometrl erfuct®
H- e L RN  stmplified solution byt 3

B L P E AT T W without , geometrical effect”

n=05 )

e

Y = X T ERIR Y- SO P U T R LT PNV
FiG.-4.
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ExAMPLE 2

In this example we take the material constants of carbon steel which suit the
Manjoine’s experiment [8] (see also [5-7D .
They are as follows: _ _
C,=114.5 kG/mm?, =016 kG/(mm? °C), b,=0.01,
n=02, po' C,=0.526 kG/(mm?*°C), . n=0.1,
E=19-10* kG/mm?, v=0.3.
Hence Egs. (2.3),, (2.6), and (2.8) result in: _
A=000477, $=0.158, ©}=0.000795, 75=0.0039,
For p,=0.5 from the Fig. 4a (points B and C) it arises: =
Ms a=0.0071 (pomt B), Mi‘m—O 0065 (point C)
From Eqs 3. 11) and (2.3)y, for a=20 mm it follows that: =
0%=98.7 kG/mm?, M2, =786.5kGm, M? =720 kGm.

scr

3.2, Admbaﬂcal twisting of i a thm- walled tube

In this case we can also identify the stress thh a pure shearmg state and assume
that shearing stresses.are constant throughout the wall (if only the thickness of
the tube is small enough).-Under such assumptions the problem is one-dirmensional.
Hence the: dlmenswnless crmcal tWIStmg moment {3. 11) ta.kes the form

(3.20) M:.:',~2mcr f pde——m ).

From the Fig. 3 it follows that one can get upper estimation of the moment M2
in a similar way as before, but using the isothérmal curve. Then Egs, (2.2), (2.9),
{2.10) and (3. 20) yzeld

G2y O EEs(n HN.

ser’

In t]ns case the real cr1t1ca1 tw:stmg moment M connected w1th the heat transfer

can be cstimatéd: .
3.22) Gl LY < IR < (1 4n) FEM

scr
The above estimation is not right in the case of thick-walled metal tubes — Sect. 3.1.
It is worth remarking that by using the expression (3.20) the critical adiabatical
twisting moment can be very easﬂy obtamed It is shown in the undermennoned
example : : -

- EXAMPLE 1
Let the material constants be the same as in t]iéhprevidu‘é Exalnpie-; 1,‘_-‘.énd that
Pv=0.9. From Flg 4 we get 75,=0.00252 and Eq (3.20) yields :
B2 20.00143. '

ger™
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For =20 mm from Eq. (3.17) the dimensional twisting moment has the value
M, =184.8 kGm.

The critical values of the adiabatical deformations &7, and temperature €., are: the
same as in the previous Example 1. ' ' o

4. CONCLUDING KEMARKS

The results show that taking into account the ‘“‘geometrical effect” does not
fead to any considerable quantitative changes in the values of the critical adiabatical
twisting moment’ (sce Fig. 4d). This refers to both linear and nonlinear physical
equations (see Egs. (2.2), (2.7), and (3.12)). The largest differences occur for n=0.5,
A=0.016, §=0.03 and they are of the order of 0.19 (see Fig. 4d). So, in practice,
we can neglect the “geometrical effect” because it only insignificantly increases
the critical twisting moment. This effect has a slightly larger influence (about 3 %7)
on the critical twisting angle B,, C, (see Fig. 3). o .

Simplification by describing the strain hardening curve (see Eq. (3.12)) has
" a considerable influence on the value of the critical adiabatical twisting moment.
Differences between exact (see Eqgs. (2.2) and (2.7),) and simplified solutions (see
Eq. (3.12)) are largest for n=0.5, §=0.73 and they are. of the order of 1675, The
dimensionless factor & which represents the sensitivity - of the yield:stress on the
temperature has here an influence on the results while the material parameter A
has not. All these differences do not appear when thin-walled tube is considered
(see Sect, 3.2}, : : o : B
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STRESZCZENIE

OKRESLENIE KRYTYCZNEJ WARTOSCI MOMENTU PRZY ADIABATYCZNYM
SKRECANIU GRUBOSCIENNYCH I CIENKOSCIENNYCH RUR METALOWYCH

W pracy wyznacza si¢ warto$¢ krytyczna adiabatycznego momentu skrecajacego w przypadku
skrecania grubo i cienkosciennych metalowych rurek. Stan krytyczny, ktory wyznacza wartosé
krytycznego, adiabatycznego momentu skrecajicego, jest stanem, ktoremu odpowiada maksimum
ra adiabatycznej krzywej wzmocnienia w probie na czyste Scinanie lub proste rozciaganie .Uzyskane
na drodze obliczert numerycznych rezultaty przedstawia si¢ w postaci odpowiednich wykresow,
ktore maja charakier nomogramdow.

Peswme

OIPEAEJIEHVIE KPUTHYECKOT'O 3HAYEHW S KPYTAIErO MOMEHTA TIPK ATIA-
BATHYECKOM KPYUYEHHMH TOJICTOCTEHHBIX M TOHKOCTEHHBLIX METAJLIMYE-
CKHIX TPYBOK

B paGoTe ompemensercs KPHTHYECKOE SHAYCHUG 4TUaGLTAYCCKOTO KPYTAITETC MOMEMTA DpH
KPY4eHEM TOJCTO H TOHKOCTEHHEIX MOTAINAYECKHX TPpyGox. KpuTEueckoe cocTosHue, ompemens-
Tonpee 3HAYCHHEE KPUTMIECEOTO KPYTAINETO MOMEHTa, ABIACICH COCTONHHEM, KOTOPOMY COOTER-
TCTBYEM MaXCAMYM 8/fdaOaTHICCKON KPMBOM YRpOYHeHys TPy HOILITANAT Ha, TRCTELY CABHAT NE00
OPOCTOE pacTARGHHE. UHCITEREO JONyTeHEbIe PASYILTAYEL IPE/ICTABIEHET B BUAe COOTBETCTBYFOIIAX
 rpapHAkoes - HOMOTrpaMM,

POLISH ACADEMY OF SCIENCES
INSTITUTE OF FUNDAMENTYAL TECHNOLOGICAL RESEARCH,

Received Febriary 8, 1983,






