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MATERIAL DESIGN OF ANISOTROPIC ELASTIC CELLULAR BODIES
WITH RESPECT TO CONTACT PROBLEM
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Two-dimensional contact problem formulated for anisotropic, elastic bodies is considered.
As an example of anisotropic medium, the cellular material is taken. The idea of two-scale
modeling is adopted for formulation of an equivalent continuum, on the basis of which elastic
properties can be obtained [2, 3]. Typical cellular microstructures with various types of symme-
tries are considered. Special attention is paid to cell structures giving negative Poisson’s ratio
in some directions (re-entrant cells). Application of the energy-based criterion for equivalent
continuum gives macroscopic yield condition [2, 5]. Condition for the energy coefficient defined
as a sum of weighted energies stored in elastic eigenstates ensures that the material works in
elastic state. Unilateral frictional contact problem is analyzed using FEM. Calculations are
performed for rough contact of square block subjected to normal load. Numerical solutions
show differences in deformation type and contact stress distributions for different types of
microstructures of the analyzed medium. The study enables the optimal choice of material
structure topology, which ensures the reduction of peak contact pressure and friction stress,
and applicability of anisotropic material to the given problem.
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1. Introduction

Cellular materials, with their variety of microstructures and types of ma-
terial symmetries, adopted for contact problems, provide interesting topics for
research. Two-scale modeling let us calculate the elastic properties of equivalent
continuum on the basis of unit cell analysis. Some cell structures lead to nega-
tive Poisson’s ratio in some directions. Materials with negative Poisson’s ratio
are called auxetic due to increasing cross-section in tension. They may be useful
for a variety of applications. Among their important mechanical properties the
reduction of stress concentration in contact problems shows a new area of appli-
cations. Such problem was investigated for auxetic isotropic foam [11, 12] and
the results show essential differences compared with the solutions for conven-
tional foams. For three-dimensional isotropic body limits of acceptable Poisson’s
ratio hold −1 ≤ ν ≤ 0.5 as a result of thermodynamical considerations [7, 10].
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For anisotropic materials these bounds are wider, theoreticaly they can reach
infinity. The existence of directions with auxetic behaviour in cellular materials
is connected with high anisotropy.

2. Formulation of the contact problem

For the unilateral static contact problem of anisotropic linear elastic body
with stiff and rough obstacle, the following system of equations must be ful-
filled [3]:

(2.1) σij,j + fi = 0, σij = Sijklεkl, εij =
1

2
(ui,j + uj,i) in Ω

completed with boundary conditions

(2.2) ui = ûi on ΓD, σij · nj = ti on ΓF,

contact conditions on ΓC

(2.3) σn · (un − g) = 0, σn ≤ 0, un − g ≤ 0

and friction conditions on ΓC

(2.4) |σT | < µ |σn| ⇒ ∆uT = 0, |σT | = µ |σn| ⇒ ∃λ > 0; ∆uT = −λσT ,

where σij – Cauchy stress tensor, εij – small strain tensor, Sijkl – anisotropic
elastic stiffness matrix, ui – displacement vector, fi – body forces, ûi – prescribed
displacements on ΓD, ti – forces acting on ΓF , ni – unit normal vector, ΓD∪ΓF ∪
ΓC – boundary of the domain Ω, g – initial gap, σn = σijninj – contact pressure,
un = u ◦ n – displacement normal to the boundary, σT i = σij · nj − σn · ni –
tangential contact force, and ∆uT = ∆(u − un · n) – increment of tangential
displacement.

To solve the boundary value problem formulated above (nonlinear due to
conditions (2.3) and (2.4)), the FEM approach is used.

3. Cellular microstructure

Cellular materials, due to a variety of material structure topology, reveal dif-
ferent anisotropic properties. Microstructure of material is modeled by idealized
regular repeating pattern of unit cells. A skeleton of a cell is modeled as an
elastic beam structure with stiff joints. The following cellular plane structures
are analyzed: a) square cell structure, b) ‘honeycomb’ structure, c) equilateral
triangular structure, d) ‘reentrant’ structure (giving auxetic material).
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These structures represent a unit thickness layer cut from 3-dimensional ma-
terial working in plane strain state. Figure 1 shows the structures mentioned
above and their representative unit cells.

a) b)

c) d)

Fig. 1. Regular cellular plane structures, and their representative unit cells: a) square cell
structure, square unit cell, b) ‘honeycomb’ structure, triangle unit cell, c) equilateral
triangular structure, hexagonal unit cell, d) ‘reentrant’ structure, trapezoid unit cell.

Geometry of a representative unit cell can be described by midpoint position
vectors: b

0
i , where

∣

∣b
0
1

∣

∣ = h/2,
∣

∣b
0
i

∣

∣ = L/2, i = 1, 2, ...n. L, h, t, γ – geometric
structural parameters (for a), b), c) structures L = h). Skeleton material parame-
ters are: Young’s modulus – Es, Poisson’s ratio – νs, limit of linear elasticity – Re.

3.1. Stiffness matrices

A framework of micromechanical modeling [2, 3, 5] is used to obtain stiffness
matrices of an elastic anisotropic equivalent continuum. It starts with analyzing
uniform macrostrains over the unit cell defined as follows:

(3.1) ε = 〈εs〉V =
1

V

∑

Ai

sym (ni ⊗ ui) dS,

where ui – midpoint displacement vector, ni – unit normal to the cell boundary,
V – volume of the representative cell, Ai – area of cell wall perpendicular to
i beam.

The model assumes that macrostrains of equivalent continuum are defined by
midpoint displacements of the skeleton structure. In terms of 6-D space (Kelvin
notation), plane strain tensor is represented by vector ε =

(

εx, εy,
√

2εxy

)

and
stiffness tensor representation is a 3 × 3 matrix.
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Given uniform unit strain fields K ε̃, K = 1, 2, 3 on the unit cell, as written
below:

(3.2)1
1ε̃ = (1, 0, 0) , 2ε̃ = (0, 1, 0) , 3ε̃ =

(

0, 0,
√

2
)

,

the displacements for the midpoints i = 1, 2, ...n in skeleton structure can be
found:

(3.2)2 ∆i = ∆i(
K ε̃), i = 1, 2, ...n, K = 1, 2, 3.

Next the forces normal K F̃in and tangential K F̃iτ to each skeleton beam
are obtained with the use of the Timoshenko beam theory. For structures a),
b), and c) these are analytical solutions. For a reentrant structure d) forces are
calculated numerically (using FEM ANSYS code). These forces produce stress
field on macroscale (in equivalent continuum) σ̃, and on microscale (in skeleton
material) σ̃s.

For arbitrary uniform strain state represented by vector ε =
(

1ε,2 ε,3 ε
)

, the
forces can be calculated as linear combination of previous solutions as follows:

(3.3) Fin (ε) =

3
∑

K=1

KεK F̃in, Fiτ (ε) =

3
∑

K=1

KεK F̃iτ .

The definition of effective continuum assumed here is based on equivalence
of the strain potential for the discrete structure and the strain potential of an
equivalent continuum. It refers to averaging the strain energy density as written
below:

(3.4) ΦE = 〈sΦE〉V =
1

V

∫

Vs

(sΦE) dVs,

where strain potential of the beam skeleton may be obtained using the following
formula:

(3.5) U =

∫

Vs

(sΦE) dVs

=
3

∑

i=1





li
∫

0

(Fni)
2 dξi

2EsAs
+ µ

li
∫

0

(Fτi)
2 dξi

2GsAs
+

li
∫

0

(Fτi (li − ξi))
2 dξi

2EsJ



,

where Es, Gs – Young and shear modulus for the skeleton material, As, J – beam
cross-sectional area and moment of inertia, µ – energy cross-sectional coefficient
(for rectangular cross-section µ = 1.2).
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Due to linearity of the stress-strain relationship, the strain energy density
function is represented by the following quadratic form:

(3.6) ΦE =
1

2
ε : S : ε.

Introducing relation (3.3) to the expression of strain potential and differen-
tiating it with respect to macrostrain components as follows:

(3.7) SIJ =
1

V







∫

VS

∂2
(

SΦE

)

∂ (Iε) ∂ (Jε)
dVS






,

one obtains the formula for stiffness matrix components of an anisotropic equiv-
alent continuum.

These components can be obtained as a result of a procedure based on
Eqs. (3.1)–(3.4) and (3.6)–(3.7) [2].

3.2. Poisson’s ratio and other material properties

Typical cellular structures with honeycomb and triangular shape of skeleton
give always positive Poisson’s ratio values in each direction in plane since they
represent transversal symmetry. For isotropy in two-dimensional problems, lim-
its of acceptable Poisson’s ratio become −1 ≤ ν ≤ 1 due to thermodynamical
considerations [9]. The honeycomb structure is more compliant and Poisson’s
ratio can attain greater value, but limited by relation ν ≤ 1. The triangular
structure shape is stiff and gives lower Poisson’s ratio. The value of Poisson’s
ratio for the symmetries mentioned above is constant; it means that it is in-
dependent of the direction of tension. This constant is dependent on geometric
and material microstructural parameters as given in Appendix B. Square struc-
ture gives anisotropic material with zero Poisson’s ratio in symmetry axis. In
other directions the value is limited by relation 0 ≤ ν ≤ 1. Generally for greater
cellular material density of fixed microstructure type, the Poisson’s ratio value
is lower than for lower density. Some skeleton geometries lead to nonpositive
Poisson’s ratio. For instance, a honeycomb with inverted hexagonal cells leads
to negative Poisson’s ratio in some directions. This unusual characteristics is
achieved by forming the cells into re-entrant shape, which bulges inwards and
which unfolds under tension resulting in a lateral expansion [6]. Detailed study of
directional properties of cellular material with re-entrant honeycomb structure
in dependence on microstructural parameters is given in [2].

Graphical representation of chosen material properties for material struc-
tures a), b), c), d) with geometric and skeleton material data used for numerical
examples are given in Appendix B.
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Evaluation of cellular material properties decides on the applicability of the
material to the given problem.

3.3. Assessment of elastic range

Majority of cellular materials reveal nonlinear behavior. Although linear
analysis gives only estimation of elastic limits, it enables to predict applicability
of chosen microstructure to material design.

Matrix representation of stiffness tensor for plane structures in Kelvin’s no-
tation in 6-D space is as follows:

(3.8) S =





S11 S12 S13

S12 S22 S23

S13 S23 S33



 .

In general this matrix has three eigenvalues: λI, λII, λIII, and the correspond-
ing stiffness matrix eigenstrains:

Iε̃ =
(Iε̃x,

Iε̃y,
Iε̃xy

)

, IIε̃ =
(IIε̃x,

IIε̃y,
IIε̃xy

)

, IIIε̃ =
(IIIε̃x,

IIIε̃y,
IIIε̃xy

)

or stiffness matrix eigenstresses:

(3.9) Iσ̃ = λI
Iε̃, IIσ̃ = λII

IIε̃, IIIσ̃ = λIII
IIIε̃.

Equations (3.1)–(3.4) enable to calculate the forces in skeleton structure for
strain eigenstates and to formulate the limit condition for bending and tension
in the skeleton in the form:

(3.10) max
i

(ασs
x) = Re, α = I, II, III, i = 1, 2, ...n.

The coefficients defined as follows:

(3.11) kα :=
Re

ασ̃s
x

α = I, II, III

are obtained as a result of analytical considerations or numerical calculations.
Analytical formulae for these coefficients depending on geometric structural and
skeleton material parameters for structures a), b), c) are given in Appendix A.
For structure d) these coefficient are obtained as a result of numerical calcula-
tions.

Limit eigenstrains and eigenstresses are as follows:

(3.12) αεgr = kα
αε̃, ασgr = λα

αεgr, α = I, II, III.
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The analysis presented above lets us also predict deformability of the given
material in elastic range. It can be described as maximum elongation in the x, y
direction or shear angle in the xy plane, which reads as follows:

(3.13) max |εx| =
III
∑

α=1

|αεgr
x |, max |εy| =

III
∑

α=1

∣

∣

αεgry

∣

∣, max |εxy| =
III
∑

α=1

∣

∣

αεgrxy

∣

∣.

3.4. Energy-based yield criterion for anisotropic continuum

For an arbitrary anisotropic solid, the energy-based Rychlewski criterion [13]
is formulated in the form of a sum of weighted energies stored in eigenstates of
anisotropy stiffness tensor as follows:

(3.14)
III
∑

α=1

αΦE

αΦgr
E

= 1,

where αΦgr
E is the critical energy for α state, α = I, II, III.

Energy-based yield criterion is a type of energy hypothesis for cellular ma-
terial. The subject of investigation is the limit state of linear elasticity which
corresponds to the first yield point in the skeleton structure. Such an approach
was successively adopted to a cellular 3D structured material [3, 5] and foams.
It shows a good agreement with experimental data [5].

Critical energies in Eq. (3.14) can be calculated by means of the formula:

(3.15) αΦgr
E =

1

2
ασgr · αεgr =

1

2
λαk

2
α

αε̃2.

The criterion presented above gives macroscopic yield condition for arbitrary
stress state, in particular for uniaxial tension, which is important due to the fact
that it can be compared with experimental results. For the considered structures
a), b), c), the formulae depending on skeleton material parameters and geometric
parameters of skeleton structures are given in Appendix A. For structure d) these
energies are obtained numerically.

The elastic stiffness matrix (3.8), yield stresses and limit strains (3.12), (3.13)
describing deformability in the elastic range, depend on material properties of
a solid phase of the cell and topological arrangement of its structure. Detailed
study of material properties depending on structural parameters is given in [2, 3].

3.5. Material strength in arbitrary plane stress state

The considered contact problem is linearly elastic. To conform this require-
ment it is necessary to introduce a measure of material strength in arbitrary
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point of the material and give the range of this measure for elasticity. The con-
sequence of the adopted form of yield criterion is the choice of energy coefficient
defined as a sum of weighted energies stored in subsequent eigenstates as written
below:

(3.16) ϕ =
III
∑

α=1

αΦE

αΦgr
E

.

In the limit state the coefficient reaches its maximum value ϕ = 1. Critical
energies can be defined as structural parameters of the material strength.

For generality of considerations we assume arbitrary orientation of cellular
x, y axes with respect to global X, Y coordinate axes in which the contact
problem is described. This orientation is given by angle β, as shown in Fig 2.

Fig. 2. Material orientation with respect to the global coordinate system.

To evaluate the energy coefficient in arbitrary point M with stress vector:

(3.17) σ(M) =
(

σ
(M)
X , σ

(M)
Y ,

√
2σ

(M)
XY

)

it is necessary to decompose it into stress eigenstates. As a result, the stress vector
for point M can be expressed as a linear combination of limit eigenstresses as
written below:

(3.18) σ(M) = AIσgr +BIIσgr + CIIIσgr,

where coefficients of this combination are as follows:

(3.19)

A =
σ

(M)
X

IIσgr
Y − σ

(M)
Y

IIσgr
X

Iσgr
X

IIσgr
Y − IIσgr

X
Iσgr

Y

, B =
σ

(M)
Y

Iσgr
X − σ

(M)
X

Iσgr
Y

Iσgr
X

IIσgr
Y − IIσgr

X
Iσgr

Y

,

C =
σ

(M)
XY

IIIσgr
XY

.
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The energy coefficient is expressed by relation:

ϕ = A2 +B2 + C2 ≤ 1

which gives the following condition:

(3.20) ϕ = d1

(

σ
(M)
X

)2
+ d2

(

σ
(M)
Y

)2
+ d3

(

σ
(M)
XY

)2
+ d4

(

σ
(M)
X σ

(M)
Y

)

+ d5

(

σ
(M)
X σ

(M)
XY

)

+ d6

(

σ
(M)
Y σ

(M)
XY

)

≤ 1,

where:

d1 = 0.25

[

(

1

m1

)2

+

(

cos 2β

m2

)2

+

(

sin 2β

m3

)2
]

, d2 = d1,

d3 =

[

(

sin 2β

m2

)2

+

(

cos 2β

m3

)2
]

,

d4 = 0.5

[

(

1

m1

)2

−
(

cos 2β

m2

)2

−
(

sin 2β

m3

)2
]

,

d5 = 0.5 sin 4β

[

(

1

m2

)2

+

(

1

m3

)2
]

, d6 = −d5,

m1 = λ1k1, m2 = λ2k2, m3 = λ3k3

/√
2

and β is the angle shown in Fig. 2.

4. Numerical analysis

Calculations of stiffness matrices and energy strength coefficients (mater-
ial parameters) for the considered anisotropic materials are performed indepen-
dently on a microstructural level by considering the strain-stress relations for
a unit cell. Analytical formulae for stiffness matrices coefficients and critical ener-
gies for structures a), b), c) are obtained with application of symbolic operations
provided by the Mathcad program. For structure d) the relevant description can
be obtained numerically by means of FEM system.

Subsequently, those parameters were used in the FEM analysis (with ANSYS
software) of numerical examples presented below.

All examples deal with a rectangular prism in plane state of strain, in rough
contact with stiff flat foundation. Simple geometry and load enable to analyze
the influence of microstructure type on the deformation, contact stresses and
distribution of material strength coefficient.
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4.1. Square block made of material with different cell types under pressure

A square block of dimensions B*H=1*1 m in contact with a stiff foundation
is analysed. The contact is rough with coefficient of friction µ = 0.3. Pressure
p = 25 kN/m is applied to upper edge of the block (see Fig. 3).

Fig. 3. Geometry and load for numerical examples.

Materials of all the types of microstructure presented above are considered.
The skeleton material data are: ES = 10 GPa, νS = 0.3, Re = 10 MPa and the
geometric parameters are chosen to obtain the same relative material density
ρ = 0.1154 of anisotropic cellular media in all cases. Table 1 shows specification
of geometrical parameters for unit cells. Notation of the types of microstructures
are the same as in Fig. 1.

Table 1. Specification of unit cells.

Structure
type

Geometric parameters
of skeleton [mm]

Skeleton beam
thickness t [mm]

a) L01 = L02 = L03 = L04 = 2.6 0.15

b) L01 = L02 = L03 = L04 = L05 = L06 = 1.5 0.15

c) L01 = L02 = L03 = 4.5 0.15

d) L01 = L02 = L03 = 3.15 γ = 700 0.15

Resultant macroscopic material constants are given in Table 2.

Table 2. Anisotropic material constants for cellular materials of different cell
types.

Structure type EX [MPa] EY [MPa] νXY νY X

a) β = 0 576.92 576.92 0.0 0.0

b) 21.87 21.87 0.96 0.96

c) 385.47 385.47 0.33 0.33

d) β = 90◦ 0.13 1.95 −0.26 −3.85
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Analysis of Table 2 leads to the conclusion that macroscopic material con-
stants depend on the type of cellular structure. Resultant Young’s moduli are
the greatest for structures a) and c), smaller for honeycomb structure b) and by
several orders smaller for the re-entrant structure d). Materials of structures b)
and c) are isotropic and have positive Poisson’s ratio. Material of structure a)
has zero Poisson’s ratios and structure d) produces negative Poisson’s ratios,
when unit cell axis are placed parallel to the coordinate frame.

The contact problem with application to the described cellular solids is
solved. Figure 4 shows deformations of a square block for different materials.

a) b)

c) d)

Fig. 4. Deformation of a square block of cellular material: a) square cell (material a)
displacement scale 1500, b) honeycomb cell (material b) displacement scale 50, c) triangle

(material c) displacement scale 1000, d) re-entrant (material d) displacement scale 3.

Differences in deformation types for structures with positive, zero, and neg-
ative Poisson’s ratios can be observed.

Figures 5 and 6, show the relative contact pressure, friction stress distribution
and contact status along the contact line.

It can be clearly seen from Fig. 5 that the most advantageous contact stress
distributions correspond to a material with nonpositive Poisson’s ratio. For ma-
terial a) characterized by νXY = 0, contact pressure is constant and friction



212 D. JASIŃSKA, M. JANUS–MICHALSKA

stress vanishes. For structure d) with νXY < 0 contact pressure is homogenous
in the centre of contact zone, and decreasing near the edges. Friction stress max-
imum appears at the point where slip begins. Figure 6 shows contact separation
at the corners for this material. Structures b) and c), characterized by positive,
constant ν, show the well-known pick contact pressure and friction force at the
corners of the contact zone. This concentration is much greater for structure b)
with ν equal to 0.96 in comparison to material with c) structure where ν attains
the value 0.3.

a)

b)

Fig. 5. Contact pressure and friction stress distribution along the contact line for different
cell types.
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Fig. 6. Contact status (stick slip and separation zones) for different cell types.

During calculations, the energy-based yield criterion (3.20) is checked to en-
sure work in elastic range. Distribution of material strength coefficient for ma-
terials with structures b), c), and d) are shown in Fig. 7. For material with
structure a) the value of this coefficient is constant (ϕ = 1.0E-5). Vanishing of

Fig. 7. Distribution of the material strength coefficient for material of structures b), c), d).
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Poisson’s ratio results in the lack of friction in this loading case. For structures
with positive Poisson’s ratio, the material strength coefficient reaches maximum
in the corners of contact surface as a result of peak contact pressure. Points with
maximum coefficient for structure d) correspond with maximum friction force.
Reduction of the material strength in the center of contact area for structures b)
and d) can be explained by energy considerations in microscale.

For the considered cellular materials, the results of numerical calculations
are summarised in Table 3. The last column of this table presents the ratio of
applied pressure to the admissible vertical load in nonfrictional case (py max) for
estimation of applicability of the chosen material to the given contact problem.

Table 3. Results for different cell types

Structure type σn max/p σt max/p ϕmax p/py max

a) 1 0 0.00001 0.004

b) 3.6 1.08 0.022 0.083

c) 1.85 0.23 0.0002 0.009

d) 1.09 0.28 0.95 0.492

4.2. Square block made of re-entrant cellular material with different location
of cell axis with respect to the contact line

Square block with geometry and contact data as in Example 4.1 with pressure
p = 4 kN/m applied to its upper edge is analyzed. The block is made of re-entrant
cell structure d) with skeleton material data and geometry of the unit cell as in
Table 1, but with different placing of the cell symmetry axis with respect to
the global coordinate system (and subsequently to body geometry, load and
contact line). Calculations were made for three chosen angle values: 0, 45, and
90 degrees (see Fig. 2). Macroscopic, anisotropic material constants for those
cases are presented in Table 4.

Table 4. Anisotropic material constants for different β angles.

β EX [MPa] EY [MPa] νXY νY X p/py max

0 1.954 0.128 −3.85 −0.26 0.31

45 0.104 0.104 0.365 0.365 0.38

90 0.128 1.954 −0.26 −3.85 0.08

Numerical results are visualized in Figs. 8–11. The greatest vertical load ca-
pacity and the smallest Poisson’s ratio νY X = −3.85 correspond to the angle
90 degrees. It causes the reduction of contact pressure, and hence of the fric-
tion stress near the ends of contact line with separation at the corners. A more
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a)

b)

Fig. 8. Contact pressure and friction stress distribution along contact line for different
reentrant cell orientation.

Fig. 9. Contact status (stick, slip, and separation zones) for different re-entrant cell
orientation.

uniform contact pressure distribution appears for the angle of 0 degrees, with
negative, but smaller absolute value of Poisson’s ratio νXY = −0.26. The skew
placement of the cell results in positive Poisson’s ratio, peak contact stresses at
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Fig. 10. Deformation of a square block made of reentrant cell microstructure for different
cell orientations: β = 0 deformation scale 3, β = 45 deformation scale 2, and β = 90

deformation scale 15.

Fig. 11. Distribution of material strength coefficient for different reentrant microstructure
orientation: β=0, β=45, and β=90.

the corners, and unsymmetric deformation despite the symmetric boundary con-
ditions, due to lack of symmetry in microstructure. For 90 degrees angle, despite
the smallest νY X = −3.85, the stick area dominates in contact zone (Fig. 9).
It is caused by domination of the resultant shear modulus over the bulk modu-
lus. Directional proportion G/K reveals dilatational properties of the considered
material and determines the relation of shear and dilatational deformation. For
0 degrees, a more uniform deformation (Fig. 10), and predominance of slip in
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contact area (Fig. 9) is observed. Distributions of material strength coefficient
are presented in Fig. 11. In all cases the reduction of material strength can be
noticed in the center of contact zone. It can be explained by considerations on
a microscale level.

4.3. Square block made of material of square cells with different locations
of cell axis with respect to contact line

For comparison with the previous example, a block with the same geometry,
load and boundary conditions, but made of material with structure a) (square
cell) with different orientations of the cell symmetry axis with respect to global
coordinate system is considered. The chosen angle values are: 0 and 45 degrees
(due to structure symmetry the results for 0 and 90 degrees agree).

Material constants are given in Table 5.

Table 5. Anisotropic material constants for different β angles.

β EX [MPa] EY [MPa] νXY νY X py/py max

0 576.92 576.92 0 0 0.0005

45 3.795 3.795 0.99 0.99 0.018

Figures 12–15 present the results of numerical calculations.

a)

b)

Fig. 12. Relative contact pressure and friction stresses distribution along the contact line for
different square cell orientations.
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Fig. 13. Contact status (stick, slip, and separation zones) for different square cell
orientations.

Fig. 14. Deformation of the body for different square cell orientations: β = 0 deformation
scale 10000, β = 45 deformation scale 50.

Fig. 15. Distribution of the material strength coefficient for square cell structure with
orientation: β = 45.

Skew placement of the cell (β = 45) resulting in high positive Poisson’s
ratio leads to peaks of normal and tangential contact stresses (Figs. 12, 13), and
concentration of the material strength (Fig. 15) in the corners of the contact
line. Directions of reduction of the material strength coefficient for this case
correspond with the maximum stiffness directions (see Appendix B). Unlike the
re-entrant cell, in Example 4.2, deformation in this case is symmetrical, due
to square structure symmetry for 45 degrees. For material orientation given by
β = 0 (νXY = νY X = 0), the contact pressure is constant, friction stress equals
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zero, and the material strength is uniform. The value of the material strength
coefficient is ϕ = 2.5E-7.

Detailed comparison of results of the numerical examples presented above
shows that stress field and contact status depend on macroscopic material prop-
erties, especially on Poisson’s ratio. This ratio for cellular materials depends
mainly on the topology of microstructure. The analysed structures of types b)
and c) give isotropic material with positive Poisson’s ratio and hence high peak
contact pressure and friction stresses.

Structure d) (re-entrant) gives a compliant material with negative Poisson’s
ratios for a broad range of angles (β ∈ (−18◦, 18◦)∪(72◦, 108◦)) (see Appendix B,
point d). So the assumption that deformation at small strains does not influence
the material properties can be adopted in this case. Such a material with proper
placement with respect to the contact line can produce advantageous contact
pressure distributions with reductions in the corners of the contact area.

Structure a), with cell symmetry axis parallel to contact line, gives a very
stiff material with zero Poisson’s ratio. It might seem to be most advantageous
for the class of contact problems presented above (with loads perpendicular to
the contact line and hence without global sliding), because it produces uniform
contact pressure and zero friction stress. However it is worth to notice that
material of structure a) has zero Poisson’s ratio, only for unit cell placed exactly
parallel to the coordinate frame. Graph of dependence of νXY on the angle of
cell orientation shows that for all angles other than 0 and 90, the Poisson’s
ratio is positive and can reach high values, even in the close neighbourhood of 0
and 90 (see Appendix B, point a). The assumption, typical for linear analysis,
that initial configuration of the structure is the reference configuration may be
inappropriate in this case. It may cause that advantageous properties of the
material can be overestimated. Real contact properties, especially for materials
with Poisson’s ratio very sensitive to cell orientation, should be obtained as
a result of full nonlinear analysis, in which anisotropic effective properties of
material are dependent on local configuration of the deformed body.

5. Conclusions

An analysis of static contact of cellular solid with rough stiff foundation is
undertaken. Micromechanical model of cellular material is applied to predict me-
chanical properties on a macroscale. The study is focused on prediction of the
stress distribution in contact zone and the material strength in the elastic range.
Cellular materials, due to a variety of structure topology, what results in different
types of material symmetry and macroscopic properties, can be tailored to special
demands of the given problem. The example of contact shows that differences in
behaviour can be essential and clearly visible. Special attention is paid to materi-
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als with anisotropic properties, especially to materials with re-entrant structure,
which give negative Poisson’s ratio in a certain range of directions. Proper choice
of microstructural geometrical parameters can determine the expected elastic
properties. These properties and the orientation of material symmetry axis with
respect to the load direction can significantly influence the contact stress distri-
bution and may play an important role in reducing the contact peak pressure.
Comparison of a material with square cells with a material of re-entrant structure
allows to point out a more advantageous type of microstructure by discussion of
the influence of directional material properties on the results of given example.

The contact mechanics of cellular materials is important for their friction and
wear behaviour and also, under static conditions, in applications as antivibrating
supports. The first topic requires consideration on a microscale and with the two-
scale modelling approach can be promising area for research. The second topic
requires analysis on a macro scale. The work on this problem started in this
paper can be developed.

Appendix A.

Stiffness matrices, Kelvin moduli, eigenstates

and critical energies

Notation: S – stiffness matrix, λα – eigenvalues of S, αε̃ – strain eigenstates,
kα – scalar multiplier for critical eigenstate, αΦgr

E – critical energies in eigenstates,
α= I, II, III. L, h, t, γ – microstructural parameters (Fig. 1), Es, vs,Re – skeleton
material parameters.
a) Square cell structure
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b) honeycomb structure
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c) equilateral triangular structure
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kI =
Re

Es
, kII =

Re

Es

(

4l2i + t2
)

(

2l2i + t2 + 3
√

3tli
) , kIII =

Re

Es

√
2

(

4l2i + t2
)

(6l + t) t
,

IΦgr
E =

R2
e

Es

√
3

(

4l2i + t2
)

t

64l3i
, IIΦgr

E =
R2

e

Es

2
√

3lit
(

2li + 3
√

3t
)2 ,

IIIΦgr
E =

R2
e

Es

√
3li

96t
,

d) Inverted honeycomb, re-entrant structure.
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S, kα, αΦgr
E – obtained numerically.

Appendix B.

Macroscopic material parameters and admissible vertical

pressure in uniaxial tension in dependence on the angle

of tension direction

Skeleton material data: ES = 10 GPa, νS = 0.3, Re = 10 MPa.
Geometrical parameters of microstructures as given in Table 1.
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a) Square cell structure (anisotropic material)
analytical formula:
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analytical formula:
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.

b) Honeycomb structure (isotropic material)
analytical formulae:
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3

√
3L [3t2 + L2]
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ν =

(

L2 − t2
)

L2 + 3t2
= 0.96, νmax = ν

(

t

L
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)

= 1,

pmax = 0.3 MN/m.
c) Equilateral triangle cell structure (isotropic material)
analytical formulae:
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d) Re-entrant structure (anisotropic material)
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